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In wavelet analysis, the signal reconstruction and statistical estimators are strongly
influenced by the wavelet shape that controls the time-frequency localization properties.
However, this dependency does not imply that the wavelet form is physically relevant to
extract spatially invariant wavelet-based shape signatures. A new statistical estimator is
proposed in order to quantify the influence of the wavelet on the spatial detection. This
indicator is then used to analyze signals obtained from the topography of abraded
surfaces. It is shown that the Coiflet wavelet is physically adapted to reproduce the
elementary mechanical process which creates the abrasion of the surface. Using 8
different wavelets, the analysis of the signal obtained by scanning the abraded surface
leads to the same spatial localization regardless the parameters of the abrasive process
and whatever the wavelet shapes. No statistical difference related to the type of wavelets
is found between the indicators (RMS, spectral moments…) extracted from the recon-
structed signals calculated on different scales and for various abrasive processes. If the
wavelet decomposition is seen as a multiscale microscope, a surface can be seen in
different ways according to the type of wavelets. However, the morphological changes of
the surface caused by external mechanical causes and characterized by several statistical
parameters are statistically similar regardless the shape of the wavelets.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Precision machining by turning and rectifying of functional surfaces of mechanical parts, i.e. obtaining flawless parts both
on the geometrical and structural aspects requires a considerable technical and economical effort. Some operations are
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Fig. 1. The grinding belt principle [1].
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completed by a finishing process such as the belt grinding process (Fig. 1) which is easier and less expensive than others
finishing processes like high precision tool machining. However, we still have an incomplete knowledge of both the
mechanisms and the characteristics of this process. Some authors analyzed the relations between the conditions of this
process and the roughness of the obtained surfaces by experimental approaches [1,2].

A surface generated by machining is composed of a large number of irregularities (peaks and valleys) superimposed on
more widely spaced undulations (waviness). These irregularities, known as roughness, are generally characterized by three
types of parameters: amplitude parameters, spatial parameters, and hybrid parameters (see Table 1). Amplitude parameters
measure the vertical heights of the surface deviations from a reference line. Spacing parameters measure the horizontal
characteristics of the surface deviations. Hybrid parameters are a combination of both the vertical and the horizontal
characteristics of surface deviations.

It should also be noticed that the abrasion process is stochastic since the mechanical properties, the movement, and
geometrical properties of the cutting tips are all characterized by a large statistical variability. For example, Pellegrin et al.
model abrasion with a Monte Carlo approach [3]. In the same way, Bigerelle et al. [4,5] prove that abraded surfaces can be
modeled by stochastic fractal functions and using the Monte Carlo model, and thus the belt finishing process as well [6]. This
stochastic aspect is also used to take into account the roughness in the abrasion model thanks to the Gaussian
approximation of surface roughness [7]. Simple sclerometric rheological material analysis shows geometrical dependences
of ridge height and groove depth, in combination with the Peaks and Valleys (PV) [8]. In fact, Peaks and Valleys (PV) of
roughness are linked to abrasion. King et al. link the resistance of optical coatings to scratching to PV [9]. The transient
behavior of super-finished surfaces has been examined by Malkin and co-workers [10,11]. They found that the radial stock
removal during the transient stage is approximately equal to the average PV of the initial ground surface. Chang et al. [12]
have used the PV amplitude to investigate the effect of process parameters on the evolution of the texture of super-finished
surfaces obtained by stone super-finishing of hardened AISI 8119 steel. Experimental results suggest a linear correlation
between SSD (Sub Surface Damage) depth and PV with a proportionality constant for various materials Glass [13,14]. This
linear relation was explained and modeled by Miller et al. [15] by applying micro-indentation mechanics and built models
for the SSD/surface roughness ratio based on the indentation of sharp and spherical indenters, with respect to material
mechanical properties, shape and load of abrasive grains. In fact, the use of the PV is justified by a model proposed by Jha
and Jain [16] based on the local erosion of peaks.

However, the stochastic aspect of abrasion leads to local accumulation of damages resulting in highest peaks or deepest
valleys and their amplitudes depend on the scale of observation. It is shown that abraded surfaces possess a fractal structure
[17] that was naturally found on wear debris [18] and can be used for wear prediction [19]. However, the fractal concept
cannot be applied to all the scales and an upper scale is often found fromwhich it fails. This bi-structure was first introduced
by Bhushan et al. [20] to propose an elastic–plastic contact model of a magnetic tape in contact with a flat hard plane. Wu
also used the bi-fractal formalism to model abrasion [21]. This approach yields two fractal functions defined on two
bandwidths. This means that the second stage follows also a fractal structure and finally abrasion is a superposition of fractal
structures with two distinct scaling laws. In fact, a high number of bi-fractal structures met in the bibliography are based on
a visual observation of a graph called the “log–log plot” (plot of a mathematical measure versus the scale of observation in
logarithmic coordinates) of which the slope is related to the fractal dimension: if a cross over appears in the log–log plot,
then a bi-fractal structure is shown. However, it has been also proved that a log–log plot obtained from abraded surfaces can
present a bi-fractal structure without having a scaling law for the highest scale and can only be due to a severe cumulation
Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
Process. (2013), http://dx.doi.org/10.1016/j.ymssp.2013.07.001i



Table 1
2D roughness parameters used to quantify the roughness of profiles (fromWhitehouse, DJ, 2003, Handbook of Surface Nanometrology, IOP Publishing, Ltd.,
London).

Parameter name Definition Classification

Rp Maximum profile peak height within a sampling length Amplitude parameters
Rv Maximum profile valley depth within a sampling length
Rz Maximum height of the profile within a sampling length
Rv1…Rv5 Maximum local profile valleys height
Rp1…Rp5 Maximum local profile peak height
Rz1…Rz5 Maximum local height of the profile
Rz3 Mean local height of the profile
Rwz Mean local curvature radii of peaks
Rc Mean height of the elements of the profile, inside a sampling length
Rt Total height of the profile on the evaluation length
Ra Arithmetic mean deviation of the assessed profile
Rq Root-Mean-Square (RMS) deviation of the assessed profile
Rsk Skewness (asymmetry) of the assessed profile
Rku Kurtosis of the assessed profile
Rmr Relative material ratio
Rdc Profile section height difference (bearing height) Material ratio parameters
RSm Mean width of profile elements, within a sampling length Spacing parameters
Rdq Root-Mean-Square (RMS) slope of the profile within a sampling length
Rk Kernel roughness depth (roughness depth of the core) Parameters based on the linear material ratio curve
Rpk Reduced peak height (roughness depth of the peaks)
Rvk Reduced valley depth (roughness depth of the valleys)
MR1 Upper material ratio
MR2 Lower material ratio
A1 Upper area (area of the triangle equivalent to the peaks)
A2 Lower area (area of the triangle equivalent to the holes)
Rpk
n

Peak height (roughness depth of the peaks, before area correction)
Rvk
n

Valley depth (roughness depth of the valleys, before area correction)
Rpq Plateau Root-Mean-Square (RMS) roughness of the profile Parameters based on the material probability curve
Rvq Valley Root-Mean-Square (RMS) roughness of the profile
Rmq Material ratio at plateau-to-valley transition of the profile
R Mean depth of the roughness motifs Parameters linked to the roughness motifs
AR Mean spacing of the roughness motifs
Rx Maximum depth of the roughness motifs
Pt Total height of the profile
Kr Mean slope of the roughness motifs
Nr Number of roughness motifs
SR Standard deviation of the depth of the roughness motifs
SAR Standard deviation of the spacing of the roughness motifs
Trc Microgeometric material ratio Bearing ratio at a given depth
HTrc Microgeometric criterium (height between two bearing ratios)
Rke Kernel roughness of the envelope-leveled profile
Rpke Reduced height of the envelope-leveled profile
Rvke Reduced depth of the envelope-leveled profile
Rt Total Height of roughness profile
Rpm Average maximum profile peak height of the roughness profile ASME B46.1 parameters
RΔa Arithmetic mean slope on the roughness profile
Wt Total height of waviness profile
Δv Variation method Fractal dimensions
Δs Structure method
Δa AMN method
Δb Box counting method
Δd Dilatation method (Bouligand)
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of damages whose probability of occurrence naturally increases with the scale of observation without presenting a scaling
correlation, i.e. fractal behavior.

Wavelet theory has become an active area of research in many fields such as sound synthesis, vibration/motion analysis,
transient signal analysis, data smoothing/de-noising, image compression, communication systems, feature extraction,
subband coding, and other signal processing applications. In this paper, a multiscale analysis using the discrete wavelet
transform is performed on the measured signals in order to find the relations between the finishing process and the
roughness of the surface. The objective of this paper is to determine the effect of the choice of the mother wavelet on the
results of the analysis. The aim is to identify the most relevant roughness parameter and its characteristic length in order to
assess the influence of finishing process, and to test the relevance of the measurement scale.
Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
Process. (2013), http://dx.doi.org/10.1016/j.ymssp.2013.07.001i



M. Bigerelle et al. / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]]4
2. Experimental study

The grinding belt process (Fig. 1) consists in applying an abrasive oscillating belt, of low thickness, on a rotating
manufactured specimen. To assure the reproducibility of the process, five inner parts of ball bearing designed as100Cr6 steel
grade, having a diameter of 54.78 mm and a width of 30 mm, are tooled (ie. superfinished by process) for each group of test
conditions of the experimental design. The width of the belt is 20 mm. Tagushi's experimental design is used to study the
effects of the belt grinding process conditions on the resulting roughness. The experiment is conducted using 16 specimens
that were turned and rectified. The initial roughness parameters are Rz, 18.3 mm; Rmax, 20.1 mm; Ar, 134 mm; War, 1050 mm;
Wr, 8 mm; RPk, 8.1 mm; Rk, 15.4 mm; Rvk, 7.8 mm. All samples are then manufactured with the same lubrication condition
corresponding to reference ‘Cut Max H05’. We retain 7 process parameters: Belt feed (50 and 100 mm/mn), contact pressure
(1 and 3 bar), Axial oscillation frequency (1.6 and 10 Hz), contact wheel stiffness (hard and soft), cycle times (3 and 9 s), belt
grit size (9 and 40 mm) and finally work piece rotation speed (100 and 500 rpm) [22].

This experimental design is built to take into account the interactions between the contact wheel stiffness, the contact
pressure, and the belt grit size. Roughness measurements are performed for each specimen. For each measurement, 30
roughness signals were recorded from the tooled surfaces by a KLA-TENCOR™ P-10 profilometer with a 2 mm tip radius. The
scanning and the sampling lengths are, respectively, 8 mm and 0.1 mm. The real resolution on our samples is analyzed in
Appendix A and can be estimated to 1 mm in lateral direction. Under this critical length, signal analyses cannot be formally
performed because of a smoothing effect due to tip radius.

3. Multiscale problem statement of abrasion

In this part, the multiscale aspect of abrasion will be described precisely to justify the use of the wavelet analysis to
characterize the different physical parameters of the abrasion mechanisms. Abrasive processes work by forcing the abrasive
particles, or grains, into the surface of the workpiece so that each particle cuts away and simultaneously deforms in visco-
elasto-plastic or brittle manner a small volume of material. This process can be divided into two categories based on how
the grits are applied to the work piece. In the first category, bonded abrasive processes, called “two body abrasion”, the
particles are held together within a matrix, and their combined shape and density determine the geometry and morphology
of the finished work piece. In the second category, loose abrasive processes, called “three body abrasion” there is no firm
structure bounding the grains The common “two body abrasion” bonded abrasive processes are wheel grinding, stone
honing, belt or tape finishing, buffing, brushing, grains wire cutting or sawing, etc. Largely known “three body abrasion” or
loose abrasive processes are polishing, lapping, abrasive flow or jet machining, blasting and in mass finishing.

3.1. Study of elementary abrasion processes

During the “two-body abrasion”, when hard abrasives usually simultaneously remove and deform ductile material by
“micro-cutting”, plastic deformation of abraded material occurs. To quantify individually the effect of an isolated abrasive
grain, a sclerometer is used to measure the scratch hardness of materials. The sclerometer test consists of microscopically
measuring the width of a scratch made by a diamond under a fixed load, and drawn across the face of the specimen under
fixed conditions. Fig. 2 schematically shows a cross section of a groove created by the sclerometer with ridges. Considering a
cross section the loss caused by a single grit can be determined [23,24] by β¼1�(Ab+Ab')/Av where Ab, Ab' and Av,
respectively, represent the volume of material displaced on the left hand side and on the right hand side of the scratch, and
the volume of the scratch above the mean line (Fig. 2). It has been known that wear rate of materials is closely related to the
grit size in “two-body abrasion” in relationship with the dimensions of the scratch profile. Nevertheless, a plastic
deformation behavior of abraded material still has a strong effect on the wear process [25]. It can be inferred that the
critical particle size effect can be explained directly from β factor because it shows the true fraction of cutting wear among
the grooving materials. However, the exact measurement of ridge geometrical parameters is difficult and tedious after
scratching. Thus, the implementation of computer simulation is desirable. It is interesting to note that Bucaille et al. [26]
simulated an indenter scratching process on elastic–plastic plate using Forge3s and a regressive expression was proposed
that builds a relationship between the shape ratio and rheological factor which is in agreement with the experimental
results of Jardret et al. [24], and Mathia et al. [27].
Fig. 2. Transversal scanning of a groove.

Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
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Fig 3. (a) A surface with one deep scratch. (b) The ‘V’ form of a scratch.

Fig. 4. Various scratch signals resulting from applying different forces. The amplitude of the signal increases with the value of applied force (in Newton).

Fig. 5. A signal obtained by microscope interferometric scanning on an abraded surface (640n480 sampling data).
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A sclerometer test (also called “scratch test”) is performed on the retained materials that model physically the scratches
produced by the abrasive grains of the grinding belt. Fig. 3 represents the three dimensional scratches recorded by a 3D
profilometer. As shown in Fig. 2, the scratch is identified as a “V” shape in the signal obtained by the profilometer when
scanning an abraded surface (see Fig. 3). The amplitude of the groove depends on the force applied on the indentor of the
scratch test: Different loads are applied (40–200 N) and grooves are recorded: the higher the load, the deeper the groove on
Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
Process. (2013), http://dx.doi.org/10.1016/j.ymssp.2013.07.001i



Fig. 6. A signal obtained by scanning mechanically an abraded surface tooled by the belt finishing process (120,000 sampling data) from Bigerelle et al. in
[27].
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the surface (Fig. 4). For example, by applying a force of 200 N the amplitude of the scratch is between �40 mm and +30 mm,
whereas for a force of 40 N the amplitude is between �7 mm and +5 mm.

Fig. 5 represents the surface topography of an abraded surface scanned by Interferometry (640n480 sampling data). To
appreciate the multiscale aspect of abrasion, the surface is recorded by a high resolution stylus profilometer (150,000
sampling data) and different zooms are performed (Fig. 6).

Wavelets are often used to analyze the multiscale aspect and particularly the fractal aspect of the abrasion [28–30]. As a
consequence, one could postulate that a wavelet that well models the elementary process of the scratch test could be more
relevant to characterize accurately the different scales of abrasion induced by each parameter of the Belt Finishing Process.
4. Wavelet analysis of signal

4.1. Objective of the wavelet decomposition

From a tribological point of view, our purpose is to find how the level of the retained process parameters (see Table 2)
modifies the surface roughness. More precisely, at which scale range, each process parameter affects the morphology of the
surface. Initially, the different shapes of the wavelets used to analyze the multiscale aspect of the signals will be presented.
In this paper, only discrete wavelets will be used. To analyze the effect of wavelet shape on the signal characterization,
different wavelet shapes are retained. Particularly, different Debauchies' wavelets will be used (with orders: 2, 5, 8, 10) that
introduce various shapes due to an increase of wavelet oscillation and regularity with the order. Then the relevance of
characterizing the form of the elementary signal (i.e. the scratch, Fig. 3) by all retained wavelets is analyzed and quantified.
Then, the 3 different scale decompositions corresponding to high frequencies, low frequencies and details (signal at a fixed
Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
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Table 2
Description of the Tagushi experimental design.

Experiment Contact wheel
stiffness

Belt grit size
(lm)

Contact
pressure (bar)

Workpiece rotation
speed (rpm)

Belt feed
(mm/mn)

Cycle
time (s)

Axial oscillation
frequency (Hz)

1 Hard 9 1 100 50 3 1.6
2 Hard 9 1 500 100 9 10
3 Hard 9 3 100 50 9 10
4 Hard 9 3 500 100 3 1.6
5 Hard 40 1 100 100 3 10
6 Hard 40 1 500 50 9 1.6
7 Hard 40 3 100 100 9 1.6
8 Hard 40 3 500 50 3 10
9 Soft 9 1 100 50 3 10

10 Soft 9 1 500 100 9 1.6
11 Soft 9 3 100 50 9 1.6
12 Soft 9 3 500 100 3 10
13 Soft 40 1 100 100 3 1.6
14 Soft 40 1 500 50 9 10
15 Soft 40 3 100 100 9 10
16 Soft 40 3 500 50 3 1.6
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scale) are applied on signal roughness. As is usually the practice in the topics of surface metrology, roughness parameters
are computed on these signals.

4.2. Most relevant wavelet to characterize the elementary mechanism of abrasion

For the last decade, they have been used in roughness analysis to filter the signal. In the present study, 8 different discrete
mother wavelets are considered (Debauchies 2,5,8,10, Coiflets, Symlets, Meyer, and Biorthogonal). Various authors report that
the choice of a wavelet shape is the most important step in wavelet analysis, because it guarantees a precise decomposition of
the original signal into different frequency resolutions [38–44]. The criteria used to choose the mother wavelet that is best
suited to the signal depend strongly on the studied physical process. The most successful is the one using the mother wavelet
that best matches the shape of the analyzed signal [31–33]. The abraded surface is composed of a succession of individual
scratches due to indentation of grits. Pressure is different for each grit in the rubber and as a consequence scratches will be
more or less deep. It would be suitable to think that the morphology of an abraded surface (see Fig. 6) will be accurately
decomposed by the wavelet transform if the shape of the wavelet well fits the topography of an individual scratch (see Figs. 3
and 4). To quantify the relevance of the wavelet shape, an optimization algorithm is constructed to find the best amplitude,
scaling and translation that fits all the experimental topographies of individual scratches (Fig. 8).

A statistical analysis shows that the mother wavelet of “Coiflet” (see Fig. 7d) is the most suited to identify an individual
scratch (lower amplitude of the residuals between the wavelet and the topography of the groove) because its scaling
function matches the transient shape of the scratch (Figs. 3 and 4). Fig. 7 shows the others different wavelets used to fit the
individual scratch. A precise analysis is performed in Appendix B.

4.3. Multiscale decomposition

The surface geometrical structure in its longitudinal and lateral profiles contains complex characteristics of surface
irregularities with roughness, waviness and shape components along the measured length. In the tool processing
technology, turning, milling, grinding and all other machining processes impose characteristic irregularities on a part of
the surface. Additional factors such as cutting tool selection, machine tool condition, speeds, feeds, vibration and other
environmental influences further influence these irregularities. On analysis, texture can be broken down into three
components: roughness, waviness, and form. Roughness is essentially synonymous with tool marks. Every pass of a grit of
the abrasive paper leaves a groove of some width and depth. Errors of form are due to a lack of straightness or flatness in the
ways of the machine tool or due to the fact that the part is not nominally straight and/or flat (cylinder, sphere…). This is a
highly repeatable type of irregularity, as the machine will always follow the same out-of-straight path and can be removed
by regression with an appropriate functional that describes the form (a three order polynomial function is often well
relevant).

Then the engineering surfaces considered here consist of a range of spatial frequencies. The high frequency or short
wavelength components are referred to as roughness and the medium frequency components as waviness. Applying
wavelet analysis, parts produced by abrasion (roughness) may be defined as any irregularity with wavelet width shorter
than W (mm); waviness greater than W. According to these remarks, Three types of multiscale decomposition will be
proposed to characterize the topography: (1) the roughness is analyzed by the lower wavelet width summation defined as
the B decomposition) and (2) the waviness is analyzed by the higher lower wavelet width summation defined as the A
decomposition. (3) The classical D decomposition (Details) corresponding to a given decomposition with a unique wavelet
Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
Process. (2013), http://dx.doi.org/10.1016/j.ymssp.2013.07.001i



Fig. 7. Representation of the scratch signal (red) and the used wavelets (blue). (a) Meyer wavelet, (b) Symlet wavelet, (c) Biorthogonal wavelet, (d) Coiflet
“3”, (e) Daubechies “2” wavelet, (f) Daubechies “5” wavelet, (g) Daubechies “8” wavelet and (h) Daubechies “10” wavelet. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
Process. (2013), http://dx.doi.org/10.1016/j.ymssp.2013.07.001i
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Fig. 8. An example of the three decompositions (A, B, and D) for two levels, j¼1 and j¼12.
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by the detail decomposition D.
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width will also be considered. Fig. 8 displays the wavelet decomposition of an initial signal of the topography of the surface.
To evaluate the scale of decomposition ε, the following relations will be stated: let M be the number of decompositions
(M¼17 in our case), j the order of the wavelet decomposition and dt the sampling length, then for the B decomposition one
gets ε¼ dt 2M�jþ1 and for A and D ε¼ dt 2j

4.4. Roughness parameters

Because of these various industrial and scientific interests, a proliferation of roughness parameters, possibly running into
hundreds, has been triggered to describe the different kinds of surface morphology with regard to specific functions,
properties, or applications. In an industrial environment and in research laboratories, it is common to quantify surface
morphology in terms of roughness parameters in terms of amplitude (the arithmetic average roughness Ra, root-mean
square roughness RMS (Rq), frequency (peak-to-valley roughness Rt or number of peaks per inch Np, autocorrelation
length…) and hybrid (slope of profile, surface ratio). Such roughness parameters are estimated to qualify the surface quality
of the products (see Table 1 for the exhaustive list of parameters used in this study).

4.5. Multiscale analysis of roughness parameter

As described in Section 4.4, each profile is decomposed in successive multiscale series of three profiles (High frequency
(B), Low frequency (A), and Details (D)) from which roughness parameters can be computed. The following notation is
adopted, where qiðε;w; d;K;nÞ represents the roughness parameter qi computed from the n-th profile taking in K process
conditions and transformed by a decomposition d with a wavelet shape w of width ε. The evolution of the root mean square
roughness parameter versus the scale taking account the contact stiffness of the wheel (soft, hard) for different wavelet
shapes used in the D decomposition is given in Fig. 9.

Without introducing mathematical concepts, it can be quickly observed that:
�

P
P

The root mean square depends on the scale.

�
 A difference exists between the hard steel wheel and the soft wheel.
lease cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
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�

P
P

The choice of wavelet shape seems to affect slightly the value of these roughness parameters at all the scales.

�
 Two maxima of Rq values are located at two characteristic lengths. The first one corresponds to a value close to 18 mm.

The second one is less defined and corresponds to a value of the order of 2–3 mm. This value is less relevant. Indeed this
characteristic length is greater than 20% of the surface analyzed length. New measurements should be conducted on
greater lengths to conclude on its relevance and to have a precise estimation of its value.

5. Relevance of multiscale decomposition

The main problem is to answer the following questions:
�
 How to select the most relevant scale giving the highest roughness difference between groups of specimens tooled with
the two contact wheel stiffness?
�
 Which roughness parameter better quantifies this difference if the latter is significant?

�
 Does this difference depend on the shape of the wavelet used to perform the decomposition?

�
 What is the most relevant method of filtering (high, detail or low frequency signals)?

A statistical method will be used to answer these questions.
5.1. Analysis of variance with bootstrap resampling

The most relevant scale is investigated by the analysis of variance which is an implementation of the generalized linear
model. The formalism is defined as follows:

Let

qiðε;w; d; k1; k2;…; kp;nÞ ¼ α0ði;w; d; εÞ þ ∑
p

j ¼ 1
αj;kj ði;w; d; εÞ þ ∑

p

j ¼ 1
∑
p

l ¼ jþ1
βj;kj ;l;kl ði;w; d; εÞ þ ξk1 ;k2 ;…;kp ;nði;w; d; εÞ ð1Þ

where qiðε;w; d; k1; k2;…; kp;nÞ is the roughness parameter (indexed by i) of the n-th profile when the p process parameters
are taken at levels k1; k2;…; kp, for an ε scale decomposition with a filtering d computed with a wavelet w, αj;kj ði;w; d; εÞ is the
influence on the roughness parameter value of the j-th process parameter at kj level, βj;kj ;l;kl ði;w; d; εÞ is the influence of the
interaction between both kj and kl process parameters, and ξk1 ;k2 ;⋯;kp ;nði;w; d; εÞ is a Gaussian noise with zero mean and s
standard deviation.

For each wavelet w, each of the three types of filter d and each scale ε, all of these influences are calculated by analysis of
variance. From them and for each process parameter kj and each interaction, between-group variability and within-group
variability (corresponding to errors of estimation of the roughness parameter into each group) are calculated. The result
denoted as Fðqi;w; d; ε; kjÞ is the ratio produced by dividing the between-group variability by the within-group variability. In
other words, this result compares the effect of each process parameter on the roughness parameter value with its estimation
error. Consequently, for a given process parameter, a value of the Fisher Criterion Fðqi;w;d; ε; kjÞ near 1 translates an
irrelevancy of the roughness parameterqi estimated at the evaluation length ε to represent effects of the considered process
parameter. The higher the Fðqi;w; d; ε; kjÞ value, the more relevant the parameter qiestimated at scaleε is (see [22] for more
details). The highest Fðqi;w; d; ε; kjÞ value allows selection of the most pertinent roughness parameter and its evaluation
length to describe the influence of the given process parameter. Then a bootstrap protocol developed by the authors is
applied to quantify variability on the Fðqi;w; d; ε; kjÞ value [29].
5.2. Multiscale graph of relevance

Next the value of Fðqi;w;d; ε; kjÞ can be plotted versus the scale for the roughness parameter qi characterizing the effect of
process kj computed from a signal decomposition with a wavelet w and a filtering d. For the case of the hardness of contact
wheel, Fig. 10 presents the evolutions of F(Rq, w, d, ε) of the RMS parameters versus the scale for the decomposition of the
details and all of the 8 wavelet shapes w.

In this paper only the effect of the stiffness of the wheel will be explained (the aim of this paper is to analyze only the
effect of the wavelet shape on analysis; the physical meaning of the effects of all parameters was discussed in [22]). Fig. 10
shows that the contact wheel stiffness influences the amplitude at different scales. These results can be explained by the
capacity of the contact wheel to transmit contact pressure to each grain of the belt. Indeed, the soft contact wheel is highly
able to be deformed by the contact pressure to compensate grain size irregularities and surface topography. In this case, the
pressure distribution on the belt surface is more uniformwhich induces a decrease in the local maximum pressure acting on
the grains and, as a consequence, a lower penetration in tooled part decreases the roughness amplitude (Fig. 11).

At the microscopic scale, the stiffness effects on the mean width of the peaks are different. In fact, the soft contact wheel
adapts its shape to cut the groove depths while for high stiffness, only the peak heights are in contact with the belt. As a
result, the mean wavelength is shorter as seen in Fig. 12.
lease cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
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Fig. 10. Multiscale graph of relevance for the Rq roughness parameter computed with a D decomposition used to characterize the effect of contact wheel
stiffness. The analysis is performed on the 8 retained wavelet forms.

Specimen n°1 Specimen n°9

30 µm 30 µm

Fig. 11. SEM of specimens tooled with a hard contact wheel (on the left) and with a soft contact wheel (on the right) observed at a scale corresponding to
the evaluation length of the fractal dimension [3].

Specimen n°1 Specimen n°9

7.5 µm 7.5 µm

Fig. 12. SEM of specimens tooled with a hard contact wheel (on the left) and with a soft contact wheel (on the right) observed at the microscopic influence
scale [3].
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Fig. 13. Multiscale graphs of relevance for the more relevant roughness parameters computed with appropriate reconstruction used to characterize the
effect of all process parameters and their associated interactions. This analysis is performed with the 8 retained wavelet forms.
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Now for all process parameters and their associated interactions given by the experimental design, the pertinence graphs
are plotted (Fig. 13).

6. Influence of the wavelet shape

The partial conclusion about the noninfluence of the wavelet shape in the above conclusion is not rigorously statistically
proven. So far, it has been shown that at the maximal value of relevance, the confidence intervals do not allow to distinguish
differences between wavelet shapes. Now a new analysis tool, based also on analysis of variance, is proposed to quantify the
effect of the wavelet shape.

6.1. Multiscale relevance graph of wavelet shape

In this part, a new model of analysis of variance will be proposed. The basic idea is to avoid assumptions about a model
between process parameters and roughness parameters. So, each of the 16 experiments will be considered as independent.
The basic idea is to answer the following questions:
�

P
P

Does a difference exist between roughness parameters computed at different scales and different filtering methods
between the 16 experiments?
�
 Does the choice of wavelet shape influence globally the value of the roughness parameters for all experiments?

�
 Does the choice of the wavelet imply a noticeable difference way between the experiments?

To sum up these three questions into a unique one:
Fig

lea
roc
Does the shape of the wavelet influence the measure of relevance between the 16 experiments?
Towards this perspective, the following model of analysis of variance is proposed:

qiðε; d;w; e;nÞ ¼ α0ði;d; εÞ þ αeði; d; εÞ þ αwði;d; εÞ þ βe;wði; d; εÞ þ ξe;w;nði; d; εÞ ð2Þ
where qiðε; d;w; e;nÞ is the roughness parameter value of the n-th profile when the experimental design is taken at level e,
for an ε scale decomposition with a filtering d computed with a wavelet w, α0ði; d; εÞ is the mean of qiðε; d;w¼ �; e¼ �;n¼ �Þ,
αeði;d; εÞ is the influence on the roughness parameter value of the e-th experiment, αwði; d; εÞ the effect of the wavelet
independently of the experiments, and βe;wði;d; εÞ is the influence of the interaction between the e-th experiment and the
wavelet shape w, and finally ξe;w;nði; d; εÞ is a Gaussian noise with zero mean and s standard deviation.

Fig. 15 represents the effect of relevance for the RMS roughness parameters (Rq). The following different remarks can be
stated:
�
 The wavelet decomposition allows to locate the scale of relevance where experimental design reflects the topography. It
means that, on the average, all process parameters intervene on a spatial scale around [0.2, 200 mm] and thus
independently of the wavelet shape. The maximal relevance is around the size of the groove which means that the
process parameters play a major role at the elementary scale of abrasion, i.e. taking account of the interaction grain of the
grit paper/steel (tribological properties).
�
 The effect of a wavelet depends on the scale. At small scale o4 mm, the F value is greater than unity meaning that the
value of the Rq parameter differs with different wavelets. For the scale under 1 mm, the effect of wavelet becomes higher
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. 14. Histogram of the F value when the computation of the roughness parameters is performed on the whole scanning length of the profile.
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than the effect of the process parameters. At this small scale, the signal reconstruction is very robust in a statistical sense
and then the morphology of wavelets is well quantified by the RMS (Rq) parameters. The graph of relevance of the
experiment effect is not located on the same spatial scale as the wavelet effect. As a consequence, these relations cannot be
linked to a possible bias of the proposed methodology.
�
 The interaction between experiment effect and wavelet shape effect is very low and can be neglected, for all the scales. This
is a major result of our study: for the RMS parameters, the experimental effects are always the same whatever the
wavelet shape.

6.2. Multiscale relevance indicator of the wavelet shape influence

In the previous section, it was shown that for the RMS parameters, the experiment effect is always the same whatever the
wavelet shape. However, in our study, a hundred roughness parameters is computed. Then a global indicator must be built
to quantify the effect of the wavelet including all filtering and all roughness parameters. Let us denote Feði;d; εÞ and
Fe;wði; d; εÞ as the Fisher criterion associated to the analysis of variance of the wavelet effect alone and wavelet and
experiment interaction, respectively. The following indicator is then defined as

Ieði; d; εÞ ¼ log10
Feði; d; εÞ
Fe;wði; d; εÞ

ð3Þ

For Ieði; d; εÞ40, the effect of the plan is greater than that of the interaction, meaning that the relevance does not depend on
the wavelet shape. Fig. 16 represents the histograms of the indicators. As it can be observed, the effect of the plan is higher
lease cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
rocess. (2013), http://dx.doi.org/10.1016/j.ymssp.2013.07.001i



M. Bigerelle et al. / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 15
than the effect of the wavelet shape. As a consequence, the choice of wavelets does not affect the relevance of the effect of
experiment. An analysis shows that the low values of Ieði; d; εÞ are due to the fact that the concerned roughness parameters
are not relevant and then Feði; d; εÞ � Fe;wði; d; εÞ.

7. Discussion

The former analysis clearly demonstrates that the relevance does not depend on the wavelet shape: this assertion does
not mean that a relevant roughness parameter is identical for a given profile reconstructed with any wavelet; the profile
reconstruction does depend on the wavelet forms but a wavelet does not exist that better discriminates the morphology
induced by the process of abrasion. However, wavelets are a powerful tool to locate the influence of the process parameters.
There is an ambiguity: it was shown that the elementary process of abrasion is well defined by the Coiflet wavelet. However,
this wavelet does not better characterize the effect of the process parameters than another wavelet that will fit the
elementary process of abrasion (a scratch). This robust statistical analysis seems to defy the basic idea that an elementary
wavelet shape plays a major role in detecting the scales of relevance in a complex signal. The signal of abraded surfaces is
extremely complex due to multiscale effects with elevated variabilities. Even for the elementary scratch, the signal possesses
a high deviance compared to an ideal shape. This deviance is due to an addition of microscopic influences (material
heterogeneity, friction on interface, variation of loading, imperfect shape of the indentor, limitation in the surface
reconstruction due to the curvature radius and the imperfect shape of the profilometer tip ….). All these structural
variation introduce a high variation on the wavelet decomposition. Concerning the abraded surface, the tribological system
is of course more complex. Basically, the abrasion can be seen as a succession of scratches but abrasive processes such as
third body abrasion, strain hardening, wear of the grit, different sizes of the grit… lead to a high variation of this elementary
model. All these interactions lead the abraded surfaces to possess a fractal structure. Then the spectrum presents a 1/fαα

structure with a high variance for a fixed frequency. This variation means that a wavelet at a given scale cannot precisely
characterize the frequency response of the signal. An important result is that the signal reconstructed with a given wavelet
at a given scale can be different from a signal obtained with another wavelet at the same scale. However, this difference does
not depend on the process conditions. As a consequence, for the abraded surfaces, the choice of wavelet does not affect the
conclusion about the multiscale analysis of abrasion. This important fact means that the relevance of the choice of the
wavelet can only be performed by analyzing the capability to quantify disparities between two different signals and not the
capability to reproduce finely the original signal.

8. Conclusion

It has been shown that the wavelet decomposition allows the quantification and the localization of the scales of abrasion
for machining processes and thus for all process parameters. However, the relevance to characterize the appropriate scales
of abrasion does not depend on the shape of the wavelet even if the Coiflet wavelet is appropriate to model the elementary
process of abrasion (a single groove). Thanks to an original methodology of analysis of variance and bootstrap, the
quantification of all effects is achieved for each process parameter and lead to the relevant signal indicator (roughness
parameter). It is also shown that it is necessary to practice a multiscale analysis rather than a conventional one (analysis on
all the scales of measure) to quantify all effects with accuracy.

From all the multiscale graphs of relevance, the following conclusions can be drawn:
�

P
P

The methodology of relevance graph allows to quantify the spatial scale and the accurate filtering method to quantify
the effect of process parameters and their associated interactions. In addition, this methodology allows also to
distinguish different spatial stages. As can be observed in Fig. 13, bimodal curves appear for some process parameters
(tooling time, wheel stiffness…). As a consequence, the physical origin of the morphological surface modification is
certainly due to different mechanical interactions between the tool and the materials (mesoscopic interactions and
macroscopic ones).
�
 At the scale of the measure (i.e. the scanning length of the surface, 8000 mm), it is difficult to find a relevant roughness
parameter. To quantify this assertion, the empirical probability density function of the Fisher Criterion is plotted at the
scale of the evaluation length (the whole signal) for all process parameters, all filterings, and all wavelets (Fig. 14). As can
be observed, the relevance is very poor compared to the maximal Fisher Criterion computed at the appropriate scale.
How to explain this fact? In fact, in roughness measurements, a difficult task is to find the reference from which
roughness parameters will be computed. To have this reference, one must record the signal on a higher scale than the
real spatial scale of the topographical phenomenon. The standard of roughness measurement imposes that the scanned
surface is longer than five times the largest relevant wavelengths. This ratio of the whole scanned length defines a critical
length. As a consequence, only the physical parameters under this critical length are meaningful. Then computing the
roughness parameters at the evaluation scale leads to a poor discrimination. The multiscale analysis becomes a very
powerful tool to obtain a relevant roughness characterization and the methodology that has been built, by analyzing the
multiscale graphs of relevance allow to well visualize the power of the multiscale decomposition treatment compared to
the usual treatment.
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�

P
P

The F Fisher criterion is always much greater than unity at the maximal scales of relevance for both appropriate
roughness parameters and filtering method. This proves that all process parameters are relevant, i.e. influence the
morphology of the surface. However, each process parameter does not get the same influence on the surface topography.
Thanks to this methodology, a classification of the influence of the process parameters on surface topography can be
done:

Grain sizecGrain size
� pressure4rotation4wheelstiffness¼ feedratecpressure4oscillation4Toolingtime¼wheel stiffness
� Grain size 4wheel stiffness� pressure
�
 The use of the bootstrap due to the author's works [29,30] allows to give an uncertainty to the Fisher criterion. This
knowledge of F confidence intervals allows quantification of the parameters that have statistically the same relevance.
Moreover, this tool will be helpful to quantify the role of the wavelet shape in a final decision (Section 6).
�
 The wavelet shape does not affect the spatial localization of abrasion. As can be observed, the localization of relevance
does not depend of the wavelet choice.
�
 Finally, whatever the shape of the wavelet, the relevance is the same whatever the level of relevance and thus for all the
scales and all the process parameters. A point must be particularly emphasized that will be further explained and
illustrated below: the relevance does not depend of the wavelets shape: this assertion does not mean that the relevant
roughness parameter is the same for a given profile for all wavelets: profile reconstruction depends on the wavelet
shape. However, a wavelet does not exist that better discriminates the morphology induced by the process of abrasion.

However, the reasons of the noninfluence of the wavelet shape on quantification of abrasion are still under discussion. A
possible reason can be due to a high dispersion of the abrasion process that involves a complex signal that cannot be
analyzed by the elementary shape of the wavelet. However, some investigations must be processed by simulating the
process of abrasion with and without noise to validate this assumption.

Appendix A. Quantification of measurement errors due to tip radius curvature

Surface data of a fractal nature may be gathered in a very wide variety of ways. All involve a certain amount of smoothing
or degradation of the true surface data according to the recording method. In laser profilometry, devices provide a
smoothing measurement of the surface height via the interference patterns of the reflected height from a narrow beam [34].
With mechanical profilers, the stylus tip curvature radius incurs a smoothing effect on the surface and the information
narrower than the stylus tip cannot be recorded. Since the smoothing effect is highly non-linear, it becomes very hard to
estimate it on the original data [35,36]. The basic idea proposed here is to apply the theory of curvature radius to detect the
scale on which the measurement system introduces a smoothing artefact on the measured data. In fact, the smoothing effect
will increase the curvature radius on the scale measurement. It has been shown that the curvature radii of peaks of the
surface can be analyzed by fractal analyses [37]. However, contrary to the previous ones, the method proposed by the
authors allows the study of the surface roughness, by introducing a parameter, directly measured from the surface: the so-
called, radius of asperity, defined as follows: rc ¼ l2x=8ly with ly ¼ 0:1Rmaxor ly � 0:05Rmax; and where Rmaxis the maximal
range amplitude of the profile. This method consists in finding the radius rc of a circle of center O, passing by a crest A, and
by two other points B and C of the profile; these two last ones being distant of lx. The distances which separate the lines (B,
C), respectively, from A and from O, are ly and r� ly The parameter ly is considered sufficiently small, so that the segment [A,
O] is supposed to be perpendicular to [B, C], in its middle I. If we now apply Pythagoras' theorem to the triangle OBI, it then
follows: ðlx=2Þ2 þ ðrc�lyÞ2 ¼ rc2 Consequently, we get rc ¼ ðly=2Þ þ ðl2x=8lyÞ. By supposing ly sufficiently small, and verifying
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Fig. A1. Definition of lx and ly used to calculate the local curvature radius rcðlxÞ.
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Fig. A2. Evolution of the mean curvature radius versus the observation scale for each tooled sample.
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the following condition: lyo lx then rc ¼ ðl2x=8lyÞ. Experimentally, the fractal dimension ΔðGf Þ is obtained as a slope, by fitting
in a log–log plot the discretized data ðloglx; logrcðlxÞÞ where rc is the curvature radii of peaks. rc is obtained by an appropriate
algorithm cutting the peaks randomly with a lx width (Fig. A1). If the regression line fits well, the experimental data then
allow writing:

rcðlxÞ ¼ αlx
ΔðGf Þ ðA:1Þ

Fig. A2 represents these graphs for the sixteen measurements. As it could be shown on this last one, a cross over appears
around 1 mm (Fig. A3). Below this threshold value, the different rc estimations seem to be constant and over it, rc(lx) follows
the power law given by Eq. (A1). As a consequence, values less that 1 mm in the wavelet analyses must be used carefulness.

Appendix B. Comparison of various wavelet decompositions/choice of the relevant wavelet

The wavelet decomposition is applied on the individual scratch with the wavelet described below. The best local
correlation is obtained for the Coiflet wavelet as it can be observed in Fig. B1. The values are centered on the scratch. The
decomposition appears to be symmetric like the scratch morphology. Only DB2 presents a partial symmetry on its
decomposition. All other wavelets have their maximal relevance not centered on the scratch. This seems to evidence a
difficulty for other wavelets to localize the origin of the scratch. More drastically, for Meyer, DB8, Bior, DB10 two optima
appear on left and right of the centre of the scratch. These wavelets will see two scratches rather than one and may be very
poor theoretically to analyse the abrasion phenomenon.

Then an algorithm has been written to find the best value of the wavelet parameters that best fit the scratch. This is
applied for all individual scratches (around 114 topographical measures of scratch corresponding to different locations and
loads). Then the RMS of the residual between wavelet form and scratch morphology is computed. This RMS computation is
Please cite this article as: M. Bigerelle, et al., Relevance of Wavelet Shape Selection in a complex signal, Mech. Syst. Signal
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Fig. B1. Multiscale decomposition of the individual scratch (upper graphics) with different wavelet shapes retained in the analysis. The dotted line shows
the position of the minimum value in the profile and is reproduced at the same position on each wavelet decomposition.
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reproduced for the 114 measurements and descriptive statistics on RMS are evaluated. Fig. B2 represents the means of RMS
with their associated standard errors. The best wavelet is Coiflet, with an error around 1 mm compared to 3 mm for others
wavelets.
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