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Abstract. To reduce computation time, the inherent strain (IS) method is popular. It consists in 

adding layers, at room temperature, with an "inherent strain" representing the plastic deformation 

undergone during deposition. An IS method is developed, including a direct determination of the 

IS tensor based on the transient thermo-elastic-viscoplastic (TEVP) simulation. Validation is 

achieved: taking full-field inherent strains, the IS method allows retrieving TEVP predictions. 

However, application to a full part, for which a set of inherent strains must be conserved all along 

the construction, leads to poor results, far from TEVP. As an alternative, a new "inherent strain 

rate" (ISR) method is proposed, consisting in linearizing TEVP resolutions. Combined with an 

on-line learning technique, this strategy leads to results identical to TEVP reference, with still a 

significant speed-up. This makes the proposed ISR method very promising. 

1. Introduction 

The paper focuses on thermomechanical simulation of additive manufacturing (AM), especially DED 

(Directed Energy Deposition). Numerical tools are strategic to optimize manufacturing routes. However, 

for large parts, and despite some shortcomings (fluid flow ignored in melt pool, material deposited by 

batch: fractions of layer, groups of several layers), simulation time remains quite long. To maintain 

computation time in an acceptable range, the inherent strain (IS) method, initially developed for welding 

simulation by Ueda et al. [1], was adapted to AM, first by Keller & Ploshikhin [2]. Since then, different 

variants of the IS method have been developed (Alvarez et al. [3], Liang et al. [4]). They differ 

essentially by the mode of determination of the inherent strains, which has a high impact on results. 

Because of that, the approach developed here consists in determining the IS in such a way that the IS 

method replicates the transient thermomechanical simulation. For that, we take as reference a finite 

element simulation developed and validated separately. This transient thermomechanically coupled 

simulation, based on an elastic-viscoplastic constitutive model, is not reported here, as it is not essential 

to the purpose of the present study. It can be found in [5], and it will be referred as STD-TEVP. 

Throughout the rest of the paper, we will not compare numerical predictions to experimental 

measurements, but to results obtained by this STD-TEVP simulation. 

The paper is structured as follows. Section 2 consists of a short description of the IS method, and of the 

different methods to determine the inherent strains. In Section 3, the new technique to determine the IS 

will be presented. It consists of a direct determination based on the STD-TEVP simulation of the first 

layers deposition of the studied part. However, it will be shown that this method – although validated 

on these first layers – leads to poor results for the whole part. Therefore, in Section 4, an alternative 

method will be presented: the inherent strain rate method, which is based on a linearization of the 

reference STD-TEVP simulation. This new method leads to excellent results, in perfect agreement with 

the reference ones. 
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2. Inherent strain method 

2.1. Main features, in AM context 
In the IS method material addition is conducted layer-by-layer, isothermally, at room temperature, and 
without any time consideration. This is a huge simplification compared to the STD-TEVP approach in 
which the progress of the build process is simulated. In the IS method, after each layer addition, the 
static equilibrium of the growing structure is solved at ambient temperature, by performing a finite 

element (FE) resolution of the weak form of the vector equation: 

∇ ⋅ 𝛔 + 𝜌𝐠 = 0 (1) 

where 𝛔 is the stress tensor, 𝜌 the density, and 𝐠 the gravity vector. Owing to the hypotheses made on 

temperature and time, and to the small deformation context of AM, the behavior law is of elastic-plastic 
type, with isotropic hardening (for extension to kinematic hardening, refer to Keumo Tematio [5]):  

𝛆 = 𝛆𝑒𝑙 + 𝛆𝑝𝑙 + 𝛆∗               𝛆𝑒𝑙 = 𝐒𝑒𝑙𝛔               {
   �̅� < 𝜎𝑌 + 𝑅(𝜀)̅     and     d𝛆𝑝𝑙 = 0

or      �̅� = 𝜎𝑌 + 𝑅(𝜀)̅     and     d𝛆𝑝𝑙 =
3d𝜀̅

2�̅�
𝐬
 (2) 

where 𝛆 is the strain tensor, 𝛆𝑒𝑙 and 𝛆𝑝𝑙 its elastic and plastic parts, respectively. 𝐒𝑒𝑙 is the elastic 
compliance tensor, d𝜀 ̅is the generalized strain increment, and �̅� is the generalized (von Mises) stress: 

d𝜀̅ = √(2 3⁄ )d𝛆𝑝𝑙: d𝛆𝑝𝑙                      �̅� = √(3 2⁄ )𝐬: 𝐬 (3) 

where 𝜎𝑌 is the initial plastic yield stress, and 𝑅 is the strain hardening function. In Eq. (2) 𝛆∗ denotes 
the inherent strain tensor, which represents the permanent strains undergone by the deposited material. 
It is assigned to each newly deposited layer and is kept as such until the end of the simulation. For a part 
made of 𝑁 layers, the IS resolution simply consists of a series of 𝑁 FE resolutions of Eq. (1).  

2.2. Determination of inherent strains 

The key point of the IS method lies in the identification of the inherent strain tensor 𝛆∗. In the literature, 

essentially two ways can be found to determine 𝛆∗. 

2.2.1. Comparison experiment/simulation on test specimen. A small-scale specimen is supposed to be 
representative of the process, e.g. a straight wall of a few superimposed tracks for DED. 𝜺∗ can be 
estimated by minimizing the difference between measurements and numerical simulation by IS method: 

𝛆∗ = argmin ‖𝐮𝑠𝑖𝑚(𝛆∗) − 𝐮𝑒𝑥𝑝‖ (4) 

where 𝐮𝑒𝑥𝑝 denotes a set of distortion measurements, while 𝐮𝑠𝑖𝑚 denotes the corresponding predictions 

by IS simulation. This method was used by Setien et al. [6], Siewert et al. [7], and many others. 

2.2.2. Identification by simulation only of a test specimen. A small-scale specimen is considered, for 
which material deposition is simulated by a transient thermo-mechanical simulation, formerly validated. 
This allows determining some rules to estimate 𝜺∗. For instance, Liang et al. [4] suggested: 

𝛆∗ = 𝛆𝑖
𝑒𝑙 + 𝛆𝑖

𝑝𝑙
− 𝛆𝑠

𝑒𝑙 (5) 

where 𝜺𝑖
𝑒𝑙 and 𝜺𝑖

𝑝𝑙
 respectively stand for the calculated elastic and plastic strain tensors in a so-called 

intermediate state, while 𝜺𝑠
𝑒𝑙 stands for the calculated elastic strain tensor after final cooling. The 

intermediate state is "the state when the heat source just passes by and the local (compressive) 
mechanical strain reaches the largest amplitude". This method, known as the "modified inherent strain 
method", has been used to simulate DED (Duan et al. [8]) and L-PBF processes [4]. In this framework, 
the three tensors at the right-hand side of Eq. (5) are directly deduced from the transient thermo-
mechanical simulation. Note that contrary to the previous method – where a unique IS tensor 𝜺∗ is 
determined – here the IS tensor is determined everywhere, in all layers of the test specimen. This brings 

up the question of selecting one or two layers and averaging 𝜺∗  therein to come down to a unique tensor. 
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To conclude on inherent strains determination, approaches based on direct measurements appear 
difficult and time consuming because they require the definition and the realization of complex strain 
or stress measurements on test specimens. On the contrary, approaches based on thermomechanical 

simulation of test specimens appear more efficient, provided that the exploitation of such simulations in 
view of estimating the inherent strains is simple, direct, and achievable in an automatic process. In line 
with this last remark, a new IS method is proposed. The basic idea is to identify inherent strains such 
that the IS method could provide the same results as STD-TEVP on the selected test specimen. In the 
following Section, it will be explained how this can be achieved, by considering the inherent strain 
tensor as a layer-dependent and space-dependent field, the determination of which being done without 

any costly inverse finite element procedure, but directly and locally, based on STD-TEVP results. 

3. A new inherent strain method 

In this Section, prior to application to a full part, we first focus on how to determine inherent strains, 
based on the simulation of a small-scale test specimen with STD-TEVP formulation.  

3.1. Determination of inherent strains from STD-TEVP simulations of small-scale test specimen 

In the context of the DED process, the test specimen consists of a few (𝑁) superimposed layers. Hence, 

𝑁 different states are defined, see Figure 1. State 𝑛 is obtained after i) deposition of layers 1 to 𝑛, 

including inter-layer dwell times, and ii) final cooling to room temperature. In this Section, we will 

explain how the inherent strains can be directly and locally (in each finite element) deduced from the 

reference STD-TEVP simulation. 

 
 
 
 
 

Figure 1. Schema of a small-scale 3-layer specimen, and of the three states considered. 

Each of the deposition processes leading to states 1, 2, ⋯ , 𝑁 is simulated by means of STD-TEVP 
simulation. This allows calculating, for each state 𝑛, the residual displacement and stress fields: 𝐮(𝑛), 𝛔(𝑛) 
obtained after deposition of 𝑛 layers and final cooling. In the context of small deformations, the 

differences in displacement and strain between state 𝑛 and state 𝑛 − 1 are: 

∆𝐮(𝑛)
𝑆𝑇𝐷 = 𝐮(𝑛)

𝑆𝑇𝐷 − 𝐮(𝑛−1)
𝑆𝑇𝐷                     ∆𝛆(𝑛)

𝑆𝑇𝐷 = (1 2⁄ ) (∇(∆𝐮(𝑛)
𝑆𝑇𝐷) + (∇(∆𝐮(𝑛)

𝑆𝑇𝐷))
T

) (6) 

Besides, when simulating the different states with the IS approach, we can write, from Eq. (2): 

∆𝛆(𝑛)
𝐼𝑆 = ∆𝛆(𝑛)

𝐼𝑆,𝑒𝑙 + ∆𝛆(𝑛)
𝐼𝑆,𝑝𝑙

+ ∆𝛆(𝑛)
∗  (7) 

where the increment of inherent strain only affects the newly deposited layer: ∆𝛆(𝑛)
∗ = 0 in all layers 

from 1 to 𝑛 − 1. The principle leading to the identification of the inherent strains is then the following: 

find for each layer 𝑛 the tensor ∆𝛆(𝑛)
∗  such that: 

∆𝛆(𝑛)
𝐼𝑆 = ∆𝛆(𝑛)

𝑆𝑇𝐷     and    ∆𝛔(𝑛)
𝐼𝑆 =  ∆𝛔(𝑛)

𝑆𝑇𝐷 (8) 

Taking the trace of Eq. (7), ∆𝛆(𝑛)
∗  should be such that: 

tr(∆𝛆(𝑛)
𝑆𝑇𝐷) = tr(∆𝛆(𝑛)

𝐼𝑆,𝑒𝑙) + tr(∆𝛆(𝑛)
∗ ) (9) 

in which tr(∆𝛆(𝑛)
𝐼𝑆,𝑒𝑙) is expressed by the Hooke's law. We obtain: 

tr(∆𝛆(𝑛)
𝑆𝑇𝐷) = − ∆𝑝(𝑛)

𝐼𝑆 𝜒⁄ + tr(∆𝛆(𝑛)
∗ ) (10) 

where 𝜒 = 𝐸 (3(1 − 2𝜈))⁄  is the elastic compressibility module, here taken at room temperature, and 
∆𝑝(𝑛)

𝐼𝑆  is the pressure difference between states 𝑛 and 𝑛 − 1. Because the stress tensors should be the 
same for the two approaches (Eq. (8)b), the pressure difference is known from the STD-TEVP 

+ cooling to room temperature 
→ State 1 

+ cooling to room temperature 
→ State 2 

+ cooling to room temperature 
→ State 3 

1 

3 

1 
2 2 

1 
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simulations: ∆𝑝(𝑛)
𝐼𝑆 = ∆𝑝(𝑛)

𝑆𝑇𝐷 = −(1 3⁄ )tr(∆𝛔(𝑛)
𝑆𝑇𝐷). This allows a direct determination of the spherical 

part of ∆𝛆(𝑛)
∗ , from the results of STD-TEVP simulations of states 𝑛 and 𝑛 − 1: 

tr(∆𝛆(𝑛)
∗ ) = tr(∆𝛆(𝑛)

𝑆𝑇𝐷) + (𝑝(𝑛)
𝑆𝑇𝐷 − 𝑝(𝑛−1)

𝑆𝑇𝐷 ) 𝜒⁄  (11) 

Taking now the deviatoric part of Eq. (7), we get: 

∆𝐞(𝑛)
𝑆𝑇𝐷 = ∆𝐞(𝑛)

𝐼𝑆,𝑒𝑙 + ∆𝛆(𝑛)
𝐼𝑆,𝑝𝑙

+ ∆𝐞(𝑛)
∗  (12) 

where ∆𝐞(𝑛)
𝑆𝑇𝐷, ∆𝐞(𝑛)

𝐼𝑆,𝑒𝑙
, and ∆𝐞(𝑛)

∗  are the deviatoric parts of ∆𝛆(𝑛)
𝑆𝑇𝐷, ∆𝛆(𝑛)

𝐼𝑆,𝑒𝑙
, and ∆𝛆(𝑛)

∗ , respectively: 
∆𝐞(𝑛)

𝑆𝑇𝐷 = ∆𝛆(𝑛)
𝑆𝑇𝐷 − (1 3⁄ )tr(∆𝛆(𝑛)

𝑆𝑇𝐷)𝐈, with 𝐈 the identity tensor. The tensor ∆𝐞(𝑛)
𝐼𝑆,𝑒𝑙

 is in turn expressed 

by the Hooke's law to obtain: 

∆𝐬(𝑛)
𝐼𝑆 = 2𝜇 [∆𝐞(𝑛)

𝑆𝑇𝐷 − ∆𝛆(𝑛)
𝐼𝑆,𝑝𝑙

− ∆𝐞(𝑛)
∗ ] (13) 

where 𝜇 is the elastic shear modulus, and 𝐬 denotes the deviatoric part of the stress tensor: 𝐬 = 𝛔 + 𝑝𝐈. 
Consider now the incremental plastic law between the two states 𝑛 − 1 and 𝑛. Because the stress and 
strain tensors should be the same for the two approaches (Eq. (8)), and using the constitutive equations 
(Eqs. (2)-(3)), this leads to: 

[1 + 2𝜇𝜆(Δ𝜀(̅𝑛)
𝐼𝑆 )]𝐬(𝑛)

𝑆𝑇𝐷 = 𝐬(𝑛−1)
𝑆𝑇𝐷 + 2𝜇[∆𝐞(𝑛)

𝑆𝑇𝐷 − ∆𝐞(𝑛)
∗ ]          with          �̅�(𝑛)

𝐼𝑆 ≤ 𝜎𝑌 + 𝑅(𝜀(̅𝑛)
𝐼𝑆 ) (14) 

It can be shown (details are not reported here, see [5]) that Eq. (14) is a non-linear equation to be solved 
for ∆𝐞(𝑛)

∗ , by means, for instance, of a Newton-Raphson procedure. This being done, considering Eq. 
(11), the tensor ∆𝛆(𝑛)

∗ = ∆𝐞(𝑛)
∗ + (1 3⁄ )tr(∆𝛆(𝑛)

∗ )𝐈 is fully determined. Note that this direct 
determination of ∆𝛆(𝑛)

∗  (based on the tensors 𝛆(𝑛) and 𝛔(𝑛) previously calculated by the standard TEVP 

simulation) can be achieved locally, i.e. in each finite element of the small-scale specimen. It does not 
require any additional global finite element resolution on the 𝑛-layer structure. This means that its 
resolution cost is negligible. 

3.2. First validation on a small straight wall made of 8-layers 
To validate the proposed inherent strain method, reference is made to the thermomechanical study of 

Biegler et al. of a straight wall made of stainless steel 316L by DED, using a back-and-forth single track 
deposition strategy [9]. The configuration composed of the first 8 layers is adopted for this first 
validation. The geometrical, material, and process parameters are documented in Table 1.  

Table 1. Simulation data: material and process parameters, geometrical data. 

 Properties Values or reference 

Material properties 

(stainless steel 316L) 

Thermophysics Kim [10] 

Thermomechanics Muransky et al. [11] 

Heat exchange 

Initial temperature, 𝑇0 [°C] 25 

Ambient temperature, 𝑇𝑎𝑖𝑟 [°C] 25 

Convection coefficient, ℎ𝑐𝑜𝑛𝑣 [W m-2 K-1] 35 

Emissivity, 𝜀 0.6 

Stefan–Boltzmann constant, 𝜎 [W m-2 K-4] 5.670374 × 10−8 

Process parameters 

(Biegler et al. [9]) 

Nominal laser power, 𝑃𝐿 [W] 400 

Scan speed, 𝑣𝐿 [mm s-1] 10 

Reflection coefficient, 𝑅 0.7 

Spot diameter, 𝜙𝐿 [mm] 0.6 

Inter-layer dwell time, 𝑡𝑑𝑤𝑒𝑙𝑙 [s] 31 

Part geometry 

(Biegler et al. [9]) 

Length, 𝐿 [mm] 65 

Layer width, 𝑙𝐷 [mm] 1.4 

Layer thickness, ℎ𝐷 [mm] 0.62 

Number of layers, 𝑁 30 

Total height, 𝐻 [mm] 18.6 

Substrate, 𝐿𝑆 × 𝑙𝑆 × ℎ𝑆 [mm3] 100 x 30 x 8 

The average values of the 6 components of Δ𝛆(𝑛)
∗  in each of the 8 layers are given in Table 2. Except for 

the first layer, they are globally similar. Shear components are quasi null (<10-5), except for 𝑥𝑧, the sign 
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of which changes due to the back-and-forth deposition. Regarding absolute values of diagonal terms, 𝑥𝑥 
components are the largest, while 𝑦𝑦 and 𝑧𝑧 components are about twice as small. 

Table 2. Average values of 𝛥𝜺(𝑛)
∗  components in each of the 8 layers. 

Layer 𝑛 
Average values in layer 

Δ𝜀(𝑛),𝑥𝑥
∗  Δ𝜀(𝑛),𝑦𝑦

∗  Δ𝜀(𝑛),𝑧𝑧
∗  Δ𝜀(𝑛),𝑥𝑦

∗  Δ𝜀(𝑛),𝑥𝑧
∗  Δ𝜀(𝑛),𝑦𝑧

∗  

1 −0.0126 −0.0007 0.0127 0. −0.0081 0. 

2 −0.0144 0.0046 0.0093 0. 0.0079 0. 

3 −0.0152 0.0058 0.0090 0. −0.0079 0. 

4 −0.0153 0.0063 0.0085 0. 0.0081 0. 

5 −0.0151 0.0067 0.0079 0. −0.0081 0. 

6 −0.0148 0.0067 0.0074 0. 0.0089 0. 

7 −0.0144 0.0067 0.0072 0. −0.0089 0. 

8 −0.0141 0.0068 0.0068 0. 0.0092 0. 

To further evaluate the spatial distribution of Δ𝛆(𝑛)
∗  the map of 𝑥𝑥 component is shown in Figure 2. In 

fact, in this representation, the 8 fields Δ𝛆(𝑛)
∗  have been somewhat superimposed, depending on which 

layer each element belongs to. It is worth noting the heterogeneity in the first layers, but also near the 
two ends of the wall, where inherent strains clearly vary with height. 

 

 
Figure 2. Map of 𝛥𝜀𝑥𝑥

∗ .throughout the 8-layer wall and its substrate. 

To validate the proposed IS method, the full tensor fields Δ𝛆(𝑛)
∗  (𝑛 = 1 to 8) extracted as explained 

above, are applied for each layer addition, according to Eq. (7). Results are compared with the reference 

ones obtained by STD-TEVP. As shown in Figure 3, for distortion and stress along the deposition 
direction, the results obtained by the proposed IS method can hardly be distinguished from those 
obtained by STD-TEVP. This expresses that the proposed IS method quasi perfectly replicates the STD-
TEVP simulation. However, this only validates i) the determination process of Δ𝛆(𝑛)

∗ , and ii) its use in 
the IS method. The strategy to apply the IS method to a large part is presented in the next Section. 

 

 
 STD-TEVP. proposed IS method 

Figure 3. Validation of the proposed IS method on an 8-layer wall. Comparison of IS results (right) with 
reference STD-TEVP (left), for axial distortion and stress. 

3.3. Application to the 30-layer straight wall: learning and transport strategy 
Regarding now application of the IS method, especially for parts made of many layers, STD-TEVP 
simulations should be minimized. This needs to calculate approximate inherent strain fields in a 
simplified way, instead of calculating the exact ∆𝛆(𝑛)

∗  for each layer addition as previously done. To 

𝑢𝑥  (mm) 

𝜎𝑥𝑥 (MPa) 
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achieve this goal, it is chosen to determine the inherent strains on the first 𝑁𝑙 layers – named learning 
layers – of the studied part. Following the identification of ∆𝛆(𝑛)

∗ , for 𝑛 = 1 to 𝑁𝑙, it is then necessary to 
define how the inherent strains should be applied to model the addition of the rest of the layers (𝑛 =
𝑁𝑙 + 1 to 𝑁). The method that is selected consists in transporting vertically the profile of inherent strains 
obtained from the learning layers. Taking care about the sign change for shear components due to back-
and-forth deposition, we get, at location 𝐱 in layer 𝑛 > 𝑁𝑙: 

{
In layer 𝑛 such that 𝑛 − 𝑁𝑙  is an even number: Δ𝛆(𝑛)

∗ (𝐱) = Δ𝛆(𝑁𝑙)
∗ (𝐱 − (𝑛 − 𝑁𝑙)ℎ𝐷𝐞𝑧)

In layer 𝑛 such that 𝑛 − 𝑁𝑙  is an odd number: Δ𝛆(𝑛)
∗ (𝐱) = Δ𝛆(𝑁𝑙−1)

∗ (𝐱 − (𝑛 − 𝑁𝑙 + 1)ℎ𝐷𝐞𝑧)
 (15) 

where ℎ𝐷 is the layer thickness. Figure 4 illustrates the results of the proposed IS method, compared 
with STD-TEVP simulation, in the case of the 30-layer wall, using 4 learning layers. It can be seen that 
significant differences now appear. This result expresses the fact that the inherent strains identified in 
the learning layers do not reflect the inherent strains encountered in the upper layers. In fact, this result 
could have been anticipated, just looking at Figure 2. Therefore, the conclusion is that the IS method, 

definitely cannot replicate STD-TEVP. 

 

 
 STD-TEVP proposed IS method 

Figure 4. Application of the proposed IS method to the 30-layer wall, using 4 learning layers. 

Comparison with reference STD-TEVP for axial distortion and stress. 

Regarding computer time, the IS method is 19 times faster than STD-TEVP. As a conclusion, the 
proposed new IS method was validated – by comparison with STD-TEVP – on a small-scale model, 
when using full-field inherent strains (Δ𝛆(𝑛)

∗ ) in the different layers. However, the application of the IS 
method to the full 30-layer wall, using a few learning layers and transport of inherent strains, led to 
rather poor results, offering only a qualitative agreement with the reference STD-TEVP simulation. This 

result is disapointing, because the proposed IS method was especially designed to provide results as 
close as possible to the reference STD-TEVP. This was proved correct at small scale, but not at a larger 
scale. The reason for that is the heterogeneity of inherent strains on the learning layers, and, as a 
consequence, the impossibility to generate a field of inherent strains that would be appropriate on the 
whole construction. This is, in our opinion, a clear failure acknowledgement of the IS method. Finally, 
it appears relevant to develop an alternative approach of model reduction. In the following Section, we 

propose a new method, inspired by the IS method, but which is operated in a quite different way. 

4. New method: the inherent strain rate method 

The inherent strain rate method, ISR in short, consists of a linearization of the transient 
thermomechanical elastic-viscoplastic simulation (STD-TEVP). This linearization relies on the 

approximation of the generalized viscoplastic strain rate. This approximation is named "inherent strain 
rate" and is an input to the simulations (like the inherent strains in IS simulations). As such, this inherent 
strain rate (scalar) also requires an identification. But contrary to the IS method, identification is 
performed on-line, when simulating the studied part. The ISR approach is described hereafter. 
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4.1. Linearization of the thermo-elastic-viscoplastic constitutive equations 

The constitutive equations for thermo-elastic-viscoplasticity are as follows: 

�̇� = �̇�𝑒𝑙 + �̇�𝑣𝑝 + �̇�𝑡ℎ (16) 

�̇�𝑒𝑙 = (𝐃𝑒𝑙)
−1

�̇� =
1 + 𝜐

𝐸
�̇� −

𝜐

𝐸
tr(�̇�)𝐈 (17) 

�̇�𝑡ℎ = 𝛼�̇�𝐈 (18) 

�̇�𝑣𝑝 =
3

2�̅�
[
�̅� − (𝜎𝑌 + 𝑅(𝜀)̅)

𝑘
]

+

1 𝑚⁄

𝐬 (19) 

where the strain rate tensor �̇� is split into an elastic part, �̇�𝑒𝑙, a viscoplastic part, �̇�𝑣𝑝, and a thermal part, 
�̇�𝑡ℎ. 𝛼 is the one-dimensional thermal dilation coefficient, �̇� the time derivative of the stress tensor, 𝑘 

the viscoplastic consistency, 𝑚 the strain rate sensitivity. The function [𝑥]+  is equal to 0 when 𝑥 is 
negative and to 𝑥 otherwise. From Eq. (19) , when �̇�𝑣𝑝 ≠ 𝟎, and calculating 𝜀̅̇ = √(2 3⁄ )�̇�𝑣𝑝: �̇�𝑣𝑝, the 
following scalar relation can be easily obtained: 

�̅� = 𝜎𝑌 + 𝑅(𝜀)̅ + 𝑘𝜀̅̇𝑚 (20) 

Consequently, Eq. (19) can be straightforwardly rewritten: 

�̇�𝑣𝑝 =
3𝜀̅̇

2�̅�
𝐬 (21) 

Non-linearity comes from the viscoplastic behavior law (Eq. (19) or (20)). The proposed linearization 
process consists in replacing the unknown equivalent strain rate 𝜀̅̇ by an a priori estimate, hereafter 
denoted 𝜀̅̇∗: the inherent strain rate. Proceeding in this way, we have at each time increment 𝑡: 

𝜀(̅𝑡) = 𝜀(̅𝑡 − ∆𝑡) + 𝜀̅̇∗∆𝑡     and     �̅�(𝑡) = 𝜎𝑌 + 𝑅(𝜀(̅𝑡)) + 𝑘𝜀̅̇∗
𝑚

 (22) 

Therefore, the viscoplastic constitutive equation is linearized 

�̇�𝑣𝑝 =
3𝜀̅̇∗

2�̅�(𝜀̅̇∗)
𝐬 (23) 

Hence, the finite element resolution of the equilibrium equation ∇ ⋅ 𝛔 = 0, combined with constitutive 
equations (16)-(18) and (23) now requires a unique resolution, instead of an iterative solution process. 
The determination of the inherent strain rate 𝜀̅̇∗ and its application are detailed in the next sub-Sections. 

4.2. Determination of inherent strain rates and ISR solution scheme 
The inherent strain rate 𝜀̅̇∗ can be deduced from STD-TEVP calculation. When simulating with STD-
TEVP, it is essential to remark that the most significant strain rates are found in the neighborhood of the 
material supply zone. This is evidenced in the left part of Figure 5. 
From that, it is quite easy to elaborate simple rules (not detailed here) to define the shape of a simple 

domain – in red color in the right part of the figure – in which a uniform inherent strain rate 𝜀̅̇∗ will be 
defined as the volume average of the most significant strain rates. 

 
Figure 5. Left: during STD-TEVP simulation of the deposition of the third layer, the red zone 
encompasses elements showing the top 10% highest strain rates. Right: the red zone indicates the domain 
in which a uniform inherent strain rate 𝜀̅̇∗ is to be applied. 

  



MCWASP XVI
IOP Conf. Series: Materials Science and Engineering 1281  (2023) 012001

IOP Publishing
doi:10.1088/1757-899X/1281/1/012001

8

 
 
 
 
 
 

The strategy to simulate the construction process consists then in a succession of linearized resolutions 
of the elastic-viscoplastic deformation of the structure, interrupted by some full (non-linear) STD-TEVP 
resolutions to update the value of the inherent strain rate, and its application domain. In practice, the use 

of the two solvers is organized as shown in Figure 6. The STD-TEVP resolution is used at each layer 
for the very first time steps at deposition start, and for a very few time increments at the transition 
between deposition end and dwell-time. All other time steps are solved with the ISR method. Only the 
first two layers are treated differently, STD-TEVP being used all along layer deposition. 

 
Figure 6. Organisation of the ISR solution method to simulate the deposition of a layer, and the 
subsequent inter-layer dwell time. STD-TEVP stands for the use of the non-linear resolution, while ISR 
stands for the use of the linearized elastic-viscoplastic resolution.  

4.3. Application of ISR method to the 30-layer wall 
Apart from the larger number of layers, geometrical data, process parameters and material properties 
are identical to those given in Section 3.2. Figure 7 shows the comparison, in terms of predicted 
distortion and stress fields, between ISR and STD-TEVP. The difference between displacement or stress 

components is not perceptible (relative difference less than 1%).  

 
 STD-TEVP proposed ISR method 

Figure 7. Application of ISR method to the 30-layer wall. Distortion and stress fields (𝑥 and 𝑧 

components) after complete cooling. 
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Regarding computation time, the ISR method shows a speed-up ratio of 5.2 with respect to STD-TEVP 
on the studied configuration. This is certainly lower than for the IS method, but the accuracy of the 
results is invaluably better. Also, it can be anticipated that this speed-up ratio could be higher on more 

complex simulation cases and could be improved by minimizing the number of STD-TEVP resolutions. 

5. Conclusion 

The lack of fidelity of the IS method with respect to a reference STD-TEVP numerical simulation has 
been evidenced. This fundamental weakness is due to the fact that the learning process made on a small-
scale test part (possibly on a first few layers of the studied part) fails to be representative of the inherent 

strains undergone by the deposited material during deposition of the upper layers of the construction. 
Conversely, the new ISR method – based on a linearization process of realistic elastic-viscoplastic 
constitutive equations, and equipped with an efficient on-line learning process – perfectly replicates the 
reference calculations. Although less computer efficient, in its current state of development, than the IS 
method, the ISR method is very promising. 
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