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Abstract. Assessing a wind farm's annual energy production (AEP) involves modelling 
the wind resource and the wind-to-power conversion at the site. The greenfield pre-
construction phase generally comprises the installation of wind measurement devices. For 
repowering projects, the wind data from the pre-construction phase of the existing farm can 
be used as wind input to assess the energy yield of the repowered wind farm. Indeed, one 
study demonstrates that when the modelling error correlations are known, the AEP 
prediction uncertainty of the repowered farm can be reduced by combining the energy 
production records of the existing farm with the AEP assessment for both farms. Previous 
studies have successfully identified the correlation structure for certain errors, especially for 
horizontal flow modelling, but not for vertical flow modelling. However, vertical 
extrapolation is essential, as the wind measurement heights are generally lower than the hub 
height on the repowered farm. This paper bridges this research gap and demonstrates that 
the correlation structure of errors in vertical profile modelling is Gaussian, with parameters 
dependent on shear values and heights. The distribution is validated against site data from 
simple to moderately complex sites in France.  

 

 
1. Introduction 

Assessing a wind farm's annual energy production (AEP) involves modelling the wind resource and 
the wind-to-power conversion at the site. This integrated model chain is commonly called a physics-
driven model (PDM). A greenfield pre-construction phase generally comprises the installation of 
wind measurement devices. For repowering projects, the wind data from the pre-construction phase 
of the existing farm can be used as wind input to assess the energy yield of the repowered wind 
farm. Indeed, uncertainty can be reduced by combining the PDM of the existing and repowered 
farms with the same wind input and records of the existing farm's energy production [1]. However, 
this method requires capturing the correlation between the various PDM modelling errors when 
applied to two farm configurations (the existing and the repowered). Models exist for the horizontal 
flow modelling error [2] and the wind measurement error [3], but in general, assessing error 
correlations remains a challenge [4,5]. In particular, the vertical extrapolation modelling error 
correlation has not been investigated, which poses a significant challenge when applying the 
repowering method [1] because 1) repowered wind turbines are generally taller than existing 
turbines and 2) pre-construction wind measurement heights are generally lower than hub heights as 
allowed by guidelines [6]. Given these considerations, this paper introduces a model explicitly 



tailored to the vertical extrapolation modelling error. It focuses on the power law model (PL) [7] 
that performs well in simple terrain [8, 9, 10]. Still, experimental [11, 12, 13] and theoretical studies 
[14, 15] show that PL error is non-negligible.  

Besides the vertical error correlation coefficient, this work also assesses the error correlation 
structure, i.e. the univariate and joint distribution of the PL error. There is no consensus on the 
distributions that best describe the PDM chain's various (univariate) modelling errors. Standards 
and a few references [2, 16, 17, 18] assume they are null-mean Gaussian distributed, while other 
references [19, 20, 21] consider alternative distributions. In this paper, we demonstrate that the 
distribution that best represents the PL error is a Gaussian distribution. We extend the reasoning to 
the joint distribution that we also demonstrate to be Gaussian. We provide a model to calculate the 
joint distribution's mean and covariance matrix parameters.  

Section 2 describes the dataset and the method used to observe PL errors. Section 3 describes the 
identification results for the distribution of the PL error using a pure regression model for the mean 
and a physics-based model for the standard deviation from [16]. Section 4 identifies the joint 
distribution using the Copula framework and the correlation coefficient that parametrises this 
distribution. Finally, section 5 concludes this work.  
 

2. Experimental evaluation framework for the datasets 

The experimental dataset consists of 12 Lidar wind measurement campaigns at different locations 
in France, covering from 4 to 12 months . The sites range from simple to moderately complex, 
possibly including patches of forests and small buildings close to the Lidar device. Data were 
quality-checked using expert-based visual analysis and quality checks recommended by the device 
manufacturer. The filtered datasets contain wind speeds as low as 0 m/s. 
 
2.1. Power law method application to Lidar data 

PL models the wind speed at height h using as input wind speed measurement: 
 

      ��ℎ, �� = U�h�, �� ∗ 
 ��������
          

(1) 

where ℎ is the target height, ℎ� is one measurement height, � is the time of measurement, and � is 
the shear coefficient calculated as:  
 ���� = ln �U�ℎ�, ����ℎ�, ��� ∗ �ln �ℎ�ℎ�����

 
(2) 

where ℎ� is a measurement height different than ℎ�. Finally, the wind speed ��ℎ� and the shear 
coefficient � are defined as the mean over the measurement period:  
 ��ℎ� = ���� � ��ℎ, ����

� �
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where �� is the number of measurement instances. The PL error Δ� is defined as the difference 
between ��ℎ� and �"#$%�ℎ�, the modelled and true mean wind speed at height ℎ: 
     Δ��ℎ� = ��ℎ� − �"#$%�ℎ�          (5) 

Using the mean error instead of the error for each modelled wind speed at time t greatly simplifies 
the calculation while still providing most of the required information to model the whole wind speed 
time-series uncertainty. A possible addition to this analysis is modelling the error on the scale factor 
of the Weibull wind speed distribution, but this has not been considered here. 

Each Lidar dataset is decomposed in test sets containing only three heights (ℎ�, ℎ�, ℎ) where ℎ� <ℎ� < ℎ. The measurements at height ℎ�and ℎ� are used to calibrate � and model ��ℎ� while the 



measurements at height ℎ are used as the reference wind speed to compute the modelling error. For 
example, if a Lidar measurement campaign is configured with heights of 60, 80, 100 and 120 
meters, there are four possible sets:  (ℎ�, ℎ�, ℎ) ∈ ((60,80,100), (60,80,120), (60,100,120), (80,100,120)). 

Given the various heights involved in the analysis, we define a normalised height called the inter-
range ratio (IR), defined as the height ratio between the target height ℎ and the measurement height ℎ�:  
 12 = ℎℎ� 

 
(6) 

2.2. Datasets description  

For the 12 campaigns, there are 843 sets of heights. The minimum measurement height ℎ� is 50 
meters, the maximum target height ℎ is 160 meters, and the IR ranges from 1.10 to 1.77. The mean 
shear coefficient varies from 0.15 to 0.38 (Figure 1); however, 50% of the values range between 
0.22 and 0.28. 

 
Figure 1. Histogram of the mean shear values. 

 
2.3. Probabilistic approach 

The approach to identifying the PL error distribution consists of fitting probability density function 
(PDF) models to the observed errors using a maximum likelihood estimation. With the PL error 
distribution, the joint error can be identified. The joint error is described by the bivariate cumulative 
distribution function (CDF) 3. H outputs the probability that the modelling error at height ℎ# is 
lower than the value 4# while the modelling error at height ℎ" is lower than the value 4": 
 3�4# , 4"� = 5678�Δ��ℎ#� < e:, Δ��ℎ"� < 4"� (7) 

The Copulas framework [22] offers a convenient way to identify the joint CDF. It decomposes 
the CDF into a function ;, that captures the correlation and the marginal distributions <:  
 3�4# , 4"� = ;�<=>��?��4#�, <=>��@��4"�� (8) 

Where <=>��?� and <=>��@� are the marginal CDFs of Δ��ℎ#� and Δ��ℎ"� respectively. The 
following section describes the identification of <, while section 4 describes the identification of 
C. 

 
3. Identification of the distribution of the PL error  

3.1. Asymmetry and bias of the observed PL model error 

Figure 2 shows the observed error histogram. Errors range from -0.93% (underestimation) to 
+3.73% (overestimation). The mean value is 0.45%, the standard deviation is 0.74%, and the 



skewness is 1.66.  
 

 

 
Figure 2. Histogram of the observed PL model errors. 

 
Given the asymmetry and bias of the observed errors, the PL error is unlikely to follow a null-

mean Gaussian distribution. In fact, micro-meteorological models suggest that the PL error depends 
on the shear values and the inter-range ratio [14], as observed when plotting the error as a function 
of the shear and IR values. Figure 3 shows the scatter plot of error for various shear values. For 
shear values above 0.2, the mean error is often above 0, while for values below 0.2, the mean error 
is negative. Figure 4 shows the scatter plot of error for various IR values. The mean error increases 
linearly from 0% to 1.25%, and the spread increases from almost 0% to 3%. There is a linear 
sensitivity to IR and a non-linear sensitivity to the shear values. Such systematic influences must 
be removed to obtain a residual error that behaves aleatory so that the central limit theorem ensures 
a Gaussian residual distribution. 
 

 
Figure 3. Scatter plot of error vs shear. 

 
Figure 4. Scatter plot of error vs IR. 

3.2. Regression model for the systematic error  

The regression model A captures the expected values of PL error while leaving the residual ξ 
independent and Gaussian distributed:  
 
  Δ�� =  f�IR, α� + ξ 

 (9) 



Among the models tested, the bilinear model fits best the PL error with a coefficient of 
determination of 60%: 
 f�IR, α� =  0.06 − 0.05 ∗ 12 − 0.30 ∗ � + 0.27 ∗ 12 ∗  � (10) 

Figure 5 shows the distribution of the residuals ξ: the distribution is centred, the standard deviation 
is reduced from 0.74% to 0.47%, and the skewness (0.08) is significantly reduced compared to 
unadjusted errors. The distribution is close to a null-mean Gaussian distribution, as the dashed line 
depicts. It can reasonably be modelled by its standard deviation.  Further hypothesis testing is 
performed in Section 3.4. 

 

 
Figure 5. The experimental probability density function of the 
adjusted error (full line) and the best Gaussian fit (dashed line). 

Figure 6 shows the scatter plot of the residuals for various shear values. The mean curve (dashed 
line) is flat compared to Figure 3; however, there is still a large variability. The 1-sigma envelope 
(full lines) shows a slight non-linear dependence of the residual standard deviation with the shear 
values. However, it is difficult to identify a trend visually. Figure 7 shows the scatter plot of the 
residuals for various IR values. The mean curve is flat; however, the 1-sigma envelope increases 
linearly with IR values. The residual standard deviation depends on the shear and the IR values 
thus, we also look for a standard deviation model.  
 

 
Figure 6. Scatter plot of the residuals per shear 
values. 

Figure 7. Scatter plot of the residuals per IR 
values. 

3.3. Physics-driven model for the residual standard deviation 



We leverage the physics-driven uncertainty model introduced in [16] to model the residual standard 
deviation, allowing for better generalisation of the findings compared to pure statistical regression 
models. The first part of this model focuses on the propagation of measurement uncertainty when 
calibrating the shear value and extrapolating wind speeds. The second part, stands for the 
uncertainty representativeness and models the error arising by assuming that the shear value is the 
same between the measurement heights and the hub height. The model equation is: L��ξ|α, ℎ�, ℎ�, ℎ�

= 
NOPQ#$R� �� �1 + 2 ∗ �1 − SQ#$R�ℎ�, ℎ��� ln� � ℎℎTUR� ln�� �ℎ�ℎ���
+ ��L"#V� ln� � ℎℎTUR� 

 
(11) 

where NOPQ#$R is the measurement uncertainty in metres per second, SQ#$R�ℎ�, ℎ�� is the 
measurement error correlation for two different measurement heights ℎ� and ℎ�,  ℎTUR is defined 

as Yℎ�ℎ� , and L"#V�  is the model for the representativeness uncertainty: 

 σ"#V = ln�� �Yℎ ∙ ℎTUR\T,#]] � P" � ln � ℎℎTUR� + T̂R|�|�� �1 + tanh �− ��"#]�� 
 

(12) 

P" and T̂R are heuristic parameters calibrated on data, \T,#]] is the effective roughness length of 
the site, and �"#] is the reference shear value.  

We maximise the likelihood of the residuals by tuning  P" and T̂R and the measurement error 
correlation SQ#$R to calibrate the model. The measurement uncertainty NOPQ#$R ∗ ��� is set to 2% 
according to [3], the effective roughness length \T,#]] to 0.8 meters, corresponding to a simple site, 
and the reference shear �"#] to 0.2 as suggested in [16]. Table 1 indicates the optimal parameters. 

Table 1. Optimal parameters for the uncertainty model 

Parameter Optimal value 

T̂R 10�` P" 1.85 SQ#$R 0.992 

The optimal offshore parameter T̂R is significantly lower than 0.05, the value identified in [16]. 
However, the reference value T̂R = 0.05 found results in a very low likelihood, likely because our 
dataset only contains onshore data. The complex terrain parameter P" and the correlation of the 
measurement error is almost 1, consistent with the findings of [16]. With such calibrated values, 
the uncertainty model becomes:  

 

L��ξ|α, h�, ℎ�, ℎ� = 
uncd:ef� �� + �g1.85 lng � ℎ
Yℎ�ℎ�� ln

⎝
⎛jℎYℎ�ℎ�0.8 ⎠

⎞
��

 

 
 

(13) 

3.4. Normality assessment  

Figure 8 shows that the PDF of the transformed errors (full line) and the standard Gaussian PDF 
(dash line) are close. The transformed error consists of the error adjusted from the systematic error 
and divided by the residuals standard deviation model. It is expected that the transformed error 
histogram resembles a Gaussian PDF if the PL error is Gaussian distributed. The transformed error 
distribution is slightly larger, indicating that the residual standard deviation model underestimates 
the errors. The normality test (Shapiro test) applied to the transformed errors gives a 10% p-value, 
indicating that the transformed data is likely Gaussian distributed and the PL error is likely Gaussian 
distributed.    

 



 
Figure 8. Experimental PDF of the transformed PL error (full line) 

and standard Gaussian PDF (dashed line) 

Finally, this demonstrates that a reasonable model for the PL error CDF is:  
 <=>����4� = Ɲ�4| n =  f�IR, α�, σ = σ�ξ|α, h�, ℎ�, ℎ�� (15) 

Where Ɲ refers to the Gaussian CDF.  
 
3.5. Discussion 

The calibration of the physics-based model involves arbitrary selection of values for certain 
parameters. Especially, the wind speed measurement uncertainty of Lidar is still an area of 
discussion and a value of 1% for uncd:ef ∗ ��� would be also plausible. The calibrated results are 
only slightly dependent on the latter and therefore the authors are confident on the parametrised 
values. Besides, the value of the optimal correlation coefficient is unexpected as it suggests that 
measurement errors are fully correlated across each height. The main drivers of the wind speed 
measurement errors are environmental parameters, such as turbulence intensity and shear value 
[22,23]. However, the authors also expect aleatoric errors arising from the measurement principles 
of Lidar. These results should be further analysed, comparing Lidar to Lidar at different heights.  

The distribution parameters are strongly dependent on the shear coefficient. This implies that the 
PL model is prone to fail in large shear context such as very stable atmosphere while it is more 
consistent in small shear context such as neutral or unstable conditions. The attempt of the author 
to further explain the behaviour of the systematic error with the shear values remains unsuccessful. 
The mechanism that links stability to PL model error have theoretically been explained [14] 
however when assuming that shear increases from unstable, to neutral and finally stable conditions, 
we draw opposite conclusions to [14]. This is most likely explained by the inability to solely 
describe stability from the shear values, especially when using the mean shear value.   

This distribution is fitted on Lidar data and similar analysis should be conducted with mast data 
to validate the model described here. Indeed, mast wind measurement error slightly differs to Lidar 
however the optimum parameters should be similar.   
 
4. Identification of the correlation function 
In this section, we identify the Copula model that best fits our dataset. Using the identified Copula 
and the marginal distribution identified in section 3.4, we can deduct a model for the joint PDF of 
PL errors.   

 

4.1. Method and dataset for Copula identification 

To identify the Copula that links the PL error at two different heights, we first pair all possible 
combinations of observed error for each Lidar campaigns. Considering the four-heights example of 
section 2.1, the pairs consist of the sets (60,80,100) and (60,80,120) then the sets  (60,80,100)  



and (60,100,120) and so on until all possible combinations. For such example, there are 6 possibles 
pairs. For the 12 campaigns, there are 1240 possibles pairs. We filter out pairs for which the 
difference between target  height is less than 10 meters as the error correlation is likely fully 
correlated: (60,80,100) and (60,80,110) would be filtered out. Eventually, for the 12 Lidar 
campaigns, there are 835 pairs of PL errors remaining. Copulas applies to the rank of the values 
rather than the values themselves (see equation 8): we apply the CDF identified in section Error! 

Reference source not found. to transform values into their rank. Finally, we test several function 
C to find the best matching Copula. The Akaike Information Criterion (AIC) is a quality indicator 
that optimises both the likelihood and the complexity of the Copula model [25]. We select the model 
that achieves the lowest AIC. 
 
4.2. Dataset description 

Figure 9 shows the scatter plot of the pairs of errors. There is a clear correlation between the errors. 
Figure 10 shows the scatter plot of the transformed errors. It exhibits a clear linear trend and 
symmetric distribution with small tails. Only a few points are slightly outside the linear trend. 

 
Figure 9. Scatter plot of PL error pairs. 

 

 

Figure 10. Scatter plot of pairs of PL errors 
ranks. 

4.3. Copula fitting and joint CDF identification 

The Gaussian Copula best fits the data of Figure 10 with an AIC of -800. The t-Student follows 
closely with an AIC of -799. The best AIC for the asymmetric Copulas (Joe, Gumbel, Clayton) is -
633, and thus has a lower match to data than the Gaussian result. Given that the marginals are 
Gaussian (see section 3.4) and that the best matching Copula is Gaussian, the Sklar's theorem [26] 
indicates that the joint CDF is Gaussian:  

 3�4# , 4"� = Ɲ�e:, eo| n, Σ� (16) 

The mean values are obtained with A, the diagonal element of the covariance matrix with L�q� 
yet the off-diagonal element (covariance) are unknown. It is likely that the correlation decreases 
with height configuration: the further the extrapolation heights ℎ# and ℎ", the lower the correlation. 
To reflect this, we evaluate the correlation coefficient sorting the dataset per ratio of extrapolation 
heights (EH): 

 r3 =  ℎ"ℎ# 
 

(17) 

Table 2 shows the correlation coefficients derived for three intervals of EH. As intuitively 
expected, it decreases 95% to 80% with increasing EH.   

Table 2. Pearson correlation coefficient of PL model errors. 

Ratio of extrapolation 
height () 

Correlation 
coefficient (%) 

Number of points 
() 



[1,1.2] 97% 360 
[1.2,1.4] 90% 369 
[1.4,1.6] 82% 106 

 
4.4. Conclusion and discussion 

The joint Gaussian CDF fits the observed PL errors. The mean and the covariance matrix 
parameters are dependent on the site characteristics, the mean wind profile and the heights of 
measurement and extrapolation. The joint CDF permits to draw sampling of the PL error when 
running Monte Carlo simulation of PDM. However, it turns also useful when running uncertainty 
propagation of PDM using Taylor's series expansion, as performed in [2]. This model only applies 
for onshore simple to moderately complex sites. 
 

5. Conclusion 
Characterising and mitigating uncertainties in wind farm AEP predictions represents a pivotal 
challenge for both industrial stakeholders and researchers. The financial viability of wind farms is 
intricately tied to the accuracy of prediction uncertainties. Consequently, the endeavours of ongoing 
research are bifurcated, with one faction concentrating on the advancement of sophisticated models 
for climate prediction, wind farm flows, and wind-to-power conversion. Simultaneously, another 
segment of the research community dedicates its efforts to comprehensively capturing the 
uncertainties inherent in existing models. This dual focus not only aims to enhance the prediction 
of uncertainties but also seeks to leverage available data to effectively diminish uncertainties, 
particularly in scenarios such as wind farm repowering, as elucidated in [1].  

Within the context of this study, we have demonstrated that the uncertainty associated with 
vertical extrapolation follows a bivariate Gaussian distribution, particularly applicable to onshore 
sites of varying complexity. A model encapsulating all pertinent parameters of this distribution has 
been derived and is readily deployable. Our assessment of the model's quality, supported by 
statistical quality indicators, affirms its reliability. This uncertainty distribution proves particularly 
valuable in the context of Monte Carlo simulations for wind farm AEP prediction, especially when 
applying an energy yield assessment method that leverages historical data for repowering farms [1].  

It is imperative to note that our results predominantly focus on the uncertainty of mean wind 
speed, with limited exploration into other moments of wind speed distribution. The scope of our 
uncertainty analysis pertains specifically to the scale parameter of a Weibull distribution of wind, 
omitting considerations of the shape parameter inherent in the typical Weibull distribution of wind 
speed. Notwithstanding, the shape parameter exerts a substantial influence on AEP values. 
Consequently, a prospective study could extend our analysis to incorporate this parameter, thereby 
enhancing the applicability of Monte Carlo simulations for wind farm AEP predictions. 
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