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A computationally efficient global indicator to
detect spurious measurement drifts in Kalman

filtering

C. Parellier, A. Barrau and S. Bonnabel*†‡§

Abstract

We consider the problem of detecting additive structured correlated pertur-
bations affecting the measurement outputs of a system whose state is estimated
by a Kalman filter. We advocate the time series of the gradients of the log-
likelihood with respect to the output measurements as an indicator, notably through
its fast Fourier transform (FFT). This provides a novel unifying method to detect
structured perturbations, namely small sinusoidal perturbations with unknown fre-
quency, and slowly growing errors, such as a ramp, or more generally any known
incipient profile with unknown starting time. The method allows for identification
of their parameters too, i.e., frequency, and starting time of the ramp. Thanks to
recent results on backpropagation in Kalman filters, and the use of the FFT, the
method remains numerically tractable even for large datasets, as demonstrated by
simulations.

1 Introduction
In this paper, we consider a (physical) linear system whose state is estimated at all
times by a Kalman filter (KF) based on linear noisy measurements. In this context
one may face the problem of a faulty sensor, which would deviate from the values it is
supposed to deliver, due to a malfunction.

The field of fault detection and isolation provides too many tools to be listed ex-
haustively. In a nutshell, within the context of filtering, most approaches revolve around
the residuals, also called innovation process, whose values and statistics are inherently
computed by the KF. For linear systems with Gaussian noise, the normalized innova-
tion squared (NIS) follows a chi-square distribution which allows for testing incoming
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measurements under the nominal model [1]. In this way, biases in the instrument may
be identified when testing for the mean of the innovation. Hypothesis testing on the
residuals has opened up for powerful techniques based on likelihood ratios [16], that
provide efficient tools to detect abrupt changes [15, 3].

In the present paper, we propose a novel approach which is as follows. We consider
the offline change detection setting, where given a data sample of N measurements, one
tries to detect if an output fault has occurred, of which type it is, and the time instant
it started to occur. In spite of the terminology, we aim at onboard implementations,
where the data consist of the last N measurements. We assume the system is linear
with Gaussian noises, and a Kalman filter estimates its state. We suppose faults come
as additive perturbations of the output measurements of two different types:

• Oscillating fault: a sinusoidal signal of unknown moderate amplitude and un-
known frequency corrupts the output measurements;

• Incipient faults: a function (typically a ramp with unknown slope) starts corrupt-
ing measurements at unknown time instant and slowly grows.

These types of faults are more difficult to detect than outliers because they do not
correspond to an abrupt change in the signal. Additive ramps on the outputs or “slowly-
growing errors” are a typical failure of the Gobal Positioning System (GPS), see [7, 8,
4, 5], with recent further developments in [18, 14], and arise also in process control
[10].

Our idea is then to consider the likelihood over a time window of N measurements–
which is readily computed from the Kalman filter’s estimates–and to evaluate how a
given perturbation profile makes it vary. This constitutes a global indicator in that
the log-likelihood is a sum over all measurements. Any profile which yields a large in-
crease in likelihood when subtracted to the measurement signal is then likely to corrupt
the measurements.

The problem with this idea is its computation complexity, which has made it pro-
hibitively costly so far. Indeed, it may prove intractable to recompute the entire like-
lihood for each candidate profile (for instance each frequency of an injected sinusoid)
and see how it varies, especially if we target onboard applications. We advocate herein
this can be done much more efficiently, leveraging a number of tools. First, we con-
sider the perturbation to be small, and compute a first-order expansion of the negative
log-likelihood w.r.t. a candidate perturbation function δy1, . . . , δyN :

L(y1−δy1, . . . ,yN −δyN) ≈ L(y)−
N∑

k=1

∂L

∂yk
δyk.

This implies computing the gradients w.r.t. all the measurements denoted y1,y2, . . .
, that is, ( ∂L∂yk

)1≤k≤N , which is generally very costly. Our very recent work on back-
propagation in Kalman filters [12], though, has rendered it possible in very limited
running time. Then, we use the fast Fourier transform (FFT) of the obtained signal (the
gradients), and its properties to efficiently evaluate the variation in the likelihood cor-
responding to a given profile (that is, the righmost term above), which yields a fast way



of finding the parameters we seek, whether a frequency or a time when an incipient
fault starts corrupting the signal.

The paper is organized as follows. In Section II we recall the Kalman filter equa-
tions and provide formulas for the sensitivity of the likelihood with respect to measured
outputs. We then specify the types of faults our method is able to detect. In Section
III we detail the method, and discuss its situation with respect to other–more classical–
methods and its advantages in terms of numerical complexity. Section IV illustrates
the interest through numerical simulations.

2 Sensitivity equations and considered types of faults
In this section we recall a few facts on the Kalman filter and the associated sensitivity
equations, and then describe the types of faults we intend to address.

2.1 Kalman filter equations in discrete time
Consider a linear system defined by the state-transition matrix Fn and the measurement
model matrix Hn,

xn = Fnxn−1+wn (1)
yn = Hnxn+ vn, (2)

corrupted by centered white Gaussian noises denoted by wn and vn, with respectively
covariance matrices Q and R. We suppose the initial information on the state comes in
the following form x0 ∼ N(µ,P0) with µ a known vector. At a given time n, the goal
is to estimate with maximum accuracy the state xn, given current and past observations
yn,yn−1, . . . ,y1. This can be achieved by computing the statistics p(xn | yn,yn−1, . . . ,y1)
which enables computation of state estimates, and the uncertainty they convey. It turns
out the latter is a Gaussian density, whose mean x̂n|n and covariance Pn|n can be ob-
tained recursively through the KF’s equations. They consist of a prediction step in
which variables are evolved through the noise-free dynamical model

x̂n|n−1 = Fn x̂n−1|n−1+Bnun , Pn|n−1 = FnPn−1|n−1FT
n +Q , (3)

where Bnun is a known input. It is followed by an update step in which state is corrected
in the light of the latest measurement

S n = HnPn|n−1HT
n +R, Kn = Pn|n−1HT

n S −1
n , (4)

Pn|n = (I−KnHn)Pn|n−1 , zn = yn−Hn x̂n|n−1 , (5)
x̂n|n = x̂n|n−1+Knzn , (6)

where Kn is the (optimal) Kalman gain. The innovation zn = yn−Hn x̂n|n−1 is the predic-
tion error between the measurement yn and its predicted value Hn x̂n|n−1. It is a centered
Gaussian random variable with covariance S n.



2.2 Likelihood function
A well-known calculation [1] shows that up to an additive constant, the negative log-
likelihood of the measurements over a time window, that is, L := − log p(y1,y2, . . . ,yN),
writes

L =

N∑
n=1

logdetS n+ zT
n S −1

n zn . (7)

This is also known as the energy function [13]. In the sequel we will refer to it as the
“inconsistency”, as we found it easier to think about it as a measure of inconsistency
in the present context. The weighted prediction error terms are easily interpreted: the
commensurateness of a prediction error y−Hx is to be evaluated against the associated
covariance S n (a large discrepancy is to be expected if the associated covariance is
large). This results in a normalized innovation squared (NIS) 1

N
∑N

n=1 zT
n S −1

n zn which
follows a chi-square distribution with N ×dimz degrees of freedom under the nominal
model [1].

2.3 Sensitivity with respect to measurements
It is customary to differentiate the log-likelihoodLwith respect to the parameter matri-
ces of the Kalman filter Q and R, see [9]. It is less frequent to study its sensibility with
respect to measurements yn’s. In this paper, we propose to use the log-likelihood L for
fault detection through its sensibility with respect to measurements. The corresponding
equations are easily derived through the chain rule of calculus.

Proposition 1. For each 1 ≤ k ≤ N the gradient writes

∂L

∂yk
= 2S −1

k zk −2
N∑

n=k+1

KT
k
(
Πn−1

i=k+1FT
i (I−KiHi)T )FT

n HT
n S −1

n zn, (8)

where by convention
∑N

N+1 = 0 and Π j
j+1 = I (identity matrix).

Proof. To use the chain rule of calculus it is easier to denote by ∂a∂b the Jacobian ma-
trix of vector a with respect to vector b, which makes gradients row vectors. In this
formalism what we seek to prove is the transposed expression

∂L

∂yk
= 2zT

k S −1
k −2

N∑
n=k+1

zT
n S −1

n HnFn
(
Πn−1

i=k+1(I−KiHi)Fi
)
Kk,

where the product is now in reverse order, i.e.,Πn−1
i=k+1(I−KiHi)Fi := (I−Kn−1Hn−1)Fn−1 . . . (I−

Kk+1Hk+1)Fk+1.Writing ln|n−1 := zT
n S −1

n zn = (yn−Hn x̂n|n−1)T S −1
n (yn−Hn x̂n|n−1) and us-

ing standard calculus the Jacobians write

∂ln|n−1

∂yn
= 2zT

n S −1
n ,

∂ln|n−1

∂x̂n|n−1
= −2zT

n S −1
n Hn. (9)



We have ∂zn
∂yn
= I, and a simple recursion proves that

∂x̂n|n−1

∂yk
= Fn(I−Kn−1Hn−1)Fn−1 . . . (I−Kk+1Hk+1)Fk+1Kk,

which describes how yk affects subsequent state estimates n≥ k+1. The desired formula
follows from the chain rule. □

Expression (8) may look cumbersome, but we will see it may be computed quite
efficiently in the sequel.

2.4 Considered Types of Failures
Throughout the paper, we suppose the measurements to be corrupted by an additive
perturbation, that is, what we actually measure is (y+ δy)1≤n≤N with (δy)1≤n≤N a per-
turbation function. The considered errors are not independent, in that (δy)1≤n≤N is a
(deterministic) structured known function of time n, parameterized by quantities to be
identified.

2.4.1 Oscillating fault (sinusoidal error)

This type of failure adds a periodic disturbance that oscillates at a certain frequency,
that is, is of the sinusoidal type. It is more difficult to detect it than a punctual de-
fect since it describes a specific signature, but locally the perturbation may remain a
small deviation. The challenge is then to be able to detect that such a perturbation is
occurring, and to identify its frequency.

2.4.2 Incipient fault (ramp error)

This failure is characterized by a deviation from healthy measurements that increases
linearly over time. As ramps act slowly, they do not correspond to abrupt changes
making them more difficult to detect than instantaneous degradations, see [10].

Figure 1: Illustration of an outlier GPS measurement in case of a navigating vehicle
with an inertial measurement unit (IMU) and a GPS receiver.

These types of errors occur frequently when using a GPS. They are known in the
related literature as slowly growing errors (SGE), see e.g., [4, 7, 8, 5, 18, 14]. This is
illustrated on Figure 2. They should be opposed to standard outliers, as illustrated on 1.
They also occur in a variety of other domains [10]. The challenge then, in terms of fault
identification, is to be able to localize precisely the time when the ramp is injected.



Figure 2: Illustration of a GPS failure of the ramp type, i.e., a slowly growing error
(SGE), in case of a navigating vehicle with an inertial measurement unit (IMU) and a
GPS receiver.

3 Proposed method
The method proposed in the present paper for failure detection is based on the sensitiv-
ity of the likelihood with respect to the measurements. The negative log-likelihood L
(or inconsistency) is a function of all measurements. Suppose the system was fed with
spurious measurements yk = ỹk+δyk for 1≤ k ≤ N, where ỹk is the output corresponding
to the system without defect. The likelihood satisfies

L(y1−δy1, . . . ,yN −δyN) =L(y)−
N∑

k=1

∂L

∂yk
δyk +h.o.t. (10)

where h.o.t. stands for “higher order terms” in the perturbation function δy, and where
we recall we are dealing with scalar products between the gradients and the δyk. The
inconsistency associated with the healthy measurements ỹ1, . . . , ỹN is expected to be
significantly smaller.

Our method builds upon (10), which indicates how inconsistency varies when sub-
tracting the candidate error signal δy from the measured output. This may be schemat-
ically written

Lmeasured−Lhealthy =L(y)−L(ỹ) = ∆L ≈
∂L

∂y
·δy (11)

where “·” denotes a scalar product1. If ∂L∂y ·δy is high, it is likely to affect the measure-
ments, as subtracting δy1, . . . , δyN from the measurements makes the inconsistency (7)
drop.

The rationale is as follows. Contrary to standard innovation tests, we calculate the
global impact of a failure profile on the likelihood. Ultimately, it may prove a better
indicator capable of identifying a broader spectrum of failures. Morevoer, structured
failures may be better detected in that the perturbation may be small (and thus the signal
to noise ratio low) and yet its effect may build up in the sum in the right-hand-side of
(10).

1There are two different scalar products, not to be confused. Each ∂L
∂yk
δyk is a scalar product between

vectors of dimension dimy. We omit the dot as it can be written as a row times column matrix multiplication.
The · is to be understood as a scalar product between N-dimensional elements, i.e., the sequence of gradients
( ∂L∂yk

)1≤k≤N and that of errors (yk)1≤k≤N .



3.1 Fourier transform
When we turn to errors being related to each other over time, in the sense that (δyk)1≤k≤N
is a structured function of time, it may prove useful to resort to the discrete Fourier
transform (DFT) of the functions. To simplify, let us assume that yk is a scalar output,
and let us denote by ∂L∂y the sequence ( ∂L∂yk

)1≤k≤N . From (10), we see we are interested

in the quantity
∑N

k=1
∂L
∂yk
δyk. Using Pareseval’s theorem we have

N∑
k=1

∂L

∂yk
·δyk =

1
N

N∑
k=1

F
(
{
∂L

∂y
}
)
k · F
(
{δy}
)∗
k, (12)

where F (·) denotes the DFT. We now leverage this formula.

3.2 Application to sinusoidal error detection
Assume the signal is corrupted by a sine wave, that is,

δyk = ϵ sin(kl
2π
N

) (13)

for 1≤ j≤N, where ϵ is a small scalar. The number of cycles l represents the frequency,
which is the quantity we are seeking to identify. It corresponds to an oscillation period
of T = N/l. The DFT of this sine wave writes:

F
(
{δy}
)
k =


−ϵ N

2 ı if k = l
ϵ N

2 ı if k = N − l
0 otherwise

(14)

Recalling (12) and (11), This leads to

∆L =
ϵ

2
(
ıF
(
{
∂L

∂y
}
)
l− ıF

(
{
∂L

∂y
}
)
N−l
)
. (15)

As a result, if a sinusoidal wave with number of cycles l is corrupting the measure-
ments, we shall see two peaks in the DFT of the computed function. More precisely,
owing to the properties of the DFT, it is in fact sufficient to evaluate the Fourier trans-
form on half the interval, leading to the following mathematical result.

Proposition 2. Assume the signal to be corrupted by an additive sine wave (13) with
period T = N/l. Then the maximum of the drop in inconsistency in the sense of (11)
corresponds to

max
1≤l≤N/2

−ϵI
(
F
(
{
∂L

∂y
}
)
l
)
, (16)

where I denotes the imaginary part.

Proof. As ∂L∂y is a real function, we haveF
(
{ ∂L∂y }
)
k =F

(
{ ∂L∂y }
)∗
N−k, so∆L= ϵR

(
ıF
(
{ ∂L∂y }
)
l
)
=

−ϵI
(
F
(
{ ∂L∂y }
)
l
)
. □

It is thus sufficient to compute the DFT on half the interval for the present purpose,
and to seek a peak.



3.3 Application to ramp error detection
Suppose the signal is corrupted by a ramp that starts at some time instant m and of the
following form

δy(m)
k =

0 if k < m
ϵ(k−m) if k ≥ m

(17)

and that one seeks to identify the starting point m.
It turns out this can be efficiently detected too, using once again the DFT. Indeed,

in the present case the inconsistency drop (11) due to the ramp writes

∆L =

N∑
k=1

∂L

∂yk
δy(m)

k =

N∑
k=1

∂L

∂yk
xm−k

where x is a fixed sequence defined by

xl =

−ϵl if l ≤ 0
0 if l > 0.

Prolonging the sequence ( ∂L∂yk
)1≤k≤N with null values outside the interval {1,2, . . . ,N},

the sum of interest may be written in turn as a convolution product

∆L = [(
∂L

∂y
)∗ x]m. (18)

Applying the convolution theorem for discrete sequences we get our final result for
ramp detection.

Proposition 3. The drop in inconsistency related to a ramp starting at time m is given
by the value

∆L = F −1({F ({
∂L

∂y
}) F ({x})}

)
m (19)

This immediately stems from the convolution theorem, as ∆L =
∑N

k=1
∂L
∂yk
δy(m)

k =

[( ∂L∂y )∗ x]m = F
−1({F ({ ∂L∂y })F ({x})}

)
m.

As a result, a large value of function (19) at m indicates a likely time at which the
ramp has started corrupting the measurements. It thus remains to evaluate and compare
the function at different m.

We see that the method may more generally be applied to detect the time when
any (fixed) known profile x is added to the signal, beyond a ramp, e.g., a truncated
ramp [10], or step functions. Note that, the slope of the ramp does not play a role for
detection, since it acts linearly on the scalar product.

3.4 Numerical complexity
We now show that the whole pipeline necessitates a computation cost of O(N log N)
operations, and can thus be implemented even if the number of measurements N is
large.



Efficient computation of all gradients The first step of our method consists in com-
puting all the gradients of the inconsistency ( ∂L∂yk

)1≤k≤N . From (8), we see the overall
computation time for obtaining all gradients is at least quadratic in N.

However, leveraging our very recent results on backpropagation through Kalman
filters [12], it turns out one may compute all the gradients linearly in the number of
measurements N. Indeed, (8) satisfies a simple recursion, so that intermediary com-
putations steps are reused in the previous gradient, along the lines of dynamic pro-
gramming. It is proved in [12] indeed that the gradients satisfy the following backward
recursion

uN = 01×d (20)
∂L

∂yn
= KT

n un+2S −1
n zn n ≤ N (21)

un−1 = FT
n [(I−KnHn)T un−2HT

n S −1
n zn] (22)

It can be checked that this coincides with (8) indeed, but it makes the computation cost
of ( ∂L∂yk

)1≤k≤N of order O(N) as it amounts to implementing a recursive backward cal-
culation over the time window. Those equations thus appear as an enabler for efficient
implementation.

Efficient computation of the DFT Once the sequence of gradients has been ob-
tained, we may use the FFT to compute its DFT, leading to a O(N log N) computation
cost.

3.5 Interest of the method
The method bears a superficial resemblance to the local approach [2], based on a Taylor
expansion of the log-likelihood, but the latter performs statistical tests related to the
asymptotic behavior. More recently, [10] proposed methods to detect ramps, based on
a likelihood ratio between nominal model and ramp starting at time m, for all possible
m. In the latter and more generally in the fault detection literature, one tests one or
multiple hypotheses for a change in a parameter, which yields a large computation cost
when the number of hypotheses increases. Let us compare our approach to the existing
for both considered types of faults.

Oscillating fault A standard approach in this case would be to compute the Fourier
transform (DFT) of the output signal. However, this shall not prove efficient for fre-
quency recovery, as the signal to noise ratio may be weak, especially if the amplitude
of the perturbation is small. By contrast, our approach allows for a much clearer iden-
tification since it assesses the direct effect of additive sinusoids on the likelihood with
all possible frequencies: by subtracting the correct sinusoid the likelihood dramatically
changes, and this shows directly on the FFT of the gradients.

Incipient fault Detecting ramps is a challenge as they do not come as abrupt changes.
The innovation does not allow for detection as the fault is present in all measurements,



and starts slowly. A classical route would consist in using the multiple model adaptive
estimation (MMAE) [11], where in essence we test multiple candidate models, each
corresponding to a different starting time in the interval. This leads to a computation-
ally very demanding solution as many Kalman filters must be run in parallel. To lower
computation demands, one could test the interacting multiple models (IMM) instead
[1, 17] but it is suboptimal and testing is efficiency and tuning it on the given problem
is beyond the scope of this paper. In any case, our point is that we do not have to test
many different models with combinatorial explosion: indicators are obtained with lin-
ear complexity in the number of measurements data. Another approach [6] to such soft
failures in navigation consists in comparing the Kalman filter estimates with the prior
(dead-reckoning) model and perform a chi-square test, but this does not readily yield
the starting point of occurrence.

4 Numerical Experiments
We now illustrate on a simple example the relevance of the proposed indicators.

4.1 Setting
We prove the efficiency of our approach on synthetic data from a particle moving on
the real line, and whose acceleration is controlled. The dynamics are

pn = pn−1+∆t vn−1+wp
n (23)

vn = vn−1+∆t an−1+wv
n (24)

where ∆t = 1 is the integration step, an ∈R the acceleration (control input) and wn is the
process noise which is assumed to be zero mean Gaussian white noise with diagonal
covariance matrix Q. The measurements yn’s consist of the noisy position:

yn = pn+ νn

where νn is the measurement noise which is assumed to be a centered Gaussian white
noise with variance R.

We let2 Q = diag(1e−8,1e−4) and R = 1.5. The state is estimated by a Kalman filter
(see Section 2.1) with input un = an and position measurement yn.

The true system’s trajectory and the KF’s estimates are displayed on Figure 3. The
trajectory is obtained by injecting a large acceleration an roughly every 20 seconds.

4.2 Results: Ramp error detection
The measured position is then corrupted by an additive incipient ramp (SGE) starting
at m = 39 and defined by:

δyk =

0 if k < 39
0.1(k−39)+0.1 if k ≥ 39

(25)

2The magnitudes of the noises were chosen having in mind inertial navigation with an IMU and a GPS as
a motivation. In commercial airliners, the IMUs are highly accurate and come with very low process noise.
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Figure 3: True (simulated) position and velocity over time, and their estimates obtained
by the Kalman filter, in the absence of fault.

This is shown on Figure 4.
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Figure 4: True position and measured position corrupted by white noise plus a spurious
ramp starting at m = 39 and with slope ϵ = 0.1.

Figure 5 shows the result of the detection of the ramp, plotting the inconsistency
drop given by (18) or alternatively (19). The theory is confirmed, as the maximum
of the inconsistency drop is clearly seen at the starting time of the ramp. This is re-
markable as we can see from Figure 4 that the signal-to-noise ratio is very low. When
compared to the normalized innovation squared (NIS), we see the proposed indicator
is much more relevant. The plot of the NIS confirms that no dramatic change is visible
in the innovation process.

4.3 Results: Sinusoidal error
Figure 6 shows the measured position in the presence of measurement noise plus a sine
wave t 7→ 2.5sin( t

2 ). This corresponds to a frequency f = 1
4π and as we have N = 100

measurements, it corresponds to a number of cycles l = N/T = 100/(4π) ≈ 8.
Figure 7 shows the result of the detection of the sinusoid, plotting the (normalized)

quantity I
(
F
(
{ ∂L∂y }
)
l
)

that is opposite to the inconsistency drop, see (16). The theory
is confirmed, as the maximum (of the opposite signal) is clearly seen at the actual
frequency of the sinusoid. This is remarkable, here again, as we can see from Figure
6 the signal-to-noise ratio seems very degraded. It is instructive to see the Fourier
transform of the innovation process does not reveal any relevant information regarding
the frequency that corrupts the measured signal.
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Figure 5: Comparison of our proposed indicator and the classic NIS to detect a ramp
fault starting at m = 39.
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Figure 6: True position and measured position corrupted by white noise plus a spurious
sinusoid t→ 2.5sin( t

2 ) i.e. of frequency 1
4π and amplitude 2.5.

5 Conclusion
In this paper we have proposed a method to detect structured faults in the measured
outputs of a dynamical system. It relies on the use of a Kalman filter, and a Tay-
lor expansion of the likelihood of the measurements, and its efficient implementation
is enabled by the recent results of [12]. This provides a global indicator that allows
for detection of structured profiles along with their parameters in spite of an unfavor-
able signal-to-noise ratio, and without the need to know their magnitude. Contrary to
multiple hypothesis testing, the method is very efficient computationally and requires
(almost) linear runtime in the data size, enabling onboard implementations.

Although the method may be run onboard, it operates on the fixed sequence of
the N past measurements. In the future, it would be worth investigating whether an
online counterpart may be derived. Another advantage of the method is that it is not
reserved for scalar outputs, and suits multidimensional outputs. In this regard, it would
be interesting to test it on more complex datasets obtained through real experiments,
notably when navigating with a GPS. Finally, it would be nice to adapt it to the context
where the additive perturbation depends on more parameters, for instance a ramp that
starts at unknown time m and saturates at unknown time m′ > m.
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Figure 7: Comparison of our indicator with the Fourier transform of the innovation pro-
cess when the signal is corrupted by white noise plus a sinusoidal defect of frequency
1

4π ≈ 0.08.
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