
HAL Id: hal-04506597
https://minesparis-psl.hal.science/hal-04506597

Submitted on 15 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Alternating direction method and deep learning for
discrete control with storage

Sophie Demassey, Valentina Sessa, Amirhossein Tavakoli

To cite this version:
Sophie Demassey, Valentina Sessa, Amirhossein Tavakoli. Alternating direction method and deep
learning for discrete control with storage. International Symposium on Combinatorial Optimization,
ISCO 2024, May 2024, Tenerife, Spain. �hal-04506597�

https://minesparis-psl.hal.science/hal-04506597
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Alternating direction method and deep learning
for discrete control with storage

Sophie Demassey1[0000−0002−4272−6278], Valentina Sessa1[0000−0002−0083−2515],
and Amirhossein Tavakoli1,2[0000−0002−5187−7844]

1 Centre for Applied Mathematics, Mines Paris-PSL, Sophia-Antipolis, France
2 University Côte d’Azur, Sophia-Antipolis, France

{sophie.demassey,valentina.sessa,amirhossein.tavakoli}@minesparis.psl.eu

Abstract. This paper deals with scheduling the operations in systems
with storage modeled as a mixed integer nonlinear program (MINLP).
Due to time interdependency induced by storage, discrete control, and
nonlinear operational conditions, computing even a feasible solution may
require an unaffordable computational burden. We exploit a property
common to a broad class of these problems to devise a decomposition
algorithm related to alternating direction methods, which progressively
adjusts the operations to the storage state profile. We also design a deep
learning model to predict the continuous storage states to start the algo-
rithm instead of the discrete decisions, as commonly done in the litera-
ture. This enables search diversification through a multi-start mechanism
and prediction using scaling in the absence of a training set. Numerical
experiments on the pump scheduling problem in water networks show the
effectiveness of this hybrid learning/decomposition algorithm in comput-
ing near-optimal strict-feasible solutions in more reasonable times than
other approaches.

Keywords: Mixed Integer Nonlinear Programming · Variable splitting
· Deep Learning.

1 Introduction

Operating any system governed by nonlinear laws and discrete controls leads to
complex optimization problems. If memory or storage capacities are present, load
shifting allows for a further reduction of operating costs. However, the problem of
planning on a timeline the static operations interrelated by the storage balance
and capacity limits is not only challenging to optimize but even to satisfy.

Consider the operation of a pressurized drinking water distribution network:
the problem is to plan the activation of the pumps on a discrete time horizon to
realize, at minimum cost, a hydraulic head/flow equilibrium meeting the demand
in water on each time step. Elevated water tanks enable shifting the pumping
ahead of time, resulting in substantial savings in energy consumption and cost,
given the nonlinear efficiency of the pumps and a dynamic incentive electricity
tariff. Nonconvex MINLPs modeling this problem are hard to optimize and even

2 S. Demassey et al.

to satisfy, as the feasible set is usually sparse and scarce in the binary search
space, especially when the tank capacities are tight. Dedicated exact or heuristic
algorithms attempt in various ways to simplify the hydraulic relations [14, 2] or
the storage constraints [19, 8, 1], by trading off accuracy for speed. Still, even
for small-size problems, they struggle to reach feasible solutions, and little seeks
to fully repair the approximate solutions. The latter is mainly addressed by
flipping the binary variables within a local [15, 1] or global search [8, 2]. Also,
most existing approaches rely on fast simulation, using Newton methods, to
compute the unique possible static hydraulic equilibrium at a time step when
both the status of the pumps and the level of the tanks are known [18].

This property – fast computation of the static operations given a storage
state and no condition on the resulting state – is not specific to hydraulic sys-
tems. In particular, it arises alike in other potential-flow networks in various
contexts, ranging from electric circuits or thermodynamic systems to traffic con-
gestion [16, p.350]. It also holds in long-term planning problems split into a
sequence of smaller periods, where the planning subproblems become indepen-
dent and easy once the initial states are fixed, and the final state conditions
dropped. This paper focuses on computing feasible solutions for discrete control
of systems with storage satisfying this property by combining two independent
but complementary models: a data model built from deep learning to predict
multiple approximate solutions, followed by a feasibility recovery phase based
on the storage/control variable splitting in the MINLP formulation. The whole
approach revolves around storage state profiles as partial solutions: it searches
through these partial solutions to gradually match a feasible control decision.

It then differs from previous applications of machine learning to optimize
combinatorial problems like TSP [13] or to predict partial discrete solutions of
MILPs [5] where repairing/completing a feasible full assignment is less of an
issue. Working in the continuous space of the storage state variables instead of
the discrete control variables has advantages. First, our data model is regression
and not classification. In particular, we combined a convolutional neural network
(CNN) and bidirectional long short-term memory (Bi-LSTM) to capture local
patterns in the input (loads and costs) and output (storage states) time series.
Furthermore, we employ Monte Carlo dropout [6] to obtain multiple predictions.
Working with continuous variables allows for smoother moves (both in the neigh-
borhood exploration and in the multi-start mechanism) to address the feasibility
recovery issue. It also enables us to develop a scaling mechanism as a substitute
for missing data: if no training dataset is available for a given system, we propose
to build it by solving, for a sufficient number of inputs, a tractable variant of
the problem with a coarser temporal resolution. Once trained, the data model
predicts coarse-grained storage state profiles, which are easily interpolated into
fine-grained profiles, possibly without much loss in the prediction accuracy.

In the feasibility recovery phase, continuity allows for smoother moves in
the search space, and the property above offers a mechanism to map storage
solutions to control decisions. To leverage this property, we investigate an al-
ternating direction method (ADM), restricting and solving the MINLP in these

ADM and DL for discrete control with storage 3

two spaces alternatively. Precisely, we penalize the time-coupling storage bal-
ance constraints, then iterate between the control and storage subproblems: at
each iteration, the penalized MINLP is restricted to the partial solution obtained
from one subproblem, hence defining the next subproblem.

As we make no assumption on the analytic nature of the coupling between
storage and control in the static subproblems, our algorithm differs from other
ADM schemes. In particular, it differs from ADMM [20] and PADM [12], as we
choose not to dualize this coupling. These algorithms have known theoretical
convergence guarantees, even in the nonconvex case, but only if the coupling is
linear, which is not the case in pump scheduling, for example. Instead, we can
easily enforce this structural constraint in the control subproblem thanks to the
property, but then we need to relax it in the storage subproblem. In doing so,
we may lose some mild theoretical convergence guarantees [10], but we expect
a fast and practical convergence to feasible solutions without much altering the
cost. Besides, we enforce search diversification by multi-start, using the multiple
data model predictions as trial initial points.

We illustrate and experiment with our approach to the pump scheduling
problem and build an extended test set based on the benchmark water network
Van Zyl [19]. Both deep learning and ADM are original approaches for this well-
studied problem. While independent, they appear to be strongly complementary:
ADM is able to recover feasible decisions with a reasonable optimality gap from
predictions of the data model, which, conversely, provides good approximate
solutions to initialize ADM.

2 MINLP for discrete control with storage

The optimal control problem is modeled as a sequence of steady states over a
discretized time horizon T = {0, 1, ..., T − 1} as follows:

(P) : min
x,y,s

∑
t∈T

ft(xt, yt, st, Ct) (1a)

s.t.: gt(xt, yt, st, Lt) = 0 ∀t ∈ T (1b)

st+1 = st + yIt ∀t ∈ T (1c)

st ∈ [St, St] ⊆ RI ∀t ∈ T ∪ T (1d)

xt ∈ Xt ⊆ {0, 1}N , yt ∈ RM ∀t ∈ T . (1e)

Vector st ∈ RI denotes the state variables figuring the state/level of the
I storage devices at t ∈ T or at the end of the horizon t = T . Vector xt

represents N discrete control variables at t ∈ T . W.l.o.g. we assume they are
binary variables figuring the on/off status of N controllers, and Xt represents
the allowed combinations. Vector yt ∈ RM includes all other continuous (control
or implied) variables. Together with variables xt under Constraints (1b), they
model the steady operation of the system on period t ∈ T to serve a given load
Lt ∈ RJ starting from the storage state st. Note that yt includes, as a subvector

4 S. Demassey et al.

denoted yIt ∈ RI , the positive or negative contribution of the system operation to
every storage at t ∈ T , as modeled by Constraints (1c). Constraints (1d) define
the minimum S and maximum S storage capacities. These limits are allowed to
vary in time, and S0 = S0, i.e., the storage state is fixed at t = 0. Finally, the
objective (1a) is to minimize the global operation cost, where Ct ∈ Rℓ denotes
exogenous price signals for the different elements operated at t ∈ T . We make
no assumption on the analytic nature of the real-valued functions in objective
ft and in constraints gt, but the following property must hold.

Property 1. For all time t ∈ T , solving or optimizing over {(x, y) ∈ Xt × RM :
gt(x, y, S, Lt) = 0} is computationally easy, given any initial state S ∈ RI .

With the above property, we assume the subproblems can be solved quickly
enough to iterate on them.

3 A concrete model: pump scheduling

The standard nonconvex MINLP for the pump scheduling problem in water
distribution networks without maintenance constraints [2] is a concrete imple-
mentation of (P) through the following identification:

ft(xt, yt, st, Ct) ≡ C0
t xt + C1

t y
Q
t (pumping electric cost),

gt(xt, yt, st, Lt) ≡


EIy

Q
t − yIt (tank inflow)

EJy
Q
t − Lt (load satisfaction)

st −ByHt (tank head)
(E⊤yHt + ϕ(yQt))xt (head loss)

where variables x represent the activity of the network arcs (i.e., pumps and pipes
with or without valves), yQ the flow through the arcs, yH the pressure (hydraulic
head) at the network nodes (i.e., tanks and service nodes), and s the tank levels.
Given E the network incidence matrix, the operational constraints gt include,
in order: flow conservation at tanks, then at service nodes, tank volume/head
linear relation B, nonlinear relations ϕ between head loss and flow on each arc.

For fixed st = S ∈ RI and xt = X ∈ {0, 1}N , the system of equations
gt(X, y, S, Lt) = 0, known as the network analysis problem, admits at most one
solution y, easy to compute with Newton methods [18]. Furthermore, it breaks
into independent subsystems following the network partition along the tanks [1].
Usually, each subnetwork (resp. subsystem) p ∈ P contains a number Np of
controllable arcs (resp. binary variables), small enough to envisage to enumerate
all possible combinations X ∈ {0, 1}Np and compute the unique corresponding
solution denoted yp(X,S). The solutions of system gt(X, y, S, Lt) = 0 are thus
any product of such vectors (Xp, y

p(Xp, S)) over p ∈ P with Xp ∈ {0, 1}Np .
Hence, Property 1 holds for pump scheduling.

Finally, note that the system gt(xt, yt, st, Lt) = 0 defined above in the con-
text of hydraulic networks, is an instance of the nonlinear network equilibrium

ADM and DL for discrete control with storage 5

problem [16, p.350] arising in many contexts, ranging from thermodynamic sys-
tems to traffic congestion. This provides insight into the broad applicability of
model (P) with Property 1.

4 ADM for local optimization by decomposition

Model (P) admits a time-decomposition after dualizing or penalizing the storage
balance constraints (1c) as in the following model, given ℓ1 penalty and multiplier
ρti ≥ 0 for each dti(y, s) = |s(t+1)i − (sti + yIti)| at storage i and time t:

(Lρ) : minx,y,s{l(x, y, s, ρ) : (1b), (1d), (1e)}, with
l(x, y, s, ρ) =

∑
t∈T ft(xt, yt, st, Ct) +

∑I
i=1 ρtidti(y, s).

Even if separable as T independent subproblems, such relaxations remain dif-
ficult to solve because of the complexity of each system (1b). However, they
become tractable for fixed values of s according to Property 1.

We thus propose solving approximately (Lρ) following the storage/control
variable split: we first solve (Lρ) with respect to the control variables (x, y),
given a storage state profile s, then solve (Lρ) with respect to the state variables
s for fixed (x, y), and iterate, using the solution of one subproblem to define
the restriction in the next subproblem. Contrarily to other alternating direction
methods, like ADMM or PADM, we do not dualize the variable-coupling con-
straints (1b) but keep them as structural constraints in the control subproblems
to leverage Property 1, and relax them from the storage subproblems to ensure
feasibility. As a consequence, the algorithm loses the mild guarantee of [10] to
converge to a stationary point, not even a local minimum, of the relaxed problem.
Still, it generates a sequence of solutions closer to being feasible for (P).

Algorithm 1 Partial storage/control splitting for (P)

1: choose storage profile s0 ∈ RTI , penalty ρ ∈ RTI
+ and set k = 0

2: given (sk, ρ), solve (xk+1, yk+1) ∈ arg min(x,y){l(x, y, sk, ρ) : (1b), (1e)}
3: given (xk+1, yk+1, ρ), solve sk+1 ∈ arg mins{l(xk+1, yk+1, s, ρ) : (1d)}
4: If ∥d(yk+1, sk+1)∥∞ < ε then (xk+1, yk+1, sk+1) is ε-feasible for (P), then STOP.

Otherwise, if ∥sk+1 − sk∥∞ < ε′, then update ρ. Increment k and go to Step 2.

Conceptually, Algorithm 1 searches through the s-space of the storage state
profiles satisfying the capacity limits and attempts to derive a matching control
profile (x, y) by gradually reconciling the storage states st + yIt and st+1 at each
time t. Following the framework for PADM [7], the penalty ρ is updated when
the algorithm stalls or after a given number of iterations.

The efficiency of this algorithm is highly dependent on the initial storage state
profile s0. We design a deep learning model to predict near-feasible near-optimal
profiles. This model is capable of deriving multiple predictions, allowing us to

6 S. Demassey et al.

add diversification to the local optimization algorithm: starting from various
initial points s0 increases the chance of reaching a feasible solution.

5 The deep learning model

Our deep learning algorithm aims at building a hypothesis function H mapping
to each input (L,C) ∈ RT (j+ℓ) (loads and costs), the storage profile s(L,C) ∈
RTI in an optimal solution of problem (P) with input (L,C). The map is built,
given a precomputed collection {((Ll, Cl), sl)}ND

l=1 of input/target tuples, by ap-
proximately minimizing a loss function Lloss(H(L,C), s(L,C)), which is the
mean square error in our case, as commonly used in regression problems.

To compute H, we choose to combine a Convolutional Neural Network (CNNs)
and a Bidirectional Long Short-Term Memory Network (Bi-LSTM) with dropout
layers, as found in several works, e.g., in [3]. The capability of Bi-LSTM lies in
its ability to handle information in both forward and backward temporal direc-
tions. This attribute is crucial in our application due to the dynamic relations
spanning the entire planning horizon. On the other hand, our CNN comprises
convolutional (conv1D) layers of different sizes, located in parallel to each other
with zero padding, and with their outputs exclusively linked to neighboring ar-
eas within the input (i.e., loads and costs). This arrangement is accomplished
by moving a filter (i.e., a weight matrix) along the input vectors, and this de-
sign enables the model to acquire filters to discover distinct patterns within the
dataset [9]. To handle the temporal dimension of the target, the output of the
CNN layers, implied as extracted features, are passed through a hidden layer
with ReLU activation functions, and their outputs are concatenated, reshaped,
and fed into the Bi-LSTM. The final prediction H(L,C) results from a fully
connected layer with a linear activation function placed after the Bi-LSTM unit.

Finally, we implement the Monte Carlo dropout technique [17] to force our
model to make multiple predictions. While this technique has been proposed to
estimate the prediction uncertainty by randomly masking neurons in the neural
network, we employ it for a diversification purpose. It is particularly suitable in
our context, given the epistemic uncertainty due to the model complexity and
the relatively small size of the training dataset. The dropout layers are placed
just before and after the Bi-LSTM unit, and, in alignment with [6], we apply
dropout (i.e., random neuron masking) not only during training but also during
the testing phase. As a result, for a given input (L,C), the dropouts yield as
many distinct solution samples H(L,C).

6 Experimental evaluation

We run experiments in the context of pump scheduling on van Zyl, a bench-
mark hydraulic network. We first evaluate the predictive accuracy of our deep
learning model (denoted CNN-LSTM below) and compare it to a conventional
feedforward neural network (FFW) having a similar number of parameters. We
then evaluate the performance of our hybrid algorithm (HA) and compare it

ADM and DL for discrete control with storage 7

to the open-source branch-and-check global optimizer (BC) from [2] dedicated
to pump scheduling, and the enhanced variant from [4] (BCpre). BC solves the
MILP relaxation of (P) with an LP-Branch-and-Bound combined with hydraulic
simulation to check the actual feasibility and cost of the integer solutions. BCpre
implements a heavy preprocessing to tighten the MILP formulation before run-
ning BC.

All algorithms are implemented in Python and experiments are executed
on an Intel(R) Xeon(R) 6148 2.40GHz and 128 GB memory. The deep learning
models CNN-LSTM and FFW are built using Tensorflow API v2.12.0 on Jupyter
notebook in Google Colab with GPU A100, and the Adam optimizer [11] with the
default initial learning rate of 10−3. Algorithms BC and BCpre are implemented
on top of the MILP solver Gurobi v10.0.1.

6.1 Benchmark, dataset generation, and scaling

The Van Zyl network [19] is characterized by I = 2 water tanks of different
capacities, J = 2 service nodes with individual loads, and N = 4 controllable
elements (2 symmetrical pumps and a boost pump operating parallel to a check
valve). This is a medium-sized but difficult network, often used for empirical
evaluations. However, the available test set is small.

We present a new dataset for implementing deep learning algorithms. It con-
sists of a collection of 2113 unique daily observations (L,C, S), each given as
T = 12 time steps profiles: the input features are the water demand and the
electricity tariff profiles (L,C) ∈ RT (J+1), and the target is the storage state
profile S ∈ RTK in the optimal solution of (P) for input (L,C) obtained with
algorithm BCpre. Tariffs C are taken from the Belgian spot market data, con-
sidering a reference period from 2007 to 2013. Loads L are drawn from a 3-year
highly seasonal history of actual consumption sourced from a network based in
a touristic zone in Brittany, France. The data is split into 75 percent training,
15 percent validation, and 10 percent evaluation. Given T = 12, pumps and
valves are scheduled on 2-hour periods, aligned with the resolution of the load
and cost forecasts. Because of the nonlinear behavior and the limited capacity
of the tanks, it is advantageous to enforce a finer-grained schedule on periods
of 1 hour (T = 24) or 1/2 hour (T = 48). However, when the time horizon
length increases, it quickly becomes difficult to compute even feasible solutions
in a reasonable time. This prevents the creation of a dataset of reasonable size
to train our data model on daily instances for T = 24 or T = 48. To apply our
algorithm to such instances, we then use the data model trained for T = 12 and
scale down and up the input and output time series, using linear interpolation, to
get the predictions for starting ADM. We expect that such a simple transforma-
tion does not deteriorate the quality (feasibility and optimality) of the predicted
storage state profiles. We generate the two benchmark sets of 50 instances for
T = 24 and T = 48 also by resampling instances with coarser-time discretization
T = 12 and high variability. The three benchmark sets (denoted VZ12, VZ24,

8 S. Demassey et al.

and VZ48), together with the training set and the code of the algorithms, are
available online3.

6.2 Hyperparameters of the deep learning models

To train CNN-LSTM, we set the batch size to 32, and the maximum number of
epochs to 1350. For all conv1D and feedforward layers, we use l2 regularization
with a coefficient equal to 0.02. The conv1D layers have 32 filters, and their
kernel sizes range from 4 to 10. The number of hidden layers of Bi-LSTM is set
to 16. Due to the complexity of the model and the relatively small training set,
and for more diversification, we select a high dropout rate of 0.75, then generate
80 Monte Carlo dropout samples.

For comparison, we design a FFW network with 8 hidden layers, ReLU ac-
tivation functions, and a pyramid architecture. We set the maximum number of
epochs to 250, and the regularization coefficient to 0.01. We also add dropout
layers with a rate between 0.2 and 0.5 after each hidden layer to mitigate over-
fitting and generate multiple starting points for ADM. In the end, CNN-LSTM
and FFW have 45k and 63k parameters, respectively.

6.3 Parameters of the optimization algorithms

We run Algorithm 1 sequentially, although it could be parallelized, from at most
35 trial points s0: the first trial is the component-wise mean prediction, other
trials are just picked randomly from the 80 predictions samples. Both ADM
and BC algorithms are stopped when reaching a first feasible solution, given the
feasibility tolerance ε = 10−6, or a global time limit.

All other parameter values were chosen after a brief numerical evaluation
process. In Algorithm 1, we set ε′ = 10−3. For a given trial s0, the penalty
vector ρ is updated at most four times, and the number of iterations k is limited
to 85 between each update. At each update, penalties are increased according
to the update number u ∈ {0, . . . , 4} and to the constraint violations. Precisely,
for each time t ∈ T and storage i ∈ {1, . . . , I}, we update ρti to 1 + 5a if
dti(y

k+1, sk+1) > ε, and to 1 + 2a otherwise, given a random value ξ ∈ [0.75, 1]

and a = ξe(
−u
10)ρti. We initialize the penalty terms ρti, uniformly, either to value

2 or to value 50, corresponding to algorithms denoted HA2 and HA50 below.

6.4 Performance of deep learning

Prediction error. To assess the effectiveness of the CNN-LSTM, we first compute
the prediction error between the outcome H(L,C) (the component-wise mean
of the 80 prediction samples) and the target s(L,C) over the test set, using the
classical metrics for time series in regression problems. With CNN-LSTM, the
Mean Square Error between predictions and targets is MSE= 0.64, and the Mean
Absolute Error is MAE= 0.53 or nMAE= 9.2% after normalization (divided by
3 https://github.com/sofdem/gopslpnlpbb

ADM and DL for discrete control with storage 9

Fig. 1. Storage state profiles: prediction, credible interval, and optimal target.

the range of target values). The Pearson coefficient, which measures the linear
correlation between predictions and targets, is R = 0.772. In comparison, FFW
yields MSE= 1.56, MAE= 0.89, nMAE= 12.7%, and R = 0.724. These metrics
show that CNN-LSTM performs well and better than FFW. Figure 1 depicts
the storage state profiles in each tank for one random instance in the test set,
showing the proximity of the optimal target and the CNN-LSTM prediction with
its uncertainty interval.

Distance to a feasible solution. Since the optimal solutions of (P) are not unique,
these metrics only show the ability of the deep learning model to predict the
target one. We now estimate the distance of the predictions to feasible solutions
by measuring the number of predictions that actually lead to feasible solutions
through ADM (with penalty terms ρ initialized to 50). When starting from
CNN-LSTM predictions, ADM finds a feasible solution for 49 out of the 50
instances in benchmark VZ12, but only half (27 instances out of 50) from FFW
predictions. For the 26 instances where both algorithms reach a feasible solution,
the associated objective function value derived with CNN-LSTM is smaller for
all but two instances, with an average 4.8% decrease.

6.5 Performance of the hybrid algorithm

The previous experiment provides a first insight into the efficiency of algorithm
HA. It hints that better predictions increase the chance of ending up with a
feasible solution or a better upper bound. We now validate the capability of
HA to compute good feasible solutions for the daily instances of the Van Zyl
network with T = 12, 24, 48. We evaluate the hybrid algorithm with the penalty
terms ρ in ADM initialized to 50 (HA50) or to 2 (HA2), and we compare it with
the two variants of branch-and-check, with (BCpre) and without (BC) advanced
preprocessing. Each algorithm stops when reaching one first feasible solution or
the CPU time limit: 1800 seconds for T = 12, 3600 seconds for T = 24, and
7200 seconds for T = 48. Table 1 reports, for each benchmark set (column 1)
and for each algorithm (column 2), the number of instances solved (column 3)
among the 50 instances in the set, then, on the subset of instances solved by

10 S. Demassey et al.

Table 1. Instances solved, computation time, and optimality gap.

bench algo #solved avg time max time avg gap max gap
VZ12 HA50 49 254s 1570s 6.6% 21.2%

HA2 44 305s 1577s 4.6% 11.3%
BC 48 121s 681s 5.4% 12.5%
BCpre 50 124s 137s 4.3% 12.4%

VZ24 HA50 50 285s 1257s 9.5% 23.4%
HA2 50 279s 1711s 8.4% 16.3%
BC 5 1097s 3117s 11.1% 12.6%
BCpre 50 809s 2430s 7.5% 39.6%

VZ48 HA50 50 776s 7069s 9.8% 21.0%
HA2 49 1014s 5548s 10.3% 19.7%
BC 1 - - - -
BCpre 32 2517s 6404s 6.4% 8.9%

the algorithm: the average (column 4) and maximum (column 5) computational
time in seconds, and the average (column 6) and maximum (column 7) estimated
optimality gap, measured as the deviation in % of the solution cost to the best
known lower bound computed with BCpre.

The results of the global solver BC illustrate well the computational com-
plexity of this problem, particularly as the horizon length T increases. With a
tailored preprocessing (running for a minimum of 100 seconds included in the
time reported in the table), BCpre quickly reaches one first feasible solution
of high quality for all instances with T = 12. The performance falls dramati-
cally for the largest instances with T = 24 and T = 48. Without preprocessing,
BC cannot even compute one feasible solution for most of the instances within
the allowed time. Preprocessing strongly improves the performance, still, BCpre
cannot reach feasible solutions in two hours for 18 instances with T = 48.

While the hybrid algorithm is globally outperformed on the instances with
T = 12, it is well suited to the hardest instances with T = 24 and T = 48, as
HA50 can compute a feasible solution for all these instances, within an average
10% estimated optimality gap (which is overestimated as the lower bound com-
puted by BCpre is probably far below the optimum value). Because of the scaling
mechanism, the prediction error is probably worse for these instances, compared
to T = 12 where the deep learning predictions are directly used as starting points
for ADM. However, the space of the feasible solutions is also less scarce, and the
optimal storage state profiles for the coarse and fine discretization problems are
probably not too dissimilar. This should explain the good performance of the
hybrid algorithm on the hardest benchmark sets VZ24 and VZ48 and how this
approach overcomes the difficulty of solving larger dimensional problems as the
scheduling horizon increases.

Using a lower penalization of the time coupling constraints, HA2 is less robust
than HA50, as it solves fewer instances, but the computed feasible solutions have
a slightly better cost, at least when T = 12 and T = 24. On average, for these
instances, the first feasible solutions computed by BCpre are still better, but

ADM and DL for discrete control with storage 11

Fig. 2. Number of instances solved to feasibility over time on benchmarks VZ24 (left)
and VZ48 (right): hybrid algorithm (HA2, HA50) vs branch-and-check (BC, BCpre).

the average computational time is also about three times larger. For T = 48,
HA50 finds feasible solutions in 13 minutes on average for all instances and in 8
minutes on the 18 instances for which BCpre does not acquire any solution in 2
hours.

Figure 2 depicts the number of instances solved in VZ24 and VZ48 as a
function of time for each algorithm. It clearly illustrates the speed of the hybrid
algorithm.

7 Conclusions

The proposed strategy is to address a certain broad class of control problems
through the mapping between the discrete control decisions and the continuous
storage state profiles. Searching in this continuous space allowed us to derive an
original combination of deep learning and variable splitting, linked with scaling
and multi-start mechanisms to overcome the lack of training data and the pre-
diction errors, respectively. The approach proves to be effective in tackling the
feasibility issue in hard combinatorial and nonconvex problems, such as pump
scheduling. A major asset is its robustness to the lengthening of the scheduling
horizon, which results from the storage/control decomposition strategy. A per-
spective of this work is to investigate different ways to drive the search, e.g.,
to learn also dual starting points (penalty terms) for ADM or to apply numeri-
cal algorithms (black-box, nonsmooth) to the augmented Lagrangian relaxation
that could exploit the same decomposition and mapping.

Acknowledgments. This work is supported by the French government, through the
3IA Côte d’Azur Investments in the Future project managed by the National Research
Agency (ANR) with the reference number ANR-19-P3IA-0002.

12 S. Demassey et al.

References

1. Bonvin, G., Demassey, S.: Extended linear formulation of the pump scheduling
problem in water distribution networks. In: 9th Int. Network Optim. Conf. pp.
13–18 (2019)

2. Bonvin, G., Demassey, S., Lodi, A.: Pump scheduling in drinking water distribution
networks with an LP/NLP-based B&B. Optim. & Engin. 22, 1275–1313 (2021)

3. Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional time series forecasting with
convolutional neural networks. preprint arXiv:1703.04691 (2017)

4. Demassey, S., Sessa, V., Tavakoli, A.: Strengthening mathematical models for pump
scheduling in water distribution. In: 14th Int. Conf. Applied Energy (2022)

5. Ding, J.Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.: Accelerating
primal solution findings for mixed integer programs based on solution prediction.
In: AAAI Conf. Artif. Intell. vol. 34, pp. 1452–1459 (2020)

6. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: 33rd Int. Conf. Machine Learning. vol. 48,
pp. 1050–1059 (2016)

7. Geißler, B., Morsi, A., Schewe, L., Schmidt, M.: Penalty alternating direction meth-
ods for mixed-integer optimization: A new view on feasibility pumps. SIAM J.
Optim. 27(3), 1611–1636 (2017)

8. Ghaddar, B., Naoum-Sawaya, J., Kishimoto, A., Taheri, N., Eck, B.: A Lagrangian
decomposition approach for the pump scheduling problem in water networks. Eur.
J. Oper. Res. 241(2), 490–501 (2015)

9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

10. Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with bi-
convex functions: a survey and extensions. Math. Meth. Oper. Res. 66, 373–407
(2007)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. preprint
arXiv:1412.6980 (2014)

12. Kleinert, T., Schmidt, M.: Computing feasible points of bilevel problems with a
penalty alternating direction method. INFORMS J. on Computing 33 (2020)

13. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
preprint arXiv:1803.08475 (2018)

14. Mackle, G.: Application of genetic algorithms to pump scheduling for water supply.
In: Int. Conf. Genet. Algorithms Eng. Syst. Innov. Appl. pp. 400–405 (1995)

15. Naoum-Sawaya, J., Ghaddar, B., Arandia, E., Eck, B.: Simulation-Optimization
Approaches for Water Pump Scheduling and Pipe Replacement Problems. Eur. J.
Oper. Res. 246 (Apr 2015)

16. Rockafellar, R.T.: Network Flows and Monotropic Optimization. Athena Scientific
(1999)

17. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

18. Todini, E., Pilati, S.: A gradient algorithm for the analysis of pipe networks. In:
Computer Applications in Water Supply, vol. 1. Research Studies Press Ltd. (1988)

19. Van Zyl, J.E., Savic, D.A., Walters, G.A.: Operational optimization of water dis-
tribution systems using a hybrid genetic algorithm. J. Water Res. Plan. Mgmnt.
130(2), 160–170 (2004)

20. Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth
optimization. J. Sci. Comput. 78, 29–63 (2019)

