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Invariant Kalman Filtering with

Noise-Free Pseudo-Measurements

Sven Goffin, Silvère Bonnabel, Olivier Brüls, and Pierre Sacré∗†‡§

January 16, 2024

Abstract

In this paper, we focus on developing an Invariant Extended Kalman
Filter (IEKF) for extended pose estimation for a noisy system with state
equality constraints. We treat those constraints as noise-free pseudo-
measurements. To this aim, we provide a formula for the Kalman gain in
the limit of noise-free measurements and rank-deficient covariance matrix.
We relate the constraints to group-theoretic properties and study the be-
havior of the IEKF in the presence of such noise-free measurements. We
illustrate this perspective on the estimation of the motion of the load of
an overhead crane, when a wireless inertial measurement unit is mounted
on the hook.

1 Introduction

Since its introduction in the 1960s, the Extended Kalman Filter (EKF) is prob-
ably the most used filter in the industry [1]. Despite its use in many real world
applications, it relies on strong assumptions that are rarely met in practice.
Moreover, its development is solely based on a probabilistic description of a
dynamical and a measurement model, disregarding the geometrical structure of
the considered problem. The latter concern gave birth to a proper field that fo-
cuses on geometric filtering methods. This research direction provided improved
solutions for many useful tasks, like Simultaneous Localization And Mapping
(SLAM) [2–5], inertial navigation and localization [6–8], or attitude and pose
estimation [9–11]. The invariance and equivariance properties of frameworks
developed in [6, 8, 12, 13] are reminiscent of those of linear systems in many
regards.
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Science, University of Liège, Belgium (sven.goffin@uliege.be, p.sacre@uliege.be).
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In various contexts, some additional (deterministic) information further con-
strain the state to belong to a subspace of the state space. Incorporating equality
constraints in probabilistic filtering constitutes a significant challenge that has
led to the realm of state constrained extended Kalman filtering, see [14]. In
this paper, we consider nonlinear constraints, dictated by kinematic of mechan-
ical relations, which arise for instance when estimating the configuration of a
multi-body mechanical system whose parts are rigidly linked and equipped with
one or several Inertial Measurement Units (IMUs). Especially, we consider the
equations associated to an IMU that may move freely in space and assume it
is mounted at the end of a rigid “link” whose other end’s location is known, or
fixed. This may be the case when mounting an IMU on a robotic arm, or on the
hook of a crane (a pendulum), as in [15]. In those cases, the known location of
the other end of the link provides an (nonlinear) equality constraint that may
help estimating the state of the IMU.

One may then resort to state constrained Kalman filtering, see [14]. In the
nonlinear case, such methods based on (re)projections are a means of enforcing
the constraint. However, they come with no guarantee of consistency whatso-
ever with the estimation problem at hand, and a brutal (re)projection onto the
constraint contains a degree of arbitrariness. Herein, we advocate that such
nonlinear constraints may rather be incorporated in the extended Kalman filter
and its variants through pseudo-measurements without noise, as they constitute
information known with certainty. This technique is perfectly justified in the
linear case, and allows for optimal fusion of noisy sensors and deterministic side
information. This poses two challenges, though. First, the matrix that must be
inverted in the Kalman filter may become rank-deficient, see e.g., [16]. Second,
in the nonlinear case, there is no guarantee the constraint is respected after the
pseudo-measurement has been incorporated, contrary to the linear case.

We derive a formulation of the Kalman gain that accommodates the rank
deficiency issues that may stem from the noise-free setting. Furthermore, we
cast the problem into the framework of the Invariant Extended Kalman Filter
(IEKF) by embedding the state space into a Lie group. Although [17] pro-
vides us with both an inspiration and a mathematical framework, we consider
different problems: [17] considers the limit case of a noise-free (deterministic)
dynamics with noisy measurements, along with an initial condition lying in a
constrained set, so that deterministic information is propagated. Herein, we
consider arbitrary noisy dynamics (and possibly noisy measurements) starting
from an unrestricted initial configuration, and investigate how to incorporate
noise-free measurements corresponding to deterministic side information. This
comes with different challenges and allows for addressing different problems.
Recently, [18] proposed to linearly constrain the Riccati equation for robust
invariant filtering, which is a wholly different problem.

The paper is structured as follows. Section 2 specifies the considered class of
estimation problems, provides two motivating examples of engineering interest,
and highlights the properties one shall pursue and the challenges that are raised
in both the linear and nonlinear cases. Section 3 derives a formulation for the
Kalman gain in the limit of noise-free measurements in the linear case and shows



its corresponding properties. Section 4 extends the use of this gain formulation
in the framework of invariant Kalman filtering, and proposes an alternative
update for the IEKF in the presence of noise-free measurements. Finally, Section
5 illustrates the performance of the proposed approach for the estimation of the
extended pose of the hook of a crane.

2 Motivating problem

Since the advent of smartphones, the use of cheap IMUs has increased signifi-
cantly. In this paper, we consider the problem of fusing the IMU measurements
with deterministic constraints, treated as noise-free pseudo-measurements.

2.1 Mathematical formulation

Free from any prior knowledge about the motion, the general dynamics of an
IMU write (e.g., [6])

Rk+1 = Rk exp((ωk + wω
k )× dt), (1a)

vk+1 = vk + (Rk(ak + wa
k) + g) dt, (1b)

pk+1 = pk + vk dt, (1c)

where we neglected sensors’ biases. The matrix Rk ∈ SO(3) is the rotation
matrix between the IMU and world frames, and the vectors vk, pk ∈ R3 are
respectively the IMU velocity and position vectors expressed in the world frame
at time instant k. The angular velocity ωk and linear acceleration ak output by
the IMU are used as inputs to the dynamical system. The vector g denotes the
gravity vector expressed in the world frame. The map exp(·) denotes the ma-
trix exponential map and the notation (b)× denotes the skew-symmetric matrix
associated with cross product with vector b ∈ R3.

Even if no assumption is made on the dynamics, the structural and mechan-
ical properties of the body to which the IMU is attached may constrain the
IMU pose. When dealing with a rigid body, this comes as noise-free equality
constraints of the form

Rkrk + αkvk + βkpk = yk, (2)

where rk, yk ∈ R3 and αk, βk ∈ R.
Considered problem We aim at devising a meaningful (Kalman) filter to

estimate the state of the noisy system (1) from noise-free measurements (2) in
real time.

2.2 Application examples

Estimating the pose of an IMU under constraints like (2) applies to a wide range
of applications. We provide two concrete applications for this problem, which
is nonlinear, owing to the state variable Rk being a rotation matrix.



2.2.1 Crane state estimation

As a first example, consider a crane on a construction site (see Figure 1). It is
technically very feasible nowadays to mount an IMU on the hook that transmits
its sensor readings [15]. Estimating the position and velocity of the load from
the IMU measurements may open the door to new automation capabilities since
it allows for feedback. However, the underlying dynamical model is unknown,
as the hook does not necessarily follow a simple pendulum motion, because of
external forces like friction and wind. The IMU dynamics (1), though, consist
of kinematic relations which are satisfied at all times, whatever the motion.
Moreover, when the cable is hanging, the distance between the hook and the
cable hang-up point is the cable length lk, which is very accurately measured in
modern cranes for safety reasons, see, e.g., [19]. This provides a constraint of
the form of (2) with rk = (0, 0,−lk), αk = 0, βk = 1, and yk = 03×1.

𝑂

Figure 1: Crane with a wireless IMU mounted on its hook.

2.2.2 Robotic arm state estimation

The field of robotics also uses IMUs extensively. As a second example, robotic
arms are usually equipped with IMUs in order to precisely estimate the pose
of their end effector. Although the dynamics of the arm cannot be predicted
in advance, kinematic constraints enforce that the segments of the arm are
attached to each other at the corresponding joints, providing constraints of the



form (2). This is what is exploited in [7] in the form of noisy measurements.

2.3 Kalman filtering with noise-free pseudo-measurements

Our problem of estimating noisy systems while treating noise-free equality con-
straints like (2) fits into the framework of probabilistic filtering. In this frame-
work, the belief at time index k, taking into account measurements up to
time j, consists of a multivariate Normal distribution parameterized by a mean
x̂k|j ∈ Rn (the state estimate) and a covariance matrix Pk|j ∈ Rn×n (the as-
sociated uncertainty). We advocate indeed that the constraints can be incor-
porated in a probabilistic filter by using yk as a noise-free pseudo-measurement
yk = h(xk), letting

h(xk) = h(Rk, vk, pk) = Rkrk + αkvk + βkpk. (3)

From the recent theory of two-frames [8], it can readily be checked (3) defines
an output that fits into the framework of invariant filtering, and so do the IMU
equations (1).

Noise-free pseudo-measurements convey information that is known for cer-
tain. Hence there are two desirable properties one would expect from a (Normal)
probabilistic filter.

• Property 1 : After a noise-free pseudo-measurement yk, the state is known
to belong to the subset

{x ∈ Rn | h(x) = yk}

owing to noise-free measurement. This should translate into h(x̂k|k) = yk.

• Property 2 : After a noise-free pseudo-measurement yk, the error covari-
ance matrix Pk|k should encode some deterministic information: null vari-
ance is to be expected in the perfectly observed directions. Mathemati-
cally, it should translate into HkPk|kH

T
k = 0m×m with Hk ∈ Rm×n the

Jacobian matrix of h at the estimate x̂k|k.

2.4 The linear case

In the linear case, the Kalman filter—whose equations are recalled in Ap-
pendix A—is optimal. Thus, we can expect both properties above to be satisfied.
We have

Hkx̂k|k = HkKkyk + (Hk −HkKkHk)x̂k|k−1 (4)

and
HkPk|kH

T
k = (Hk −HkKkHk)Pk|k−1H

T
k . (5)

Both desirable properties above are satisfied indeed, as soon as HkKk = Im,
since it ensures thatHk−HkKkHk = 0m×n. Recalling thatKk = Pk|k−1H

T
k (HkPk|k−1H

T
k )

−1

whenever measurements are noise-free, the desired relation holds ifHkPk|k−1H
T
k



is invertible. If it is not, the Kalman gain is not even defined. This may oc-
cur when a noise-free measurement is made for the second time: the rank of
HkPk|k−1H

T
k has dropped and the matrix cannot be inverted anymore. This

may also occur when performing a subsequent noise-free measurement along
directions that overlap with the span of Hk so that the matrix to be inverted is
not full-rank.

2.5 The nonlinear case

In the nonlinear case, that is, when using an Extended Kalman Filter (EKF),
problems accumulate. Indeed, even if HkPk|k−1H

T
k is invertible leading to

HkKk = Im, there is no reason one should have h(x̂k|k) = yk, as we see that
(4) relies on h being linear, which is not the case in our problem, see (3), as
Rk is a rotation matrix that cannot be treated linearly. Moreover, the Jacobian
matrix Hk depends on the linearization point in EKF design, so that the desired
relation HkPk|kH

T
k = 0m×m is not properly defined: the Jacobian matrices at

different linearization points span different directions, making the condition un-
clear, in the sense that the dispersion encoded by Pk|k has no clear relation to
the subset defined by h(x) = yk.

In the sequel, we address the issues that arise both in the linear and nonlinear
case.

3 Handling rank deficiency in the linear case

Let us consider the discrete-time linear system

xk+1 = Fkxk +Bkuk + wk, (6a)

yk = Hkxk. (6b)

where uk ∈ Rb is the system input, and where Fk ∈ Rn×n, Bk ∈ Rn×b, and
Hk ∈ Rm×n. When the measurement yk is noise-free, as in (6b), the Kalman
gain (35c) is not defined if HkPk|k−1H

T
k is singular, since the measurement

noise covariance Nk is null. This is logical as then the same measurements
does not bring additional information. However, in the noisy setting we may
need to update the state regularly to combat the dispersion due to noise. Then
HkPk|k−1H

T
k may be nearly singular, and we may run into numerical issues.

We now address this problem.

3.1 Solving for the Kalman gain in the noise-free limit

The following result proves the limit of the Kalman gain when Nk → 0 is well
defined and provides its expression.

Theorem 1 Assume Pk|k−1 to be of rank l ≤ n and write it as Pk|k−1 = LkL
T
k

where Lk ∈ Rn×l has linearly independent columns. The following Kalman gain

Kk := Lk(HkLk)
†, (7)



is the limit of Pk|k−1H
T
k (HkPk|k−1H

T
k +Nk)

−1 as the measurement noise covari-

ance matrix Nk shrinks to 0m×m, where A† denotes the Moore-Penrose pseudo-
inverse of A.

Note that the given expression is valid whatever the invertibility of the in-
novation covariance HkPk|k−1H

T
k as (HkLk)

† always exists.
Proof: Given any matrix A, its Moore-Penrose pseudo-inverse can be

expressed as the limit

A† = lim
δ→0

AT (AAT + δ I)−1. (8)

The limit is finite and exists even if AAT is singular [20]. We pose Ak = HkLk

and assume for now that Nk = δ Im.

lim
δ→0

Kk = lim
δ→0

Pk|k−1H
T
k (HkPk|k−1H

T
k + δ Im)−1, (9)

= lim
δ→0

LkA
T
k (AkA

T
k + δ Im)−1, (10)

= Lk lim
δ→0

AT
k

(
AkA

T
k + δ Im

)−1
, (11)

(8)
= LkA

†
k, (12)

= Lk(HkLk)
†. (13)

When Nk is not of the form δ Im, we may upper and lower bound its eigenvalues
by matrices of the desired form, and use the squeeze theorem (in the sense of
positive semidefinite matrix inequalities), using the fact matrices AkA

T
k and Nk

are symmetric.

3.2 Properties of the Riccati update (Property 2)

When a noise-free measurement (6b) has been made, it is logical that the cor-
responding variance drops to zero, that is, HkPk|kH

T
k = 0m×m, along the lines

of Property 2. We now show this is the case with the obtained limit gain.

Theorem 2 Assume Pk|k−1 to be of rank l ≤ n and write it as Pk|k−1 = LkL
T
k

where Lk ∈ Rn×l has linearly independent columns. Consider the limit gain (7)
and the corresponding Riccati update (35e). Then we have HkPk|kH

T
k = 0 or

equivalently HkPk|k = 0.

Proof: We have

Hk(I −KkHk)Pk|k−1 (14)

= Hk(I − Lk(HkLk)
†Hk)Pk|k−1 (15)

= (HkLk −HkLk(HkLk)
†HkLk)L

T
k (16)

= 0m×n, (17)

where we used the property of the pseudo-inverse that that AA†A = A. This
proves the result.



4 Invariant Kalman filtering with noise-free pseudo-
measurements

Consider the discrete-time nonlinear system (1) along with nonlinear output
map (3). The EKF first linearizes the system before applying the machinery
of linear Kalman filtering. Gain formulation (7) may thus be applied in the

nonlinear case too. Nevertheless, the dependence of Jacobian matrixHk = ∂h(x)
∂x

on the linearization point makes the interpretation obscure: the update ensures
Property 2 at the linearization point, which is not the true state. The invariant
filtering framework brings clarification in this regard.

4.1 The Invariant EKF for the considered problem

Let us modify the representation to cast the problem within the invariant frame-
work of [3]. We embed the state into the matrix Lie group SE2(3), namely the
group of extended poses [6, 21]. The state turns into

χk =

 Rk vk pk
01×3 1 0
01×3 0 1

 . (18)

Its dynamics satisfies Equation (11) of [3] and is said to be group affine, insuring
it fits the framework of the Invariant Extended Kalman Filter (IEKF). In this
embedding, the measurement function may write as

h(χk) = χkdk =

Rkrk + αkvk + βkpk
αk

βk

 , (19)

where dk = (rk, αk, βk), which fits into the theory of [6] and corresponds to left-
invariant outputs (observations in the fixed frame). Along the lines of [6] we
define the innovation as zk = χ̂−1

k|k−1yk−dk. The invariant framework introduces

the nonlinear and linearized errors ηk|j ∈ SE2(3) and ξk|j ∈ R9 defined by

ηk|j = χ̂−1
k|jχk = exp(ξk|j), (20)

where exp(·) now denotes the Lie exponential map of group SE2(3). To de-
rive the Jacobian matrices, the fastest way is to readily retrieve them from
the formulas of the recent two-frames theory [8]. In this context the left-

invariant error is
(
R̂−1

k|jRk, R̂
−1
k|j(vk − v̂k|j), R̂

−1
k|j(pk − p̂)

)
, the innovation is zk =

(R̂−1
k|k−1Rk−I)rk+αkR̂

−1
k|k−1(vk−v̂k|k−1)+βkR̂

−1
k|k−1(pk−p̂k|k−1) and the theory

yields, see Proposition 13 of [8],

Hk =
[
−(rk)× αkI3 βkI3

]
, (21)



and denoting Ωk := exp(dt(ωk)×), we have as in [8]

Fk =

 Ω−1
k 0 0

−dtΩ−1
k (ak)× Ω−1

k 0
0 dtΩ−1

k Ω−1
k

 . (22)

We see we recover the important property of IEKF that the Jacobian matrices
are state-independent. The IEKF updates its estimate according to

χ̂k|k = χ̂k|k−1 exp(Kkzk). (23)

The following sections presents how the invariant framework naturally en-
sures Property 2 and what can be done to satisfy at best Property 1. Since
the problems tackled here arise from the noise-free nature of the considered
pseudo-measurements, our work constitutes already a contribution in its own
right compared to [3], as they only consider noisy measurements.

4.2 What about desirable Property 2?

In the formalism of invariant filtering, the constraint (3) writes χkdk = yk. This
noise-free pseudo-measurement informs us that the state belongs to the subset

H = {χ ∈ SE2(3) | χdk = yk }. (24)

We first recall how the IEKF encodes uncertainty, see [3].

Definition 1 The IEKF belief at time instant k, accounting for measurements
up to time j, for the true state χk is a concentrated Gaussian distribution on
the Lie group [22]

χk = χ̂k|j exp(ξk|j), ξk|j ∼ N (0n×1, Pk|j), (25)

with χ̂ the “noise-free” mean estimate, and P the covariance matrix encoding
the statistical dispersion around the mean.

As a result, for the belief to be consistent with the set H, we would ideally
like the entire updated distribution to lie within H. It turns out to be the case
indeed, as long as the updated mean is in the right subspace of course. This
proves the structure of the invariant filtering framework is consistent with the
physical problem indeed.

Theorem 3 Consider the IEKF’s covariance matrix Pk|k after updating its
state via observation (3). Then if the updated estimate χ̂k|k satisfies χ̂k|k ∈ H,
all the probabilistic dispersion encoded by the updated covariance matrix accord-
ing to our belief model (25) lies within H, that is, for all random ξ ∈ N (0, Pk|k),
we have χ̂k|k exp(ξ) ∈ H.

Proof: The result is a direct application of the following property from
[17,23], which can be proved through a series expansion of the exponential, see
the proof of (iv) of Theorem 1 in [23].



Proposition 1 Consider an element ζ of the Lie algebra of SE2(3) identified
with R9. Let Hk denote the Jacobian from invariant filtering associated to map
h(χ) := χdk, i.e. given by (21) in our problem. Then we have (χ ∈ H and Hkζ = 0)⇒
χ exp ζ ∈ H.

Now, the Riccati update with the limit gain (7) ensures thatHkPk|k = 0m×n,
see Theorem 2. Thus any element ξ in the span of Pk|k satisfies Hkξ = 0

We thus see that Property 2 is satisfied in a way that is meaningful and leads
to a consistent belief: the covariance matrix Pk|k being aligned with the actual
dispersion, regardless of the linearization point. This is a clear improvement
over the conventional EKF, that possesses none of the desired properties. In
practice, this explains why the IEKF outperforms the EKF for the considered
problem, as can be seen below. But before, let us turn to Property 1.

4.3 What about Property 1?

In the previous theorem we had to assume Property 1 to be satisfied, that is,
χ̂k|k ∈ H for Property 2 to make complete sense. Unfortunately, due to the
nonlinear nature of the problem, the IEKF does not satisfy Property 1. All we
know is that the residual innovation (in other terms the prediction error) is null
up to second order terms after the update, that is,

zk|k = χ̂−1
k|kyk − dk = O

(
∥ξk|k∥2

)
, (26)

and as a result χ̂k|k may not belong to the expected set H.
To address this issue, we now propose an alternative IEKF update procedure

to reduce the norm of the residual innovation. The rationale is the following.
Pseudo-measurements come for free, in the sense that they are not actual sensor
measurements, but side information that one has for certain. In principle, once a
noise-free measurement is made, the drop in uncertainty is fully incorporated in
the belief, so that making the same measurement immediately does not change
the belief. In practice, we have seen this is not the case, owing to undesirable
effects of nonlinearity. However, there is no reason one could not reuse this same
information several times in a row.

Our idea is thus to update the estimate with the same noise-free pseudo-
measurement yk and the same Kalman gainKk as long as it makes the prediction
error decrease, in other words cycle on the noise-free measurement until ∥zk|k∥
stabilizes. This procedure makes sense if we keep the gain Kk constant when
performing the same noise-free measurement several times, since as soon as Kk

is updated it does not correct the state along the measurement direction, owing
to Property 2 (as Kkzk lies in the span of Pk|k). The corresponding procedure
is detailed in Algorithm 1.

Remark 1 Algorithm 1 reduces the residual innovation but is not always able
to completely eliminate it. Indeed, the innovation can be decomposed as

zk = zk,∥ + zk,⊥, (27)



Algorithm 1 Update procedure for the IEKF with noise-free pseudo-
measurements.
1: Compute Kk using (7)
2: z0k ← χ̂−1

k|k−1yk − dk

3: χ← χ̂k|k−1 exp(Kkz
0
k)

4: z1k ← χ−1yk − dk
5: i← 1
6: while ∥zik − zi−1

k ∥ > tol do
7: χ← χ exp(Kkz

i
k)

8: zi+1
k ← χ−1yk − dk

9: i← i+ 1
10: end while
11: χ̂k|k ← χ
12: Pk|k ← (I −KkHk)Pk|k−1(I −KkHk)

T

where zk,∥ ∈ R(Sk) and zk,⊥ ∈ R(Sk)
⊥, with zk,⊥ = O

(
∥ξk|k−1∥2

)
being en-

tirely due to linearization errors and Sk = HkPk|k−1H
T
k . The component zk,⊥

lies in the kernel of Kk, i.e., Kkzk,⊥ = 0n×1. This means this part of the in-
novation accounts for a component ξk,⊥ of ξk|k−1 that lives within R(Pk|k−1)

⊥

and cannot be corrected using Kalman filtering techniques. As a consequence,
the updated state χ̂k|k becomes slightly inconsistent with Pk|k. In most appli-
cations, this inconsistency issue is immediately fixed at the propagation stage
as process noise reintroduces uncertainty in the directions for which the last
noise-free update negated the variance. In the absence of process noise, this is
problematic as it makes the filter become quickly overconfident. This problem is
left unsolved here and will be the subject of future work.

5 Estimation of the pendulum angle for a crane

We consider the problem of estimating the extended pose (orientation, position,
velocity) of an IMU fixed on the hook of a crane as presented in section 2 and
illustrated in Figure 1, and compare the three following filters:

• EKF : a conventional extended Kalman filter.

• IEKF : a conventional invariant extended Kalman filter.

• Noise-free IEKF : the invariant extended Kalman filter that implements
gain (7) and uses Algorithm 1 to further refine its estimate at each pseudo-
measurement.

For the conventional EKF and IEKF, the gain was computed by setting the
noise covarianceNk to the small value of 10−4I2 and lettingKk = Pk|k−1H

T
k (HkPk|k−1H

T
k +

Nk)
−1. Estimating the IMU pose in the 3D space with cable length as the unique

constraint raises observability issues that might obscure the big picture of the



present paper. For the sake of simplicity, the IMU is assumed to stay in the plane
ϕk = 0 so that we consider the associated 2D problem, letting χk ∈ SE2(2) and
ξk|j ∈ R5.

The ground-truth simulation is the trajectory followed by the hook when
it starts with an initial angle θ0 = 20◦ and no angular velocity. No other
external force than gravity is simulated. The crane cable is assumed to stay
straight during the entire simulation and its length varies according to the profile
displayed in Figure 2. The simulation is stopped after 2 s. The IMU and the

Figure 2: Evolution of the length of the crane cable lk as a function of the time
index.

three filters operate at the same frequency of 100 Hz. The initial error covariance
matrix is set to

P0|0 =

[
0.052 01×4

04×1 0.52I4

]
. (28)

The gyroscope and accelerometer of the IMU are affected by Normal noise of
zero mean and covariance

E
(
(wω

k )
2
)
= (0.005)2, (29)

E
(
wa

k(w
a
k)

T
)
= (0.005)2I2, (30)

where E(·) denotes the expectation operator. The error

ξk = log
(
χ̂−1
k|kχk

)
(31)

is used to compare the performances of the three filters, where log(·) : SE2(2)→
R5 is the logarithmic map of SE2(2). The comparison is carried over 30 sim-
ulations in which the initial error ξ0 is drawn randomly from the distribution



N (05×1, P0|0). The average and standard deviations of the norm of the error ξk
are computed for the three filters. Results are plotted in Figure 3. Two general

Figure 3: Mean norm of the error function ξk as a function of the time index,
computed over 30 simulations. The standard deviation of the norm is displayed
in light colors.

comments can be made:

1. The conventional extended Kalman filter is outperformed by its invariant
filtering counterparts: its convergence is way slower, with a large variabil-
ity across simulations.

2. The noise-free IEKF exhibits the best convergence rate, with only 6 time
steps needed on average for ∥ξk∥ to go bellow 1% of the initial error ∥ξ0∥,
against 59 and 191 for the classical IEKF and EKF. It is also the method
with the lowest variability from one simulation to another. Note that with
a tolerance tol = 10−7, Algorithm 1 performs 2.03 cycles on average before
∥zk|k∥ stabilizes.

This simulation shows that treating equality constraints like (2) as proper
noise-free pseudo-measurements clearly benefits the estimation and results in
extremely fast convergence.

Remark 2 We indicate the failure to ensure Property 1 can sometimes make
the noise-free IEKF diverge, when the residual innovation is too large. This
leaves room for improvement, which is the subject of ongoing work.



6 Conclusion

This work presented a practical and efficient solution for incorporating equal-
ity constraints of the form (2) in the (extended) Kalman filtering framework. We
advocated such constraints should be expressed as noise-free pseudo-measurements.
We also derived a formulation of the Kalman gain that solves singular matrix
inversion issues that may be encountered when dealing with noise-free pseudo-
measurements. Using a proper matrix Lie group embedding and the theory
of invariant filtering [3] leads to Normal filters that correctly encode the actual
physical uncertainty in the problem: their belief is consistent with the constraint
in that the covariance matrix after update corresponds to an uncertainty that
is wholly contained within the constrained subset. Finally, an alternative up-
date for the IEKF was proposed in order to mitigate the impact of linearization
errors in the noise-free update process. The performance of this method was
evaluated on the task of estimating the extended pose of the hook of a crane,
and was proved to outperform both the EKF and IEKF in this context.

As a perspective, we would like to thoroughly treat the case of the 3D crane,
which poses some potential observability issues. We also intend to derive a
general theory for noise-free measurements in the context of invariant filtering,
namely for two-frame systems [8]. In this context, we would like to explore how
to fully enforce the constraint yk = h(χ̂k|k) at update in a natural way, that is,
while retaining all the information that has been acquired before update. This
might be achieved via the iterated Kalman filter [24, 25]. To do iterated EKF
in the present context, we anticipate the results developed at Theorem 2 may
prove useful.

Appendices

A Kalman filter

Let xk ∈ Rn be the state to estimate. The discrete-time Kalman Filter (KF)
is an optimal probabilistic filter that fuses information coming from two noisy
sources: the state dynamics model

xk+1 = Fkxk +Bkuk + wk, (32)

with Fk ∈ Rn×n, Bk ∈ Rn×b, input uk ∈ Rb, and process noise wk ∈ Rn with
covariance Qk, and measurements

yk = Hkxk + nk (33)

with Hk ∈ Rm×n and measurement noise nk ∈ Rm with covariance Nk. The
KF makes the assumption that ξk|j = xk − x̂k|j ∼ N (0n×1, Pk|j), where x̂,
ξ and P respectively denote the filter estimate, the estimation error and the
associated covariance matrix. One iteration of the KF consists of two stages:
the propagation and the update.



Propagation The KF propagates its belief through the state dynamics model
as follows:

x̂k+1|k = Fkx̂k|k +Bkuk, (34a)

Pk+1|k = FkPk|kF
T
k +Qk. (34b)

Update Receiving measurement yk, the KF updates its belief as follows:

zk = yk −Hkx̂k|k−1, (35a)

Sk = HkPk|k−1H
T
k +Nk, (35b)

Kk = Pk|k−1H
T
k S

−1
k , (35c)

x̂k|k = x̂k|k−1 +Kkzk, (35d)

Pk|k = (In −KkHk)Pk|k−1 (35e)

where zk is called the innovation, Sk is the innovation covariance, and Kk is the
Kalman gain.
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