
HAL Id: hal-04415517
https://minesparis-psl.hal.science/hal-04415517v1

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Analysis of Defects in Public JSON Schemas
Claire Yannou-Medrala, Fabien Coelho

To cite this version:
Claire Yannou-Medrala, Fabien Coelho. An Analysis of Defects in Public JSON Schemas. 39èmes
journées de la conférence BDA Gestion de Données – Principes, Technologies et Applications, Oct
2023, Montpellier, France. �hal-04415517�

https://minesparis-psl.hal.science/hal-04415517v1
https://hal.archives-ouvertes.fr

An Analysis of Defects in Public JSON Schemas
Claire Yannou-Medrala and Fabien Coelho

firstname.lastname@minesparis.psl.eu
Centre de recherche en informatique, Mines Paris – PSL University

France

ABSTRACT
JSON is a simple de facto standard cross-language textual format
used to represent, exchange and store data and documents in com-
puter systems. JSON Schema is a description language, based on
JSON, proposed to describe JSON types and validate JSON data. We
investigate over 57,800 distinct public schemas for various defects
through static analysis, and identify cases of mistyping, misplacing,
misnaming, misspelling, misversioning and other miscellaneous is-
sues. Over 60% of schemas are defective, allowing in the worst case
unintended data to be validated. These findings suggest to make
key changes to the current JSON Schema draft so as to limit po-
tential issues. It also leads us to design JSON Model, an alternative
compact and expressive JSON data structure description language.

KEYWORDS
JSON Schema; Static Analysis; JSON Model.

1 INTRODUCTION
The JSON [16] JavaScript Object Notation format has become in
recent years an ubiquitous cross-language de facto standard to
represent, exchange and store data between computer applications,
partially replacing XML [23]. Its success can be attributed to the
extensive use of JavaScript in web and mobile development. Like
the more verbose XML, JSON can be parsed without knowing in
advance the expected structure. It allows to serialize in textual form
simple data structures (Figure 1) built upon the null value, booleans,
numbers, Unicode strings, arrays (aka list, tuple, sequence, set) and
objects (aka struct, record, dict, map, association, key-value pairs).
Its drawbacks include the limited number of types, the absence
of a syntax for comments, its unbounded numbers which cannot
express some values (e.g. NaN), the restriction of object properties
(aka key, attribute, field) to strings, and that only tree structures
can be serialized, i.e. there is no sharing of values or cycle. Thanks
to these simple features, a wide range of libraries and tools are
available for many programming languages and systems beyond
JavaScript [18] including Python, Java, Shell, and SQL.

{
"name": "Calvin",
"age": 6,
"friends": ["Hobbes", "Susie"]

}

Figure 1: JSON object with three properties

Several systems have been proposed to declare JSON types so
as to provide a mean for documenting expected structures and
validating JSON data beyond their mere syntax. Some systems are
based on JavaScript [8, 27], while others rely on JSON itself [1, 29].
We focus here on JSON Schema [29], a JSON syntax (see Figures 2

and 3) which describes JSON types. It has been developed as a
potential standard for over 13 years and is still under discussion.

In this paper, we investigate the quality of schemas. We analyze
over 57,800 distinct public schemas through static analysis com-
plemented with manual checks, looking for typical defects left by
schema designers. Defective schemas do not reflect the intended
data structure, possibly allowing invalid data into a system, and
may have disastrous consequences such as cybersecurity issues or
unexpected system failures. For each defect, we try to guess the
quite often obvious designer initial intention. We argue that defects
are mostly due to key design decisions in the current standard draft,
which should be revised in the light of these findings.

Our contributions include: (1) an in-depth study of JSON Schema
specifications for potential issues that can lead to defects; (2) the col-
lection of over 57,800 distinct public schemas for our investigations
made available online [30]; (3) the development of proof-of-concept
tools for processing JSON Schema and detecting various categories
of common defects, also available online [12, 14]; (4) a categorization
of the causes of defects found by our tools on the corpus; (5) based
on these evidences, a set of recommendations for improving the
next version of the JSON Schema specification; (6) the outline of
JSON Model, an alternative compact and expressive JSON-based
data description language for JSON.

The remainder of this paper is organized as follows: Section 2
surveys prior empirical studies we built upon, as well as some theo-
retical contributions about JSON Schema. Section 3 then presents a
comprehensive summary of the current state of the JSON Schema
specification, outlining specific features likely to lead to defects.
Section 4 describes the various sources, the preprocessing stages
and the tools used for our schema collection and analysis. Section 5
outlines the broad set of defects found in our corpus. This leads
us to recommend changes for improving the JSON Schema spec-
ification in Section 6, and to propose, in Section 7, JSON Model,
an alternative compact and expressive data description language,
before concluding in Section 8.

2 RELATEDWORK
Prior studies have focused on analyzing the schemas of databases
or documents from public corpora, either to gather insights about
actual schema usages or to look for defects. Relational database
schemas from open-source projects have been analyzed [11] to
look for common design issues such as missing primary keys, or
how often foreign keys are (not) declared. Non-relational (NoSQL)
databases schemas extracted from Java applications have been stud-
ied [26] to check for denormalization and measure the frequency
of schema changes. The schemas of XML documents have also
been a subject of study, e.g. a sample of DTDs has been investi-
gated [10] for their complexity, determinism and ambiguities, as
well as properties such as reachability, recursion or cycles.

In BDA 2023 : 39ème Conférence sur la Gestion de Données - Principes, Technologies et Applications, Oct 23-26 2023, Montpellier, France.

Claire Yannou-Medrala and Fabien Coelho

Recent studies have looked in-depth at available JSON Schema
samples: 159 schemas from Schema Store, a curated corpus of
schemas, have been inspected [22] to collect evidence about their
sizes, distribution of types, looseness, the usage of recursion and the
maximum level of nesting depths. Over 8,000 pairs of schemas have
been investigated [20] to check for subschema relations between
subsequent versions: the irrelevant keyword rewriting rule of the
canonicalization phase often corresponds to a misplaced keyword
(Section 5.2). The evolution of 230 schemas from the SchemaStore
has been analyzed [19] to check for schema change compatibility
with the use of comparison tools. Finally, over 80,000 schemas from
GitHub have been collected and looked into [6] for keyword usages,
especially patterns of negation.

JSON Schema has also received theoretical attention: a seman-
tics has been proposed [25]; a formal data model and a query
language have been defined [9]; the validation of schemas has
been formalized and its complexity asserted [3]. Other works focus
on interactive type inference [4], automatic data generation from
schemas [2, 15] or the reverse, algorithms to generate a schema
from raw JSON data [28]. Theoretical works point to the complexity
of JSON Schema when handling schemas and validating instances:
PCRE regular expressions with backtracking implementations can
result in exponential execution time when looking for a match [24];
because of dynamic references and recursion, the verification com-
plexity of JSON Schema is PSPACE-complete [3]; negation has been
investigated [7] in relation with other operators and shown not to
be closed, i.e. the not keyword cannot always be removed.

3 JSON SCHEMA
The JSON Schema specification [29] was first proposed as an IETF
Internet Draft in 2009. Since then, 10 versions have been published,
with significant changes on the way, such as renaming keywords
or modifying their purpose and type, but also removing or even re-
suming features, so that there is no compatibility between versions.
This lengthy and chaotic development history induces confusion
for tool developers and early adopters alike.

3.1 Design Philosophy
Three key design choices permeate the JSON Schema draft standard:
(1) JSON is the foundation; (2) JSON is used to represent loose
documents; (3) schemas are themselves loose.

The first choice means that JSON Schema describes JSON with
JSON. This is useful for such a language to gain acceptance as a
cross-language tool, and also simplifies tool development. Because
of this choice, a schema has a meta schema written as a schema,
which can be validated against itself.

The second choice is to assume that JSON is used to represent
large evolving open documents, somehow like XML, as opposed
to small rigid data which are used inside or at the interface of a
programming language to exchange data. A concept underlying
this point is that schema definitions can be either tight or loose:
a tight schema does not allow much freedom about properties or
types, whereas a loose schema allows unknown properties. As
JSON schema aims at documenting in detail the structure and the
semantics of the various data as much as constraining their types, it
incurs a level of verbosity and scafolding in the language. Moreover,

because these documents are assumed to be evolving, all defaults
are chosen so that unknown elements in a document are accepted,
i.e. schemas are loose by default.

The third choice is that JSON Schema meta schema is loose. This
is a pernicious effect of the above open document approach applied
to the specification of JSON Schema itself. Choosing a loose meta
schema allows extensions without updating existing tools, but also
induces that any keyword misspelling or misplacement is coldly
ignored. As the point of schemas is to catch errors in data, it is
paradoxical that they would be error-prone to write.

3.2 Schema Structure
With the exception of booleans used to represent any or no possible
values, all elements of a JSON data structure are represented in a
schema as independent nested objects, as shown in Figure 2. In this
example, the outside Person structure is an object which contains
three properties. The properties name and age are simple types
with constraints, expressed as sub-schemas. The property friends

is an array of strings, inducing two additional levels of sub-schemas.
Only the first two properties are mandatory (required), and any
other property is rejected (additionalProperties). Overall, this
schema description is over 4 times larger than a sample value.

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "A Person",
"type": "object",
"properties": {
"name": { "type": "string", "minLength": 1 },
"age": { "type": "integer", "minimum": 0 },
"friends": {

"title": "The Person's Friends",
"type": "array",
"items": { "type": "string", "minLength": 1 },
"minItems": 1

} },
"required": ["name", "age"],
"additionalProperties": false

}

Figure 2: Tight JSON schema for Figure 1

JSON Schema latest specification, version 2020-12, defines 60 camel
case keywords, their expected types and associated semantics. They
cover meta data, type constraints, assertions about values or sizes,
subschema logic and consistency constraints. From a software en-
gineering and practical point of view, a schema description lan-
guage with 60 keywords, including logical structures, seems rather
cumbersome. It is especially so when considering that JSON itself
has only 3 keywords (null true false) and 8 syntactic mark-
ers ({} [] \ " , :) or compared to full-fledged programming
languages such as C (32 keywords), Python (34), JavaScript (46),
TypeScript (47) or Java (51).

Structural nesting is expressed as elements which are schemas
themselves when appearing within some keywords. All keywords
can appear at any level of the schema, without any consistency
constraint through keyword independence: the validation semantics
is lax, as keywords which do not apply to the current value are

An Analysis of Defects in Public JSON Schemas

silently ignored. Some keywords allow to combine an array of
schemas logically: allOf requires that the current value matches
all subschemas, anyOf checks that it matches at least one of them,
and oneOf validates that only one matches.

When validating a JSON value (a process called evaluation of
an instance against a schema in JSON Schema specification), the
system considers keywords directly inside a JSON Schema element
(adjacent keywords), but also those specified in subschemas through
combinators (allOf anyOf oneOf) and references ($ref), so that in
effect these subschemas apply to the current value aswell. Moreover,
the system must dynamically keep track of values (e.g. properties)
not validated by subschemas to possibly apply special catch-up
checks specified through keywords unevaluatedItems and un-
evaluatedProperties. This evaluation semantics is complex to
understand because it involves several schema levels at the same
time, as illustrated later in Figure 22.

3.3 Permissiveness
Constraints declared in a schema are not necessarily enforced de-
pending on the context, because of permissive default values.

A first permissive setting is that the type keyword is not manda-
tory, and its absence means that no check is performed about
the value type, conducting to accept any value. A second per-
missive setting is that when properties are not listed they are al-
lowed by default, otherwise they must be explicitly forbidden with
additionalProperties. The same holds for array items which are
of any type by default. A third permissive setting is that properties
are optional by default, and they must be explicitly required.

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "A Person",
"properties": {

"name": { "type": "string" },
"age": { "type": "integer" },
"friends": {

"items": { "type": "string" }
} } }

Figure 3: Loose JSON schema for Figure 1

Figure 3 provides a loose schema for our JSON data introduc-
tory example in Figure 1. It is much simpler as it involves less
concepts (7 vs 16 keywords): the resulting size is about half of the
tight version. This loose schema validates all data in Figure 4. In
Extract (a) Object Hobbes: the nom (French for name, possibly mis-
spelled), species, color and birth properties are simply accepted
as the document is open; the friends property is not an array so
the items constraint is ignored; the only actual verification is that
age is some sort of integer. Worst, because of missing type declara-
tions, it also validates all seemingly unrelated miscellaneous data in
Extract (b): what the schema actually validates is that if the data is
an object and it has name, age or friends array properties, then they
must be a string, an integer and composed of strings, respectively.

The attentive reader will have noticed that, thanks to JSON
Schema lax validation semantics, Calvin and Hobbes JSON objects
in Figures 1 and 4 (a) are both valid schemas, as none of the 7 prop-
erty names collides with any of the 60 keywords defined by the

{
"nom": "Hobbes",
"age": 3.0,
"friends": "Calvin",
"species": "tiger",
"color": "yellow ochre",
"birth": "1985-11-18"

}

(a) Object Hobbes

{
"comics": "Calvin & Hobbes",
"creator": "Bill Watterson"

}

"Calvin and Hobbes are Friends"

3.14159265358979323846264338327

(b) 3 Miscellaneous Valid Values

Figure 4: Valid JSON instances with Figure 3 schema

specification. Because unknown properties are ignored, when con-
sidered as schemas they are equivalent to {} which means that all
possible JSON values are valid. One step further, as schemas, they
have the notable property of being self-validating. The practical
implication of these twisted remarks is that if a user loads a random
JSON object file as a schema it is likely to be accepted and indeed
validate all its data, so could go unnoticed.

3.4 Version Changes
The lengthy and yet uncompleted development of the JSON Schema
specification is quite chaotic, with significant incompatibilities be-
tween versions. Although it is not a requirement for successive
drafts to be compatible, the development of well over 150 tools [21]
shows a real demand for a standard, and these continuous changes
hinder tool maintenance: a fraction of them have not followed the
latest versions published over 3 years ago.

A very minor but still emblematic nitpick is that draft version
identification has changed from straightforward numbers (drafts 0
to 8) to year-month, with version 8 also identified as 2019-09. This
later system hints at more years of specification to come. The latest
planed version has been dubbed 2022-XX, but was not released
before 2023, following the trend started with Fortran 8X which
ended as Fortran 90. A less minor change is the definition of integer,
which was relaxed from number without a decimal part (up to v5)
to number with a zero decimal part (from v6), so that 2.0 became
an integer overnight.

Keyword types and behaviors have changed through the drafts:

• Types were initially recursively defined, then later restricted
to a predefined list of string values, which lost the redundant
any special type at some later point.

• Initial versions had mandatory properties which could be
changed to optional with a boolean, then properties became
optional and could be made required with a boolean, then
required became a list of strings outside of the property def-
initions. This array could not be empty up to v5, then this
constraint was relaxed.

• Boolean minimumCanEqualwas inverted to exclusiveMinimum
which was switched later to a number.

• contentEncoding disappeared in v3 to reappear in v7.
• Definitions were implicit in earlier drafts thanks to transparent

nesting, then were made explicit with definitions in v4,
which was then changed to $defs in 2019-09.

• The id keyword was renamed $id in v6.

Claire Yannou-Medrala and Fabien Coelho

• The management of arrays was turned upside down between
2019-09 and 2020-12, with items and additionalItems be-
coming prefixItems and items respectively, changing as a
side effect the semantics of items and breaking the style con-
sistency with additionalProperties.

• New keywords can last just one version: recursiveAnchor
introduced in 2019-09 was renamed dynamicAnchor in the
next version.

The predefined format values for strings have seen a number
of apparently random changes, such as utc-millisec which is only
defined in v3; host-name was renamed to hostname in v4; the trivial
date and time disappeared in v4 to reappear in v7; this is also the
case for regex, even if it is mandatory for defining a neat meta
schema; version 5 is advertised as a simple rewrite of v4, but really
introduced uri-ref which is then renamed uri-reference in v6.
Most notably, formats which would be definitely useful in any
programming language beyond JavaScript are absent: there are no
int32 int64 float double or similar predefined formats. A source
of confusion is that two keywords convey a type information, with
a subtle distinction: type is about the type from a JSON perspective,
whereas format is about type from the application perspective.

Minor naming inconsistencies can also be found: expressing a
minimum in various contexts is shown explicitly (minContains
minItems minLength minProperties), but the minimum for a
value is minimum, whereas the homogeneous minValuewould have
made sense.

Section 5.4 shows various defects which demonstrate that schema
designers have had a hard time to keep up with these confusing
changes.

4 DATA COLLECTION
We have collected JSON Schema samples by reusing corpora from
previous studies [6, 19, 20, 22] and adding our own directly collected
samples to the mix. After some preprocessing to remove duplicate
schemas, we have run a set of automatic analysis tools to extract
relevant information.

4.1 Schema Collection
Our corpus [30] is available online. It comes from 5 main sources:

Ref covers JSON Schema Test Suite (over 2000 extracted files),
some examples schemas and JSON Schema own meta schemas;

Store includes the Schema Store, a curated corpus of schemas, and
Schema-Store-Analysis, a dated extract used in [22];

ODS are schemas collected from the self-service OpenDataSoft
explore interface of Open Data platforms, including nearly
30,000 from ODS data hub; these schemas are dynamically
generated from an internal JSON representation;

JSC The json-schema-corpus [5] comprises 80,000 files collected
from GitHub repositories in July 2020; for some files which
were not actual schemas but happened to contain schemas, we
extracted the subschemas, adding over 1600 samples;

Misc includes various sources, the largest of which is the Ku-
bernetes collection (over 400,000 files, of which we kept the
standalone-strict variant among the four available variants),
schemas from French public open data sites, and others;

These schemas cover very diverse application domains, such as
mobility, geography, education, IT, media. . .we aimed at collecting
all possible public schemas without any filtering, thus we believe
that our collection is representative of public JSON schemas.

Source Name Files Schemas %
Ref JSON Schema Test Suite 2,149 1,990 92.6

JSON Schema Specification 37 35 94.6
Store Schema Store 516 512 99.2

Schema Store Analysis 165 141 85.5
ODS Data Hub 27,816 21,808 78.4

Others. . . 2,488 1,372 55.1
JSC JSON Schema Corpus 82,094 22,427 27.3

extracts 11,994 1,661 13.8
Misc Kubernetes 102,582 6,145 6.0

Washington Post 3,239 634 19.6
Others. . . 2,297 1,078 46.9

235,377 57,803 24.6
Table 1: Corpus Sources, retrieved in September 2023

Table 1 shows detailed counts about our corpus. Overall, our
analysis operates on around 235,000 raw valid JSON files, including
many duplicates, so that only about 57,800 distinct schemas are
kept.

4.2 Preprocessing
We first preprocess all files to remove duplicates identified by hash-
ing a normalized JSON representation. The normalization consists
in simplifying titles, definitions and references from the ODS source,
and pretty-printing the JSON data with sorted object properties.
Finally, a further cleaning phase removes over 1000 more files from
the JSC source which, despite vaguely looking like schemas, e.g.
they have an official $schema URL as shown in Figure 5, have noth-
ing to do with JSON Schema. This preprocessing keeps one fourth
of the initial corpus. These files are further analyzed automatically.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"id": "asd",
"name": "Audio Side Data",
"defaults": { },
"groups": []

}

Figure 5: Rejected Schema – JSC PP 16421

4.3 Static Analysis
We have developed a set of Python tools [12, 14] to analyze schemas
from any version and report basic statistics, validation results
against all meta schema versions (described with JSON Model, Sec-
tion 7), as well as detected defects. These analyses take on average
7 ms per schema. The result is imported into a Postgres database
for further processing with SQL queries.

Figure 6 shows schema numbers per size from our corpus. There
is a very wide spread of schemas sizes, from 4 bytes (true) to about

An Analysis of Defects in Public JSON Schemas

Figure 6: Number of schemas per log2 JSON sizes

15 MB (224 bytes). The median size is 2.5 kB (211) but the average
is about 11 kB, because of a few very large files in our corpus.

We collect simple structural JSON statistics (number of nulls,
booleans, strings, arrays, objects, properties. . .). When considered
as JSON data, the type of the elements found in schema description
is largely skewed towards strings (74.7%) and objects (17.3%), be-
cause all schema elements are described with keyword properties
inside objects. Arrays are infrequent (5.7%), booleans are rare (1.6%).
Few numerical values are used in schemas (0.6%), mostly integers
for various seldom-used constraints (string length, array sizes. . .).

Figure 7: Percent of schemas using keywords

Then we compute JSON schema specific statistics (e.g. which
keywords are used and how often they are used), and for some
keywords statistics about the values (e.g. which schema version is
advertised if any). Figure 7 shows the percentage of schemas using
each keyword: the upper plot includes keywords which appear
in over 1% of schemas, the lower plot those under 1%. To smooth
version differences, occurrences of id and $id have been merged,
as well as definitions and $defs. Consistently with [6], type
is the most used keyword, however there is still 2.5% of schemas
without it, mostly coming from the official test suite. The second
keyword is properties, reflecting that schemas usually contain
at least one object. 80% of schemas use description, which un-
derlines the documentary nature of a lot of schemas in our corpus.

Definitions (definitions $defs) appear in 52% of schemas, how-
ever they are not always used: over half of schemas with definitions
have at least one unused definition, mostly from the ODS source.
When looking at schema keyword usage, some are seldom used,
mostly in tests, and do not seem to reflect significant use cases: they
include minProperties, multipleOf, maxProperties, contains,
contentMediaType, contentEncoding.

Next, we validate the schema against all meta schema versions
through our JSON model compiler [13], with separate tests for
tight vs loose versions of the meta schemas, and for early versions
whether schema nesting is allowed.We also checkwhether keyword
usage in the schema is compatible with its advertised version.

Finally, our tools perform static analysis to look for specific
defects and common typos. The main analyses, which detect most
defects, are:

missing type an element has no associated type, despite some
keywords suggesting a particular type.

dangling reference a reference does not have a definition.
dead keyword a keyword has no effect on the current value be-

cause of possible types at this point.
draft incompatibility and miscellaneous version issue.
type error such as invalid or empty type.

For each defect found, the JSON file and the path leading to the
defective element is shown, alongwith details about the issue. These
findings are presented in the next section.

5 SCHEMA DEFECTS
Most defects manifest themselves as inconsistencies coming from:

(1) an untyped element with keywords which suggest that it is
expected to be typed (missing type, as in Figure 3); this is the
most common error which impacts 53% of our corpus;

(2) a known keyword without any effect on the expected values
because the possible types at this point, for which there may be
several explanations which must be investigated by hand: the
expected type may be wrong and the keyword is right (typing
issue); the type is right but another keyword was meant (mis-
naming); the keyword is right but should be at another level
(misplacement) and possibly needing another intermediate
keyword (missing);

(3) a known keyword ignored because of its placement, inde-
pendently of the type, typically a keyword used in property
declarations;

(4) an unknown keyword (at least for the advertised version) or
unexpected value leading to an inconsistency, which is quite
often a typo (misspelling) or possibly an nonexistent feature,
at this version (misversioning or mistake).

Note that static analysis will find defects because of the implica-
tions on the semantics: if a schema does not reflect the intention of
the designer but is valid, our analyses cannot find it. Also, the PoC
nature of our tools means that we can have some false positives. In
the remainder of this section, we describe the different defects and
illustrate them with simplified examples actually extracted from
our corpus, mostly from the curated Store source. The source file
and path of all reported defect extracts are available in [30].

Claire Yannou-Medrala and Fabien Coelho

5.1 Mistyping
Ultimately, defects are linked to type errors. In this section, we
outline typical cases where type declarations either implicit (enum
const default examples) or explicit (type), direct (in the ob-
ject) or indirect (through references or combinators), are probably
wrong or just totally missing. They explain why some keywords
are without effect on the validated values.

{
"type": "string",
"enum": [80, 443]

}

(a) Store – Ansible 2.5

{
"type": "string",
"enum": [[], {}]

}

(b) Store – Style Lint

{
"type": "object",
"oneOf": [
{ "type": "string" },
{ "type": "number" }

]
}

(c) Misc – K8S Quantity

{
"type": "array",
"anyOf": [

{ "type": "object" },
{ "type": "object" }

]
}

(d) Store – Bamboo

{
"type": "object",
"enum": ["azure.cloudify_azure.resources.network..."]

}

(e) Store – Azure Cloud

Figure 8: Type Errors

When explicitly provided, type declarations can be given a list
of types, which makes schemas confusing as assertions about in-
compatible types can legitimately be intermixed inside one element.
It is also possible to build a JSON element which cannot accept
any value because of contradictory type requirements, as shown in
Figure 8: the types suggested by enum, oneOf and anyOf are incom-
patible with the explicit type declarations. This later declarations
should probably be removed from all 5 extracts so that the expected
values are validated.

{
"type": "object",
"items": {
"type": "object",
"properties": {

"ids": { }
}

} }

(a) Store – Google Chrome

{
"title": "Default",
"type": [

"string", "number",
"integer", "boolean", "array"

],
"additionalProperties": false

}

(b) JSC – PP 27224

{
"type": "integer",
"pattern": "/[1,-1]{1}/"

}

(c) JSC – PP 24218

{
"type": "number",
"pattern": "[1-9][0-9]*"

}

(d) JSC – PP 2512

Figure 9: Other Type Errors

{
"type": "object",
"default": null

}

(a) Store – Cypress

{
"type": "integer",
"examples": ["27017"]

}

(b) Store – Monika

Figure 10: Type inconsistency

In Figure 9, some keywords can only be useful if the type is
changed: Extract (a) items suggests that the element should ac-
tually be an array. Extract (b) additionalProperties hints that
the element could be an object. Extracts (c, d) pattern is ignored
on numbers, so either a string was really expected (mistyping), or
the pattern must be removed (mistake). Finally, Figure 10 shows
inconsistent default (null should be quoted) and examples (the
integer should be unquoted).

{
"required": ["vsixId"],
"properties": {
"name": { },
"vsixId": { }

}
}

(a) Store – Vs Ext

{
"type": "object",
"properties": {

"instructions": {
"description": "An array..."

}
} }

(b) Misc – LaunchDarkly

Figure 11: Missing Types

Another common typing error is that type declarations are miss-
ing, so that even if keywords suggest that a particular type is ex-
pected, any other unconstrained value of other types can be inserted.
This is illustrated in Figure 11: In Extract (a) the required and
properties keywords suggest that an object is really expected, but
without an explicit type all other types are allowed. In Extract (b)
there is no type hint as such, but the description says that an
array is expected. Such later cases are hard to distinguish from rare
but legitimate untyped elements.

In later Figure 14 (e), beyond the misspelling of extrema, the
number type which denotes an HTTP status code should really be
an integer as hinted by the erroneous integer keyword.

A number of apparent type errors are really misspellings or
mistakes, or due to recurrent type/format confusions, as discussed
in Section 5.3.

5.2 Misplaced Properties
Because of keyword independence, properties which do not apply to
the current value are ignored. Data valid with respect to the schema
designer intentions will still be valid anyway. As the result, it is
very easy to put and let indefinitely a property at a wrong place.

In Figure 12 Extracts (a, b), the uniqueItems array property is
associated to the array items instead of the array itself. It should
be moved one level up. Extract (c) propertyNames is put on the
additional property string, instead of the enclosing object, thus is
ignored. Extracts (d-f) properties contain suspicious keywords
as user-defined properties: anyOf, additionalProperties and
minProperties probably belong to the containing object.

An Analysis of Defects in Public JSON Schemas

{
"type": "array",
"items": {
"type": "string",
"uniqueItems": true

}
}

(a) Store – .NET Template

{
"type": "array",
"items": {

"type": "object",
"uniqueItems": true,
"properties": { }

} }

(b) Store – UI5 Manifest

{
"type": "object",
"properties": { },
"additionalProperties": {
"type": "string",
"propertyNames": {

"maxLength": 10
} } }

(c) Store – Azure Device

{
"type": "object",
"properties": {

"anyOf": [
{ "$ref": ". . . " },
{ "$ref": ". . . " }

]
} }

(d) JSC – PP 81088

{
"type": "object",
"properties": {

"image": { "type": "string" },
"additionalProperties": false

} }

(e) Store – Fly

{
"type": "object",
"properties": {

"label": { },
"minProperties": 0

} }

(f) JSC – PP 37714

Figure 12: Misplaced – bad nesting

{
"type": "object",
"oneOf": [{ "$ref": "#/definitions/..." }],
"definitions": {

"geometry": {
"description": "One geometry as defined by GeoJSON",
"type": "object",
"oneOf": [{"$ref": "#/definitions/polygon" }],
"polygon": { }

} } }

Figure 13: Misplaced – ODS Definition Nesting

The extract in Figure 13 is of particular interest because of the
14,900 occurrences found in our corpus of OpenDataSoft generated
schemas (two third of the corpus). Five object definitions (here
only "polygon" is shown) are misplaced inside the "geometry"
object and should really be moved one level up. As a result, the ref-
erences in the internal oneOf combinator cannot find their targets.

5.3 Misnaming and Misspelling Issues
The set of 60 evolving keywords defined in JSON Schema are
not well memorized by schema designers. A particular common
confusion concerns extrema values for different elements which
use 12 similar property names: minLength and maxLength with
strings, minimum, exclusiveMinimum, maximum and exclusive-
Maximum with numbers, minItems, maxItems, minContains and
maxContains with arrays, minProperties and maxProperties
with objects.

Figure 14 Extracts (a-d) illustrates typical min/max misnam-
ings found in over 100 schemas in the corpus: Extract (a) should

{
"date_of_birth": {

"type": "string",
"maximum": 10,
"minimum": 10

} }

(a) JSC – PP 53086

{
"type": "array",
"items": {

"type": "object",
"minItems": 1

} }

(b) Store – Dependabot

{
"type": "array",
"items":

{ "type": "string" },
"minLength": 1

}

(c) Store – Gitlab CI config

{
"type": "object",
"additionalProperties": {

"type": "string",
"minProperties": 1

} }

(d) JSC – PP 73935

{
"type": "number",
"min": 100,
"max": 599,
"integer": true

}

(e) JSC – PP 9882

{
"type": "number",
"multipleOf": 1,
"minValue": 1

}

(f) JSC – PP 17072

{
"type": "array",
"items": { },
"minSize": 1

}

(g) Store – Kite pipeline

{
"type": "array",
"minitems": "2",
"maxitems": "2"
}

(h) JSC – PP 28955

Figure 14: Min/Max Multiple Confusions

use minLength and maxLength. Extract (b) could be interpreted
as a misplacement, the minItems belonging to the external array,
but the overall context suggests that what was really meant is
minProperties as a (strange) way to require at least one prop-
erty. Extract (c) minLength should be minItems or is misplaced
and should be one level down. Extract (d) is either misplaced, or
should be minLength. Extracts (e-h) show more imaginary vari-
ants of min/max, from simple typos (minitems) to shorthands (min)
and pure creations (minValue minSize). Incidentally, Extract (f)
requires a number which must be a multiple of one. . . , thus the
type could be simplified to "integer".

{
"type": "array",
"additionalProperties": false,
"items": { }

}

Figure 15: Misnamed – Store – XS App

In Figure 15, property additionalProperties is used on an
array. Either it is a pure mistake, say a repetition of the previous
pattern of definitions which were all objects, or additionalItems
was meant.

The list of typographical errors is long, as they tend not to be
detected because unknown keywords are ignored. The worst series
is about meta-keyword description which occurs in our corpus

Claire Yannou-Medrala and Fabien Coelho

as desription, despcription, descritpion, descrition, decription, descrp-
tion, descripiton, descripition, decsription, descripion and Description.
Other variants are found for most keywords, such as type: (colon
appended), defaults, Default, refs, #refs. . . There are also lots
of mistakes around type names, with common errors such as: null
instead of "null" or "text" instead of "string" (over 500 schemas
each), but also "int", "list" or "bool" used instead of "integer",
"array" or "boolean". Another common pattern of type errors is
due to type/format confusions, with predefined or other format
names used as type names such as tiny-int small-int medium-int

uuid data-time. . .

{
"type": "string",
"format": "url"

}

(a) Store – Jasonette

{
"ref": "#/def...",
"description": "..."

}

(b) Store – ESLint Config

{ "schema": "http://json-schema.org/draft-06/schema#" }

(c) Store – Unit Asm Def

{
"description": "Unique ...",
"readonly": true,
"type": "int"

}

(d) JSC – PP 80381 13

{
"title": "",
"description": "",
"type": null

}

(e) JSC – PP 54206

Figure 16: Misspelled keywords or format

Figure 16 illustrates misspelling issues on keywords and values:
Extract (a) should use the "uri" format. Extracts (b, c) are both
missing a $ before ref and schema. Extract (d) uses an undefined
type. Extract (e) null should be quoted.

5.4 Misversioning
Section 3.4 outlines the chaotic development of the JSON Schema
specification. In this section, we analyze how well public schemas
from our corpus conform to the various versions. We first investi-
gate schemas globally, then separately schemas that advertise some
version and schemas that do not advertise any version.

Figure 17: Share of versions in our corpus

Figure 17 outlines the share of JSON Schema versions in our cor-
pus. On the left pie, 43% of schemas do not have any $schema (none),
44% advertise a schema with a specific number (v1-v10, v10 is next)
and 13% advertise the latest possible schema (last, currently v9).

For schemas without any identified version, further analysis
shows that they are mostly compatible with v4/v5 (98.5%) and
v6/v7/v8 (96.0%). Only 35.5% are compatible with version 2020-12,
mostly because of the change in how arrays are described.

The right pie shows the share of schema versions for schemas
which advertise a specific version: overwhelmingly they use v4
(2013). Despite our efforts, we did not find many schemas from
drafts 2019-09 and 2020-12. When a precise draft is advertised, 96%
of schemas do conform to their version.

{
"$schema": "http://json-schema.org/schema",
"$id": "http://json.schemastore.org/cryproj.52.schema",
"title": "CryProj schema",
"$comment": "JSON Schema for CRYENGINE 5.2",
"type": "object",
"properties": { }

}

Figure 18: Implicit Latest Schema Version

The remainder 13% advertise implicitly the latest version with a
non specific URL, as shown in Figure 18. The compatibility with the
latest version is slightly reduced to 89% in this case, mostly because
these schemas were developed for an earlier incompatible schema,
usually v4.

{
"$schema": "https://json-schema.org/draft-04/schema",
"id": "...",
"definitions": {

"base_foo": {
"$comment": "...",
"id": "..."

} } }

(a) Ref – Draft 4 ref tests

{
"$schema": "http://json-schema.org/draft-04/schema#",
"id": "https://json.schemastore.org/hws-config.json",
"definitions": {

"keyValuePairVariables": {
"type": "object",
"propertyNames": { "pattern": "^[A-Za-z0-9_.-]+$" }

} } }

(b) Store – HWS Config

Figure 19: Version Incompatibilities

Globally, over 400 schemas are not even loosely compatible with
any version because of keywords pointing to different versions, as
illustrated in Figure 19 with extracts which advertise a draft 4 ver-
sion. Extract (a) mixes id which exists only until v5 with $comment
which appears in v7. Although this error is harmless because com-
ments do not have a semantics, its unintentional occurrence in JSON
Schema own test suite demonstrates how easy it is to introduce
mistakes in schemas, even for people involved in the specification
process. Extract (b) also mixes the same keyword id with keyword
propertyNames which appears only in v6.

An Analysis of Defects in Public JSON Schemas

5.5 Miscellaneous Issues
This section covers cases of missing intermediate keywords, mis-
taken (useless or invented) keywords, and mysterious patterns.

{
"type": "array",
"properties": {

"namespace": { "type": "..." },
"version": { "type": "..." }

},
"additionalProperties": false

}

(a) Store – SemGrep

{
"type": "array",
"anyOf": [

{ "type": "object" },
{ "type": "object" }

]
}

(b) Store – Bamboo

Figure 20: Missing Keywords

Extracts in Figure 20 are both missing a containing items to
make sense of the object keyword associated to the array: in Ex-
tract (a) direct keywords properties and additionalProperties;
in Extract (b) indirectly through keyword anyOf. The object-related
keywords are ignored and the default permissive items applies,
thus any data in the array is accepted.

{
"description": "MicroTime",
"format": "date-time",
"type": "string",
"additionalProperties": false

}

(a) Misc – K8S Microtime

{
"type": "array",
"items": { "$ref": "..." },
"numItems": 2

}

(b) Store – Vega

Figure 21: Mistakes

In Figure 21, Extract (a) additionalProperties keyword is
totally mistaken in an element which consists in a simple string.

Some schemas invent new keywords, not necessarily because
they are using some extended vocabulary, but rather to express
some semantics that could be available. Figure 14 (e) has an integer
boolean property to suggest that the current element should be
an integer. The type should really be set to "integer". Extract (b)
in Figure 21 shows a non existing numItems keyword to fix the
number of expected items in the array. It should use both minItems
and maxItems for this purpose.

{
"$defs": {
"Foo": {

"type": "object",
"properties": { "foo": { "type": "string" } }

} },
"type": "object",
"allOf": [{ "$ref": "#/$defs/Foo" }],
"properties": { "bla": { "type": "boolean" } }

}

Figure 22: *Of Mystery

A mystery, which is not a defect as such, is that 44.5% of all
schemas in our corpus contain some allOf, anyOf or oneOf combi-
nators with a list of only one schema which in most cases is a simple

reference. Figure 22 outlines a typical usage pattern. A referenced
object (Foo with property foo) is merged into the current object, so
as to combine properties. This pattern raises two comments: (1) in
many instances the combinator can be removed and the reference
kept directly in the containing object, achieving the same result
more simply; (2) this pattern defeats the very purpose of combina-
tors, which should make clear what schemas are actually combined,
whereas here the combination occurs with a schema which is ac-
tually outside of the combinator. We find this construction hard to
understand: the structure would be clearer if both merged objects
where inside a combinator. Although there is a clear use case for
combining schemas as a building block for complex schemas, al-
lowing such a pattern seems counter productive to good software
engineering practices.

{
"type": "number", "minimum": 2,
"enum": [2], "maximum": 2

}

Figure 23: Store – Google Chrome

Another curiosity is shown in Figure 23, a lot of effort is spent
on defining an integer constant with the help of 4 keywords. With
recent versions this can be simplified to { "const": 2 }.

5.6 Summary
Over 60% of schemas in our corpus have some kind of defect. The
first cause of defect is a missing type declaration (52.8%). Most
other defects are linked to nesting errors, which result in dan-
gling references (26.7%, mostly from the OpenDataSoft generated
schemas shown in Figure 13) or keywords which are ignored in
the context because they are incompatible with the possible types
(2.3%), possibly because of mistyping, misplacement, misnaming or
mistakes. Other defects include schemas with a version mismatch
(3.4% are inconsistent with their advertised schema, 0.7% do not
have any compatible version) or various type errors, also due to
misplacements, misnaming or misspelling. These defects leads us
to suggest changes to JSON Schema.

6 RECOMMENDATIONS
The key takeaway from the previous section is that schemas are
hard to write, and a lot of defects go unnoticed because of JSON
Schema loose document semantics. Even in schemaless develop-
ment frameworks allowed by scripting languages and flexible data-
bases, this is paradoxical: if someone actually bothers to write a
schema for their data, something they do not need for application
features, then they probably want some help in checking data struc-
tures, which rather suggests an easy-to-use simple language with
tight defaults. Based on Section 5 evidences, and in order to improve
JSON Schema, we propose key changes that address these issues
and could make the specification more useful.

A lot of defects are undetected because unknown or misplaced
keywords are simply ignored.We thus recommend that it should not
be the case, whichmeans breaking the keyword independence feature
and forbid unknown keywords, making schemas tight in effect.
This can be achieved with the same overall syntax if keywords and
values allowed at different levels are restricted, requiring:

Claire Yannou-Medrala and Fabien Coelho

• mandatory valid $schema version declaration at the root: if it
does not claim to be a schema, it is not a schema;

• because they all imply a type, type, const, (type-homoge-
neous) enum, $ref and the three combinators allOf anyOf
oneOfmust be mutually exclusive inside an element; accepting
any value is expressed with boolean schema true; consistently,
the absence of an explicit or implicit type means no type, thus
{} is false and should reject all values;

• type declarations must be simple scalars, not lists: type unions
can be achieved with combinators anyOf and oneOf.

• type-specific keywords must only appear with an explicit com-
patible type at the same level; as a consequence, combinators
only combine their list of schemas, without effects from adja-
cent keywords;

• unknown/unexpected keywords/values must generate errors;
• reference targets must exist: obviously the fact that reference

must be resolved is already a constraint which we just reassert.
• formats must exist: formats for common types found in pro-

gramming languages to cover very common use cases must
be added.

• integers should just be integers, not floats that happen to be
very close to an integer.

These restrictions result in possibly more verbose schemas be-
cause some description tricks cannot be used. However, because
the constructs and types are directly exposed in the structure, we
think that it is a positive improvement for readability and main-
tenance. Furthermore, well-scoped schemas help build validation
tools which can compile subschemas without having to care about
checks performed outside of the subschema specification.

These proposed changes amount to using a subset of JSON
Schema with additional constraints. It raises two questions: What
are the benefits? Are they practical? The actual key benefit is that it
becomes harder to write invalid schemas with these constraints: the
tight schema in Figure 2 conforms to these rules, whereas the loose
schema in Figure 3 does not. Moreover, with these constraints (but
ignoring the mandatory $schema), all but one defective schemas
presented in Section 5 would be considered invalid: only Extract (e)
in Figure 12 would pass as some object could indeed wish to forbid
a property named additionalProperties. As a proof that these
restrictions make sense in practice, we have tested them on 614 dis-
tinct samples from the Store source: 18% of these already conform
to the restricted rules. This rate raises to 29% by simply imposing
consistent type declarations with an enum instead of forbidding
type in this case. If we ignore the 30% of schemas with errors in
this corpus, it means that 42% of valid Store schemas are already
conforming to the restricted rules. This suggests that many schemas
are not far from being compatible with these restrictions.

The official test suite must be improved. Currently, only valid
schemas are unit-tested against values, one keyword at a time, to
check whether the semantics is correctly implemented. There is no
test which looks like typical use cases found in actual schemas: for
instance, most tests do not specify an explicit type, whereas most
use cases have it. Although the current lax validation semantics
makes it hard to generate an invalid schema, as far as we can tell
not a single test in the official test suite has a dangling reference
to check that it is detected. In order to help enforce these new

restrictions, the official test suite must include invalid schemas
which must be rejected by a conforming tool.

Section 5.3 shows that users struggle with JSON Schema many
keywords. We propose to simplify the 60-keyword specification
by removing seldom used features, especially if there is no strong
theoretical argument to keep them:
• logical keywords not if then else dependentRequired

should be reconsidered as they are seldom used, and a signifi-
cant amount of use cases can be covered with combinators;

• special keywords unevaluatedItems and unevaluatedProp-
erties are useless with the above restrictions because the
extension semantics of combinators is simplified;

• little used array containment features contains minContains
maxContains and the multipleOf constraint could also be
removed;

• keywords deprecated, readOnly and writeOnly do not seem
to belong to a data structure description, but rather to an API
description: as they are off-topic, they should be removed;

• features dynamicAnchor and dynamicRef should be removed
because of the implied complexity induced on the validation
algorithm [7];

• content keywords content* could be managed by relying on
format, e.g. "text/html; charset=UTF-8";

• most Keyword propertyNames use cases are covered with
patternProperties, so it could be removed;

• Keyword $vocabulary usage beyond JSON Schema ownmeta-
schema seems very scarce, extensions could rather be managed
with external $ref pointing to specific URI;

• keywords minimum and maximum could be replaced by min-
Value and maxValue for homogeneity with other extrema
keywords.

Overall, we propose to remove about 20 keywords. One feature
that could be added is a combinator which merges properties from
objects to define a new object, as discussed in the next section.

With the above restrictions and simplifications, a schema def-
inition would be tight. This proposal goes beyond currently dis-
cussed changes [17]. We also think that JSON Schema should go
a step further so that schemas should be tight by default and that
it should require some minimal effort, i.e. additional keywords, to
loosen them. This would imply changing the philosophy, such as
an optional keyword to replace required, and using false as a
default for additionalProperties and other keywords.

7 JSON MODEL OUTLINE
Although the recommendations above should reduce the number
of defects found in JSON schemas, the architecture of the language
still results in verbose descriptions. JSound [1] is a alternative data
description language proposed for the same purpose, which is also
quite verbose and less expressive than JSON Schema. Its compact
form is much more dense, as expected, but also lacks some fea-
tures. This section briefly outlines JSON Model [13], a compact and
expressive alternative for describing JSON data structures.

The first principle of JSON Model is to rely as much as possible
on type inference to represent data structures, so that the simplest
values (null true 0 0.0 "") represent their types, and to resort
to more complex object descriptions only when necessary. This is

An Analysis of Defects in Public JSON Schemas

{
"name": "",
"age": 0,
"?friends": [""]

}

(a) Tight Model for Figure 1

{
"^[A-Z]$": "_",
"$DATE": "=42",
"": "$U64"

}

(b) Constants and Types

Figure 24: Simple JSON Model Examples

illustrated in Figure 24 (a): the model describes an object with 3
properties. The two first properties are mandatory. The first expects
a string, the second an integer. Property friends expects an array
of strings and is optional because the property name starts with a ?.
Models are tight by default, i.e. unexpected properties are rejected.
Figure 24 (b) shows an object definition with constants (=), regular
expressions (ˆ) and and predefined types ($): uppercase one-letter
property names (written with a regex) expect an empty string value,
_ is the string escape character; property names which match a
date expect a constant integer 42 value; any other property name
expects an unsigned 64-bit integer value.

{
"@": [""],
"eq": 7,
"distinct": true
}

(a) Constraints

{ "|": [
{ "tag": "=1", "isbn": "$ISBN" },
{ "tag": "=2", "issn": "$ISSN" }

]
}

(b) Composition

Figure 25: JSON Model Constraints and Composition

Further constructs allow to build more advanced types. Fig-
ure 25 (a) is a constrained model: the expected target type "@"
is an array of 7 unique strings. Figure 25 (b) is a model composi-
tion with an or operator "|": depending on the tag integer value,
the object must have a mandatory isbn or issn property with its
associated type.

{
"%": { "geo": "$https://json-model.org/geom" },
"polygons": ["$geo#polygon"]

}

Figure 26: Model Loading and Referencing

Figure 26 introduces referencing existing models and definitions
through URLs: geo loads a model through a URL, and the polygon

type defined in the loaded model is used for array items.
Finally, Figure 27 illustrates advanced features: the model in-

cludes a comment #, two type definitions (Person and Structure)
inside %, with a recursion on Structure as it depends on itself, and
the "+" operator which allows to merge properties of object defini-
tions, so that string Property company is only required at the root
element. Figure 28 is a valid sample value for this model.

JSON Model is a work in progress. The description language cur-
rently contains 19 keywords or sentinel characters. Open questions
remain: instead of letter-based mnemonics (le eq distinct. . .),
constraint properties could use mathematical symbols less likely
to be used in typical data structure; special values could be used

{
"#": "Organizational Chart",
"%": {

"Person": { "name": "", "?title": "" },
"Structure": {

"head": "$Person",
"?subs": ["$Structure"]

}
},
"+": [{ "company": "" }, "$Structure"]

}

Figure 27: Recursive Organizational Chart Model

{
"company": "Jason Co",
"head": { "title": "CEO", "name": "Albertine" },
"subs": [

{ "head": { "title": "CFO", "name": "Betty" } },
{

"head": { "title": "CTO", "name": "Carol" },
"subs": [

{ "head": { "title": "Prod Lead", "name": "Dany" } },
{ "head": { "title": "Dev Lead", "name": "Elen" } }

]
}

]
}

Figure 28: Sample Value for Figure 27

for implicit constraints on numbers, e.g. -1 for any integer, 0 for
positive and 1 for strictly positive; regular expressions could use a
/ sentinel like some other languages. . .

As JSON Model is written in JSON, there is a self-validating tight
meta-model. We think that the design is intelligible, as above model
illustrations can be broadly understood by a developer without prior
knowledge of the formal syntax. A proof-of-concept implementa-
tion written in Python is available [12]. It offers both a validator
(interpreter), a compiler, and partial schema-to-model and model-
to-schema converters.

8 CONCLUSION
In this paper, we have brought 6 main contributions:

(1) a comprehensive study of the state of the JSON Schema spec-
ification and its evolution, with an emphasis on error-prone
features (Section 3);

(2) an extensive JSON Schema corpus aggregated from previous
works and complemented with our own collection of schemas,
available online [30] and reaching over 57,800 distinct public
schemas (Section 4);

(3) analysis tools for processing schemas and looking for typical
defects, available online [13, 14] (Section 4);

(4) a categorization of defects based on their causes (Section 5);
(5) propositions to improve the JSON Schema specification so as

to avoid most of these defects (Section 6);
(6) the outline of JSON Model, an compact and expressive JSON-

based data-structure description language (Section 7).

Claire Yannou-Medrala and Fabien Coelho

An obvious limit to our study is the data collection. Despite our
efforts, we found very little samples of schemas over v8, our corpus
is heavily slanted towards v4 and v7. A lot of tool implementations
seem stuck to v4. MongoDB schemas are described in BSON with
an extension of JSON Schema v4; this is also the case of several
Postgres implementations such as is_jsonb_valid (which is actively
maintained) and postgres-json-schema (which is not). Pydantic also
seems to generate v4-compatible schemas. A lot of recent samples
only come from the official JSON Schema Test Suite. These unit-test
oriented samples are quite far from realistic usage patterns.

A second limit is our static analysis tools: we only find what we
are looking for, thus if some errors are not actively investigated they
will just be missed. Moreover, our implementation is not perfect,
for instance it does not resolve external references and includes a
few shortcuts to deal with distinct versions of JSON Schema in one
go, so a few false positives or negatives reports are still possible.

Checking data structures at API interfaces, a typical use case for
JSON Schema, is highly biased: in the development phase, schemas
are useful as a documentation and can help debugging by catching
malformed data; even if a schema is too loose, malformed data are
not likely to fall specifically on the loose elements, and anyway
such errors will be detected with functional tests; once in produc-
tion, data generated by the application code will very probably be
conforming, thus schema validations will nearly always return true.
Keeping a data validation is a loss of cpu time and energy: one
reason to keep it anyway is to prevent malicious clients from in-
serting invalid data as a mean of cyberattack; another is to provide
data quality assurances, in particular when an interface is open to
external unchecked clients.

Another bias, typical of open data platforms, is that the purpose
of schemas seems much more about documenting data formats than
actually being used to validate data. In such a context, the readability
of the schema should be paramount. Given the complexity of JSON
Schema, this tool is not well suited for this purpose, and other
formats such as YAML are more appropriate.

We think that JSON Schema is not a good fit to the two purposes
it has been created for: as a data structure development tool, it is too
verbose and error-prone; as a documentation tool, the JSON format
is not ideal for human consumption and JSON Schema complexity
makes it hard to understand. The changes we propose should help
the data-structure side, but the result, even with fewer keywords
and a more rigid structure, is still quite verbose. This motivates our
proposed lightweight alternative (Section 7).

Finally this work also raises questions about Standard gover-
nance and how evidences and feedbacks are collected to try to
improve a proposal. Overall, it seems that JSON Schema has gone
towards more and more complex semantics, whereas simplicity is
probably what is really needed.

We would like to thank Olivier Hermant and the anonymous
reviewers for their help in proofreading this paper.

REFERENCES
[1] Cesar Andrei, Daniela Florescu, Ghislain Fourny, Jonathan Robie, and Pavel

Velikhov. 2018. JSound 2.0 – The Complete Reference. https://jsound-spec.org
[2] Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo

Sartiani, and Stefanie Scherzinger. 2022. Witness Generation for JSON Schema.
Proceedings of the VLDB Endowment (PVLDB) 15, 13 (Sept. 2022), 4002–4014.

[3] Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo
Sartiani, and Stefanie Scherzinger. 2023. Validation of Modern JSON Schema:
Formalization and Complexity. (March 2023). working paper or preprint.

[4] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019.
A Type System for Interactive JSON Schema Inference (Extended Abstract). In
46th International Colloquium on Automata, Languages, and Programming (ICALP
2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 132). Schloß
Dagstuhl–Leibniz-Zentrum für Informatik, 101:1–101:13.

[5] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2021. A JSON Schema Corpus. https://github.com/sdbs-
uni-p/json-schema-corpus.

[6] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2021. An Empirical Study on the ”Usage of Not” in Real-
World JSON Schema Documents. In 40th Int. Conf. on Conceptual Modeling ER
2021 (Lecture Notes in Computer Science, Vol. 13011). Springer, 102–112.

[7] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2022. Negation-Closure for JSON Schema. Preprint. https:
//arxiv.org/abs/2202.13434v1

[8] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding Type-
Script. In European Conf. on Object-Oriented Programming. Springer, 257–281.

[9] Pierre Bourhis, Juan L Reutter, Fernando Suárez, and Domagoj Vrgoč. 2017.
JSON: Data model, Query languages and Schema specification. In PODS 2017 –
Proceedings of the Thirty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. Chicago, USA.

[10] Byron Choi. 2002. What are read DTDs like?. In Fifth Int. Workshop on the Web
and Databases (WebDB). 43–48.

[11] Fabien Coelho, Alexandre Aillos, Samuel Pilot, and Shamil Valeev. 2011. A Field
Analysis of Relational Database Schemas in Open-source Software. In 3rd Int.
Conf. on Advances in Databases, Knowledge, and Data Applications (DBKDA),
IARIA (Ed.). 9–15.

[12] Fabien Coelho and Claire Yannou-Medrala. 2023. JSON Model. https://github.
com/clairey-zx81/json-model

[13] Fabien Coelho and Claire Yannou-Medrala. 2023. JSON Model: a Lightweight
Featureful Description Language for JSONData Structures. Tech. Report A/795/CRI.
CRI, Mines Paris – PSL.

[14] Fabien Coelho and Claire Yannou-Medrala. 2023. JSON Schema Statistics Tools.
https://github.com/clairey-zx81/json-schema-stats

[15] Hugo André Coelho Cardoso and José Carlos Ramalho. 2022. Synthetic Data
Generation from JSON Schemas. In 11th Symposiumn on Languages, Applications
and Technologies (SLATE).

[16] Douglas Crockford. 2006. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627. IETF.

[17] Greg Dennis. 2023. The Last Breaking Change. Blog Post. https://json-schema.
org/blog/posts/the-last-breaking-change

[18] ECMA International. 2011. Standard ECMA-262 – ECMAScript Language Specifi-
cation (5.1 ed.). 846 pages. First edition in 1999.

[19] Michael Fruth, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo
Sartiani, and Stefanie Scherzinger. 2020. Challenges in Checking JSON Schema
Containment over Evolving Real-World Schemas. In 39th International Conference
on Conceptual Modeling ER (Workshops) 2020 (LNCS, Vol. 12584). Springer, Vienna,
Austria, 220–230.

[20] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel. 2019. Type
Safety with JSON Subschema. CoRR abs/1911.12651 (2019). arXiv:1911.12651

[21] JSON Schema. 2023. Implementations. (2023). https://json-schema.org/
implementations.html.

[22] Benjamin Maiwald, Benjamin Riedle, and Stefanie Scherzinger. 2019. What Are
Real JSON Schemas Like? – An Empirical Analysis of Structural Properties. In
Advances in Conceptual Modeling - ER 2019 Workshops FAIR, MREBA, EmpER,
MoBiD, OntoCom, and ER Doctoral Symposium Papers (LNCS, Vol. 11787). Springer,
Salvador, Brazil, 95–105.

[23] Laurent Mignet, Denilson Barbosa, and Pierangelo Veltri. 2003. The XML Web: a
First Study. In The Web Conference.

[24] Mitre. 2021. Inefficient Regular Expression Complexity. CWE 1333.
[25] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín Ugarte, and Domagoj

Vrgoč. 2016. Foundations of JSON schema. In Proceedings of the 25th international
conference on World Wide Web. 263–273.

[26] Stefanie Scherzinger and Sebastian Sidortschuck. 2020. An Empirical Study on
the Design and Evolution of NoSQL Database Schemas. LNCS 12400, Springer,
441–455.

[27] Sideways Inc. 2023. joi – Schema Description Language and Data Validator for
JavaScript. Web Site. https://joi.dev First version in 2013.

[28] Lanju Wang, Oktie Hassanzadeh, Shuo Zhang, Juwei Shi, Limei Jiao, Jia Zou,
and Chen Wang. 2015. Schema Management for Document Stores. In VLDB
Endowment, Vol. 8. 922–933.

[29] Austin Wright, Henry Andrews, Ben Hutton, and Greg Dennis. 2022. JSON
Schema: A Media Type for Describing JSON Documents. Draft 2020-12. IETF.

[30] Claire Yannou-Medrala and Fabien Coelho. 2023. Yet Another JSON Schema
Corpus. https://github.com/clairey-zx81/yac

https://jsound-spec.org
https://github.com/sdbs-uni-p/json-schema-corpus
https://github.com/sdbs-uni-p/json-schema-corpus
https://arxiv.org/abs/2202.13434v1
https://arxiv.org/abs/2202.13434v1
https://github.com/clairey-zx81/json-model
https://github.com/clairey-zx81/json-model
https://github.com/clairey-zx81/json-schema-stats
https://json-schema.org/blog/posts/the-last-breaking-change
https://json-schema.org/blog/posts/the-last-breaking-change
https://arxiv.org/abs/1911.12651
https://json-schema.org/implementations.html
https://json-schema.org/implementations.html
https://joi.dev
https://github.com/clairey-zx81/yac

	Abstract
	1 Introduction
	2 Related Work
	3 JSON Schema
	3.1 Design Philosophy
	3.2 Schema Structure
	3.3 Permissiveness
	3.4 Version Changes

	4 Data Collection
	4.1 Schema Collection
	4.2 Preprocessing
	4.3 Static Analysis

	5 Schema Defects
	5.1 Mistyping
	5.2 Misplaced Properties
	5.3 Misnaming and Misspelling Issues
	5.4 Misversioning
	5.5 Miscellaneous Issues
	5.6 Summary

	6 Recommendations
	7 JSON Model Outline
	8 Conclusion
	References

