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Abstract—This study addresses the energy dispatch problem
of a virtual power plant (VPP) acting as a price-tacker in the
day-ahead electricity market. The VPP comprises wind farms
and a cascade of run-of-the-river hydropower plants. Even if the
storage capacity of the cascade is limited, it can still be exploited
to compensate the variability of wind. This implies dispatching
the water reservoirs near to real-time, while accounting for
complex constraints and various sources of uncertainty. To this
aim, we present a control strategy based on economic model
predictive control (MPC), which is then decomposed using the
auxiliary problem principle. As a distinctive feature, the proposed
algorithm is fully-distributed, i.e. no central coordinator is re-
quired. Compared to centralized MPC, the distributed algorithm
brings a ∼ 10% reduction in the average execution time of the
controller. Moreover, the joint operation of hydropower and wind
is shown to enhance the economic value of both assets.

Index Terms—Distributed model predictive control, run-of-the-
river hydropower, wind power, storage, complex systems

NOMENCLATURE

In the following, sets and vectors are denoted in bold. We
use the symbol ·̂ to denote uncertain parameters, e.g., P̂W .
Sets:
H - set of hydropower systems, indexed by h
K - MPC prediction horizon, indexed by k
T - set of time steps, indexed by t
Variables:
PH(h, t) - hydropower generation of h in period t (MW)
Qbr(h, t) - barrage discharge of h in period t (m3/s)
Qtr(h, t) - turbines discharge of h in period t (m3/s)
Z(h, t) - reservoir water level of h in period t (m)
Zmax(h, t) - maximum water level of h in period t (m)
Zmin(h, t) - minimum water level of h in period t (m)
∆EDAM,↑(t) - positive energy imbalance in period t (MWh)
∆EDAM,↓(t) - negative energy imbalance in period t (MWh)
Parameters:
EDAM (t) - VPP energy offer in the DAM in period t (MWh)
Pmax
H (h) - maximum hydropower generation of h (MW)

P̂W (t) - wind power generation in period t (MW)
Q̂e(h, t) - external water inflow into h in period t (either
from the upstream river or from the river tributaries) (m3/s)
Qmax

tr (h) - maximum turbines discharge of h (m3/s)
Qmin

tr (h) - minimum turbines discharge of h (m3/s)
Qmin

br (h) - minimum barrage discharge of h (m3/s)
S(h) - surface area of h (m2)

∆Qtr(h) - turbines discharge ramp limit of h (m3/s)
π̂E,↑(t) - penalty price of positive energy imbalances in
period t (¤/MWh)
π̂E,↓(t) - penalty price of negative energy imbalances in
period t (¤/MWh)
τ bri,j - time for water propagation from hydropower system i
to j via barrage (s)
τ tri,j - time for water propagation from hydropower system i
to j via turbines (s)

I. INTRODUCTION

Due to the progressive dismantling of conventional genera-
tors in favor of renewable energy sources (RES), namely wind
and solar power, the optimal dispatch of stochastic resources
by means of controllable units has attracted much attention.
In this context, the concept of virtual power plant (VPP)
was introduced to enhance the economic value of aggregated
resources and contribute to a more stable and reliable grid
[1]. Numerous studies focus on optimizing VPPs integrating
RES and various flexibility sources like batteries, controllable
loads, and electric vehicles for market participation [2] and
grid support [3]. Among these flexibility sources, hydropower
has already demonstrated its ability to increase the economic
value of RES, alleviate congestion, and reduce curtailment,
thanks to its fast ramping capability and inexpensive fuel [4].

Hydropower plants are broadly classified as reservoir-based
and run-of-the-river. Reservoir-based hydropower involves the
construction of large reservoirs to store water. In contrast,
run-of-the-river generates electricity mainly through natural
water flow, with limited storage capability. While several
contributions focus on the joint operation of reservoir-based
hydropower and RES, less attention is paid to run-of-the-river,
despite its critical role in the energy mix of several regions.
For example, several European countries have large run-of-
the-river shares, such as France (68% of the hydropower
generation in 2019), Austria (74%) and Italy (75%) [5]. A
study conducted in [6], based on 33 years of daily data (1980-
2012) for 12 European regions, found that integrating run-of-
the-river into the energy mix would increase RES penetration
in all regions, from 1% to 8%. Nonetheless, the limited
flexibility of run-of-the-river presents a significant obstacle to
its potential role in mitigating RES variability.



Deploying a cascade of run-of-the-river hydropower plants
(CRORHP) offers a strategic solution to this issue by enhanc-
ing the overall flexibility of the integrated system. Proposed
strategies for cascaded hydropower systems aim to optimize
their ancillary services provision [7], engagement in day-ahead
and frequency regulation markets [8], and enhancement of
RES market value [9]. These approaches primarily focus on
scheduling the cascaded system for day-ahead or long-term
periods, leaving the challenge of short-term energy dispatch
unaddressed. Model predictive control (MPC) has been em-
ployed to assess the potential of a CRORHP in mitigating
short-term fluctuations in solar [10] and wind power [11].
These studies either neglect the involvement of the CRORHP-
RES hybrid system in the electricity market or utilize central-
ized algorithms for managing short-term energy dispatch.

Optimizing the joint dispatch of RES and a CRORHP in
the electricity market demands swift decision-making within
tight control windows, all while considering complex con-
straints. This strongly motivates the investigation of distributed
optimization techniques. In this context, distributed MPC
represents an attractive decomposition coordination algorithm,
as it blends the MPC ability to scale to complex problems
with long planning horizons and the distributed optimization
ability to scale to problems involving the cooperation between
multiple agents. Typically, centralized MPC is decomposed
with augmented Lagrangian relaxation methods, using either
dual decomposition [12] or the alternating direction method of
multipliers (ADMM) [13]. However, both dual decomposition
and classical ADMM are not fully-distributed methods, as
they require a central coordinator to manage the dual variable
update step [14]. In recent years, the range of methods stem-
ming from classical ADMM has notably expanded, including
various fully-distributed algorithms [15]. These methods have
not yet been applied to the joint energy dispatch of cascaded
hydropower plants and RES, primarily due to the complex de-
coupling of both hydraulic relationships and spatial-temporal
constraints associated with hydro-RES hybrid systems.

In this study, we tackle the joint dispatch of a CRORHP
and wind farms in the day-ahead electricity market (DAM).
First, we design a centralized dispatch strategy based on MPC
to maximize the aggregator revenue while considering the
complex dynamics of the VPP. Then, by integrating the ideas
of the auxiliary problem principle (APP) [16] with MPC, we
partition the original controller to achieve its distributed form.
The key contributions of this paper can be summarized as
follows:

• We present a comprehensive VPP model integrating
spatial-temporal dynamics and interactions among het-
erogeneous energy resources. Moreover, in the framework
of a collaboration with the French aggregator Compagnie
Nationale du Rhône, we consider real operational curves
to represent the constraints linked to agricultural, environ-
mental, and other safety requirements of the CRORHP.

• We propose a novel distributed economic MPC algorithm
to tackle the join dispatch of a CRORHP and wind
farms. By combining the ideas of the APP and MPC,

the subproblems within the distributed framework can
be concurrently resolved at each control step. This leads
to a fully-distributed algorithm (no central coordinator is
required), that can efficiently scale in both the temporal
and spatial dimensions of the problem.

Simulations are conducted on a case study that mimics part
of the VPP operated by Compagnie Nationale du Rhône [17].

A similar analysis is proposed in [18], addressing the
scheduling of a cascaded reservoir-based hydropower system
across multiple electricity markets. With respect to [18], in
this paper we focus on run-of-the-river developments, whose
limited storage capacity complicates the ability to enhance
RES market value. Also, instead of the ADMM method used
in [18], we combine the concepts of the APP and MPC to
attain full parallelization of the control algorithm.

The remainder of the article is organized as follows: Sec-
tion II defines the problem, Section III presents the control
algorithm, Section IV discusses the results, and Section V
concludes the study.

II. PROBLEM STATEMENT

The goal is to optimize the energy dispatch of a VPP
participating in the DAM. The controller receives a hourly
energy offering profile, denoted by EDAM (t), computed on
the day before. Then, the problem consists in optimizing
the mismatch between the day-ahead offering profile and the
actual VPP energy production, on a 10 minute basis. This
is achieved by the coordinated control of the VPP assets via
distributed MPC.

Fig. 1 depicts the VPP: it comprises a cascade of three
run-of-the-river hydropower systems (HS1, HS2 and HS3,
respectively) and three geographically sparse wind farms. Each
hydropower system is composed by a barrage, a small water
reservoir and a hydropower plant, linked by water channels.
The external water inflow into the CRORHP is given by the
inflow from both the upstream river and its tributaries. The
proposed formulation excludes grid constraints, which will be
addressed in future works. In other words, we assume that the
aggregator does not partake in the grid management.

Energy dispatch takes place after market clearing, meaning
that the energy price is already known. We assume that
by combining information on energy prices with real-time
measurements of the electrical grid state, the aggregator can
accurately predict the penalty prices associated with imbal-
ances. We assume a dual-pricing settlement scheme [19],
where distinct prices are computed for positive imbalances
∆EDAM,↑ ∈ R+ (energy injection higher than the energy
offer) and negative imbalances ∆EDAM,↓ ∈ R+ (energy
injection lower than the energy offer). We denote by π̂E,↑ and
π̂E,↓ the forecasted penalty prices for positive and negative
imbalances, respectively. Also wind power and the external
water inflow are assumed to be uncertain parameters. Pre-
dictions over these two sources of uncertainty are obtained
by averaging probabilistic forecasts provided by Compagnie
Nationale du Rhône. We employ deterministic models to
handle uncertainty. This choice stems from the controller



Fig. 1. Diagram of the VPP comprising a CRORHP and wind farms.

need for rapid decision-making and the minimal forecast error
expected within the short forecast horizon. Furthermore, incor-
porating economic key performance indicators directly into
the optimization model is anticipated to enhance robustness
against uncertainty.

III. METHODOLOGY

In this section, we present the system modeling, along with
our distributed economic dispatch strategy.

A. Modelling

We model the VPP in Fig. 1 under three key assumptions:
• Assumption I. Wind power generation is considered un-

controllable, thereby curtailment or any other action to
alter its output is disregarded. This allows a better investi-
gation of the CRORHP ability to mitigate the stochasticity
of wind power.

• Assumption II. The hydropower generation function is
a linear function of the turbines discharge. In general,
the hydropower generation depends on both the tur-
bines discharge and the hydraulic head of the reservoir.
Nonetheless, during normal inflow conditions, run-of-the-
river assets experience minor fluctuations in hydraulic
head, allowing to confidently consider it as a constant.

• Assumption III. All turbines within each hydropower
plant share a common type. Thus, a single variable can
be used to represent the cumulative turbines discharge of
each asset. Extending our formulation to accommodate
the case of diverse turbine types requires minor modifi-
cations, which will be included in future works.

In the following, we denote by h a hydropower system in the
set of many hydropower systems H . Moreover, we present a
discrete time problem over a finite set of sampling times t ∈ T
with sampling period ∆T .

The dynamics of the reservoirs water levels, denoted by Z,
are given by:

Z(h, t) = Z(h, t− 1) +
(Qin(h, t)−Qout(h, t))∆T

S(h)
, (1)

where S denotes the surface area of the reservoir, while Qin

and Qout denote the reservoir inflow and outflow, respectively.
In each hydropower system, the reservoir inflow is the sum

of three components: the discharge of water from the upstream
hydropower system through the barrage and turbines, denoted
by Qbr and Qtr, respectively, and the uncertain external inflow,
denoted by Q̂e. Thus, the total inflow into the h-th reservoir
at time t is given by:

Qin(h, t) =Qbr(h− 1, t− τ brh−1,h)+

+Qtr(h− 1, t− τ trh−1,h) + Q̂e(h, t),
(2)

where τ trh−1,h and τ brh−1,h denote the time for water propagation
from hydropower system h− 1 to h via turbines and barrage,
respectively. Similarly, the outflow is given by:

Qout(h, t) = Qbr(h, t) +Qtr(h, t). (3)

We rely on historical measurements performed by Com-
pagnie Nationale du Rhône to determine the values of τ trh−1,h

and τ brh−1,h. During normal inflow conditions, we can safely
assume constant water propagation times because of the stable
discharge from the hydropower plants. However, during floods,
propagation times can fluctuate significantly, depending on the
river flow rate.

To ensure stability and safety of the hydropower systems,
the CRORHP is operated accordingly to strict operational
curves (see Fig. 2).

Fig. 2. Example of operational curve of a hydropower system operated by
Compagnie Nationale du Rhône [17].

The operational curves are established according to ap-
proved guidelines from relevant authorities and are linked to
various constraints like navigation, irrigation, nuclear safety,
environment, agriculture and tourism. During times of low
water flow, i.e., low-flow periods, the hydropower system is
managed to maintain high water levels to facilitate optimal
draught for navigation. Conversely, during flood periods, ef-
forts are made to maintain the water levels as close as possible
to the natural conditions prior to the barrage construction. Only
during normal inflow conditions, i.e., during energetic periods,
the reservoir provides storage capacity.



To model the operational curves, we compute the minimum
and maximum water levels of each reservoir, denoted by
Zmin(h, t) and Zmax(h, t), respectively, as functions of the
water inflow. Binary variables are used to provide a piecewise
linear approximation of these functions over the aforemen-
tioned operational periods.

Specific constraints are included to prevent an excessive
wear of the hydraulic equipment. First, the turbines discharge
is subject to the ramp limit |Qtr(h, t) − Qtr(h, t − 1)| ≤
∆Qtr(h). Second, the opening of the barrage is allowed only
under two conditions: the reservoir is full and the turbines
have reached their maximum discharge capacity. Thanks to
applying economic-oriented control and under the assumption
that energy prices are positive, the optimal solution invariably
involves saturating the turbines before opening the barrage.
Consequently, we introduce explicit constraints solely to en-
sure the fulfillment of the former condition. This is given by:

Qbr(h, t) ≤

{
0 if Z(h, t) < Zmax(h, t)

∞ otherwise
. (4)

Binary variables are employed to model (4). When the turbines
operate, their discharge must satisfy Qmin

tr (h) ≤ Qtr(h, t) ≤
Qmax

tr (h). When the barrage is open, the barrage discharge
must satisfy Qbr(h, t) ≥ Qmin

br (h).
Under Assumption II, the hydropower generation function,

denoted by PH , is given by:

PH(h, t) =
Pmax
H (h)Qtr(h, t)

Qmax
tr (h)

. (5)

Then, the power balance of the VPP is given by:

EDAM (t) =

(∑
h∈H

PH(h, t) + P̂W (t)

)
∆T+

−∆EDAM,↑(t) + ∆EDAM,↓(t),

(6)

where P̂W denotes the uncertain wind power generation.

B. Centralized model predictive control

The proposed energy dispatch strategy is formulated as an
MPC problem. At time t ∈ T , the MPC receives the energy
offering profile and forecasts of the uncertain parameters, for
each step of the MPC prediction horizon, i.e., ∀k ∈K. Then,
a sequence of control actions are computed to minimize

J =
∑
k∈K

(
π̂E,↓(t+ k)∆EDAM,↓(t+ k|t)+

− π̂E,↑(t+ k)∆EDAM,↑(t+ k|t)
)
,

(7)

which represents the total cost of energy imbalances.
Formally, the optimization model solved by the centralized

economic MPC strategy (CEMPC) at each time t ∈ T is:

argmin
Qtr(h,t+k|t),Qbr(h,t+k|t)

J (8a)

s.t. (1)-(6),∀h ∈H,∀k ∈K, (8b)

which is a mixed-integer linear program.

In words, (8) determines the dispatch of the CRORHP
that minimizes the cost associated with energy imbalances
arising from the variability of the VPP power generation.
The optimization model (8) is centralized since its resolution
requires the complete information from the VPP resources. By
leveraging well known findings from distributed optimization
theory, we can break down the centralized problem into
smaller problems, which can be solved in parallel until a
consensus is achieved on the coupling constraints.

C. From centralized to distributed model predictive control

The centralized problem (8), exhibits two sets of coupling
constraints: the reservoir dynamics (1) and the power balance
(6). Thus, to reach its fully-distributed form, we undertake a
two-step decomposition approach. First, we separate the high-
level problem, which involves minimizing the global VPP cost
of imbalances subject to the power balance (6), from the low-
level problem, which consists in optimizing the CRORHP
dispatch. Further breaking down the low-level problem, we
achieve a separation between the individual operation of the
hydropower systems, subject to to their operational constraints
(1)-(5). This sequential decomposition results in the structure
depicted in Fig. 3, where the original problem is divided
into interconnected components. As each low-level component
is associated to a hydropower system, we employ the index
h ∈H to identify also these components.

Fig. 3. Structure of the distributed economic MPC strategy.

To ensure coordinated optimization within the distributed
structure, the components share two sets of coupling vari-
ables: one for the hydropower generation variables, and
one for the turbines and barrage discharges. To simplify
the following formulation, we group the high-level cou-
pling variables in vector p = [p1,p2,p3]

T , where ph =
[PH(h, t+ 1|t), PH(h, t+ 2|t), ..., PH(h, t+K|t)], and the
low-level coupling variables in qh =

[
qh,1, qh,2, ..., qh,K

]T
,

where qh,k = [Qtr(h, t+ k|t), Qbr(h, t+ k|t)].
Consider again Fig. 3, where each low-level component

is connected to its neighbours through low-level information
links. The set of coupling variables shared among the low-
level component h and its neighbours is {ql | l ∈ Lh}, where
Lh denotes the set of indices associated with the low-level
coupling variables of h. Then, we duplicate these variables. We
denote by p̄h and q̄l the duplicates of ph and ql, respectively.
Since duplicated variables must assume identical values, we



enforce the consistency constraints ph = p̄h and ql = q̄l.
We denote by λph and λq l the corresponding vectors of
dual variables. Moreover, we collect in vector x the decision
variables pertinent only to the high-level problem, namely the
energy imbalances, and in yh those associated only to the
low-level component h, namely the reservoirs water levels
and the associated binary variables. We denote by Ξ(θ) and
Φh(η) the feasible regions of the variables in the high-level
and low-level components, respectively. In particular, Ξ(θ)
is defined by the set of constraints (5)-(6) and the high-
level variable limits, while Φh(η) is defined by the set of
constraints (1)-(5) and the low-level variable limits. Here, θ
collects high-level problem parameters (day-ahead offering
profile, wind power generation forecast and parameters of
the hydropower generation function), and η gathers low-level
problem parameters (external inflow forecast and CRORHP
parameters).

Finally, the centralized MPC problem (8) can be rewritten
in the following compact form:

argmin
x,p,yh,
qh,p̄h,q̄l

J(x) (9a)

s.t. (x,p) ∈ Ξ(θ), (9b)
(yh, qh, p̄h, q̄l) ∈ Φh(η),∀l ∈ Lh,∀h ∈H, (9c)
ph = p̄h : λph,∀h ∈H, (9d)
ql = q̄l : λq l,∀l ∈ Lh,∀h ∈H. (9e)

We proceed by relaxing the consistency constraints using
the augmented Lagrangian relaxation method. The augmented
Lagrangian cost function is:

Lρ =J +
∑
h∈H

(
λp

T
h (ph − p̄h) +

ρ

2
∥ph − p̄h∥

2
2

)
+

+
∑
h∈H

∑
l∈Lh

(
λq

T
l (ql − q̄l) +

ρ

2
∥ql − q̄l∥

2
2

)
,

(10)

where ρ is a large positive parameter.

Following the APP method, we linearize the cross-terms in
the augmented Lagrangian, i.e., the squared norms in (10),
at the current iterate, and we add quadratic separable terms.
Thanks to this linearization, at each iteration of the distributed
algorithm, each component requires knowledge of the coupling
variables determined by its neighboring components in the
preceding iteration. This results in a full parallelization of the
distributed algorithm.

The detailed implementation of the proposed distributed
economic MPC strategy (DEMPC) is presented in Algo-
rithm 1.

Algorithm 1 Distributed economic MPC (DEMPC)
Input: Parameter vectors θ and η
Output: Optimal control actions {q⋆

h |h ∈H}
1: Initialize: p0

h, p̄0
h, q0

l , q̄0
l , λp

1
h, λq

1
l , ρ1, i ← 0, primal

residual r0, dual residual s0, µ ← 10, penalty σ ← 2,
tolerance ϵ← 10−4, imax ← 1000;

2: while min
(∥∥ri∥∥

2
,
∥∥si∥∥

2

)
> ϵ and i < imax do

3: i← i+ 1;

4: xi,pi ← argmin
(x,p)∈Ξ(θ)

{
J(x) +

∑
h∈H

(
λp

i
h

T
ph +

+ρipT
h

(
pi−1
h − p̄i−1

h

)
+ ρi

∥∥ph − pi−1
h

∥∥2
2

)}
;

5: yi
h, q

i
h, p̄

i
h, q̄

i
l ← argmin

(yh,qh,p̄h,q̄l)∈Φh(η)

{
−λp

i
h

T
p̄h +

−ρip̄T
h

(
pi−1
h − p̄i−1

h

)
+ ρi

∥∥p̄h − p̄i−1
h

∥∥2
2

+

−
∑
l∈Lh

(
λq

i
l

T
q̄l + ρiq̄T

l

(
qi−1
l − q̄i−1

l

)
+

−ρi
∥∥q̄l − q̄i−1

l

∥∥2
2

)}
;

6: Share
{
qi
l ← q̄i

l | l ∈ Lh

}
with the neighbors of h;

7: ri ←
[
pi
h − p̄i

h, q
i
l − q̄i

l

]T
;

8: si ← ρi
[
p̄i
h − p̄i−1

h , q̄i
l − q̄i−1

l

]T
;

9:
[
λp

i+1
h ,λq

i+1
l

]T ← [
λp

i
h,λq

i
l

]T
+ ρiri;

10: if
∥∥ri∥∥

2
> µ

∥∥si∥∥
2

then ρi+1 ← σρi;
11: else if

∥∥si∥∥
2
> µ

∥∥ri∥∥
2

then ρi+1 ← 1
σρ

i;
12: else ρi+1 ← ρi;
13: end while

The APP method has been extensively researched and
theoretically validated for convex problems [20]. Despite lack-
ing this theoretical foundation for problems involving integer
constraints, this approach often serves as effective heuristics,
offering both upper and lower bounds along with feasible
solutions [21].

In essence, the drawback of a heuristic compared to a global
method is straightforward: it may not yield an optimal point.
Yet, the advantage lies in its potential for significantly faster
execution than a global method, a characteristic particularly
beneficial in numerous practical applications. Specifically for
the present problem, model (8) already encompasses several
approximations of the nonlinear physical dynamics inherent to
the VPP. Consequently, further pursuit of global optimization
may not be justified considering the additional effort it entails.
Furthermore, the proposed approach aims to furnish a rapid
tool for optimizing the global economic key performance
indicators of the VPP. In practical scenarios, the outcome
of Algorithm 1 will not directly translate into the actual
commands executed in real-time. Rather, it will function as
an economic signal employed as a reference by dedicated
local controllers, which can be leveraged to accommodate the
nonlinear dynamics of each asset.

It is worth mentioning that a straightforward approach to



recover the global convergence conditions for APP involves
relaxing the integer constraints and subsequently rounding to
achieve integrality upon termination. However, this technique
frequently yields poor-quality solutions in many practical
applications [22].

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results covering a
three months period (February-April 2017). This timeframe
encompasses diverse water inflow conditions, enabling a com-
prehensive exploration of various scenarios encountered by the
VPP. The parameters employed in the simulations can be found
in Table I. Simulations are performed using historical time
series of DAM prices in France. The MPC runs with control
intervals of 10 minutes and a prediction horizon of 24 hours.
The algorithm is implemented on a computer equipped with
an Intel i7 processor, utilizing Gurobi 9.5.0 as the solver.

TABLE I
PARAMETERS OF THE SIMULATIONS.

Type Parameter Value
Market Hourly average πE,↓;πE,↑ 57.32; 32.81 (¤/MWh)

Wind Hourly average wind power 66.54 (MW)

Hydro

Qmin
tr (1);Qmin

tr (2);Qmin
tr (3) 110; 60; 140 (m3/s)

Qmax
tr (1);Qmax

tr (2);Qmax
tr (3) 1600; 1500; 2220 (m3/s)

Qmin
br (1);Qmin

br (2);Qmin
br (3) 80; 56; 72 (m3/s)

∆Qtr(1);∆Qtr(2);∆Qtr(3) 125; 150; 200 (m3/s)
τ tr1,2; τ

tr
2,3; τ

tr
3,4; τ

br
1,2; τ

br
2,3; τ

br
3,4 300; 0; 0; 300; 0; 300 (s)

S(1);S(2);S(3) 6.13; 5.95; 5.34 (Km2)
Hourly average water inflow 1168.64 (m3/s)

In Fig. 4, we present an illustrative example showing the
daily operation of the last hydropower system in the CRORHP,
when our DEMPC is employed. As the operation of the last
development hinges on the decisions made for the upstream
developments, this analysis offers valuable insights into the
integrated operation of the entire CRORHP. During peak price
periods, the reservoir is strategically depleted to seize these
favorable market opportunities. Note that the reservoir storage
capacity is tied to the inflow, as depicted in Fig. 2. This inflow,
in turn, depends on the outflow of the upstream developments.
Hence, the distributed controller effectively orchestrates the
actions of the upstream developments to guarantee that full
storage capacity is available during peak price periods.

In Fig. 4 we can also observe the impact of incorporating
direct knowledge of the aggregator economic key performance
indicators into the control strategy. When the water level
attains its maximum, constraint (4) is satisfied, allowing the
opening of the barrage. Nevertheless, this proves economically
inefficient as the turbines have not yet reached their full
capacity. Thus, the barrage remains closed. This behavior
directly results from the formulation of the objective (7), which
models the economic goal of the aggregator (economic MPC),
rather than merely minimizing the mismatch between a set-
point and the actual dispatch, as in traditional MPC.

Fig. 4. Example of daily operation of the last hydropower system in the
hydropower cascade.

To assess the ability of DEMPC in enhancing the market
value of the VPP, we compare it to two alternative approaches:

• Uncoordinated economic MPC (UEMPC), which dis-
patches the CRORHP and wind independently in the
DAM.

• Ideal control, which solves the centralized dispatch prob-
lem (8) using the actual uncertainty realization instead of
forecasts.

Table II summarizes this comparison.

TABLE II
EX-POST ENERGY IMBALANCES AND REVENUE FOR VARIOUS DISPATCH
STRATEGIES. HOURLY AVERAGE VALUES NORMALIZED BY VPP POWER

GENERATION. IN BRACKETS, THE RELATIVE DIFFERENCE WITH RESPECT
TO UEMPC.

Strategy
Positive imb. Negative imb. Revenue
(MWh/MWh) (MWh/MWh) (¤/MWh)

UEMPC 0.13 0.10 37.22

DEMPC 0.10 (−23%) 0.07 (−30%) 37.93 (+1.9%)

Ideal control 0.07 (−46%) 0.05 (−50%) 38.69 (+3.9%)

The variations in Table II arise solely from different time of
use of the reservoirs. In fact, the final VPP energy generation
is independent from the dispatch strategy, since wind power is
uncontrollable and hydropower depends solely on the inflow.
Compared to UEMPC, our DEMPC exhibits a 1.9% revenue
increase, which shows that the coalition of hydropower and
wind improves the market value of both assets. Compared to
the ideal controller, our DEMPC shows a 2% revenue decrease.
Extending the MPC prediction horizon could narrow this gap,
albeit at the expense of heightened model complexity. The
net hourly revenues observed with UEMPC, DEMPC, and
ideal control stand at approximately 12211¤/h, 12454¤/h and
12689¤/h, respectively. Extrapolating the findings of this sim-
ulation to an entire year, employing our DEMPC rather than
individually dispatching VPP resources via UEMPC, would
yield an estimated annual revenue increase of approximately
¤2.13 million.



The revenue increase achieved when jointly optimizing
hydropower and wind depends on the CRORHP effectiveness
in mitigating wind variability. However, unlike batteries, the
storage capacity of the CRORHP is variable and reliant on the
inflow from the river and its tributaries (see Fig. 5).

Fig. 5. Average daily water inflow and corresponding storage capacity of the
hydropower cascade.

Table III shows the impact of inflow seasonality on the
revenue of the aggregator. During normal inflow conditions
(February and April), the joint dispatch yields significant
revenue increases (+1.9% and +2.5%, respectively) compared
to the independent dispatch strategy. Conversely, during flood
periods (March), the CRORHP is compelled to operate mostly
in a pure run-of-the-river mode, with no storage capacity.
In this case, the difference between joint and independent
dispatch narrows significantly. This clearly shows that run-of-
the-river ability to mitigate RES fluctuations is directly linked
to the inflow seasonality, which, in turn, dictates the storage
capacity of the reservoirs.

TABLE III
EX-POST REVENUE WITH INDEPENDENT (UEMPC) AND JOINT (DEMPC)

HYDRO-WIND DISPATCH. HOURLY AVERAGE VALUES NORMALIZED BY
VPP POWER GENERATION. IN BRACKETS, THE RELATIVE DIFFERENCE

WITH RESPECT TO UEMPC.

Strategy
Revenue (¤/MWh)

February March April
UEMPC 47.63 33.41 31.52

DEMPC 48.54 (+1.9%) 33.70 (+0.9%) 32.32 (+2.5%)

Numerical results comparing the computational perfor-
mances of the centralized and distributed approaches are
shown in Table IV. Compared to centralized MPC, our dis-
tributed MPC reduces by ∼ 10% the average time required to
solve one step of the controller with more than 99% accuracy.

A notable drawback of distributed algorithms is their sen-
sitivity to parameters tuning. To delve deeper into this issue,
Fig. 6 reports the computational performances of our DEMPC
when varying both the penalty parameter σ and the tolerance
parameter ϵ. When σ is set to low values, our DEMPC
outperforms centralized MPC in terms of time required to
solve the VPP dispatch. However, poor tuning of σ is shown
to increase significantly the MPC execution time, potentially
nullifying the computational advantage achieved through the
decomposition. Also, Fig. 6 reveals an inherent trade-off

TABLE IV
COMPUTATIONAL PERFORMANCES. THE ERROR IS COMPUTED RELATIVE

TO THE OBJECTIVE FUNCTION VALUE OF THE CENTRALIZED MPC.

Quantity
Centralized MPC Distributed MPC

Mean Std Max Mean Std Max
Relative error (%) - - - 0.48 0.91 1.96

Iteration time (s) - - - 0.41 0.36 1.56

Iterations count (-) - - - 23.21 3.81 30

MPC step time (s) 10.58 6.58 27.31 9.51 5.67 26.86

between controller execution time and accuracy. Lower values
of ϵ necessitate more iterations for DEMPC convergence but
increase its precision. Nevertheless, once a certain threshold
is crossed (ϵ = 10−4 in this case), we observe an exponential
surge in the execution time, yielding only negligible improve-
ments in the accuracy. Established guidelines for optimizing
parameters tuning are available [20].

Fig. 6. DEMPC sensitivity to parameters tuning.

V. CONCLUSIONS AND FUTURE WORK

In this study, we present a control strategy for the joint
energy dispatch of wind farms and a CRORHP. As a distinct
feature, the strategy is fully-distributed, eliminating the need
for a central coordinator. Decentralization not only enhances
the scalability of the controller but also fortifies its robustness
to communication failures and enables the integration of
privacy-preserving techniques, particularly when VPP assets
are managed by distinct owners. By partnering with the French
aggregator Compagnie Nationale du Rhône, we evaluate the
proposed approach on a complex case study. Compared to
centralized MPC, our distributed controller reduces by ∼
10% the average time needed to optimize the VPP dispatch.
Furthermore, the joint dispatch of wind and run-of-the-river
hydropower is shown to improve by ∼ 2% the revenue of
the aggregator, compared to operating these resources inde-
pendently in the market.

Future research directions entail expanding our evaluation
to the full-scale case study of Compagnie Nationale du Rhône
(19 hydropower systems), and develop control algorithms that



explicitly accounts for the nonlinear dynamics of the cascaded
hydropower system. Furthermore, alongside the proposed sen-
sitivity analyses, investigating the scalability of the distributed
method when varying the number of controllable assets in
the VPP, and consequently the number of nodes and edges
in the underlying distributed network, could lead to a more
comprehensive assessment of the proposed approach.
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