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Abstract

This paper provides a complete characterization of the trajectories
that maximize the information collected by a moving vehicle, through
sensors’ measurements, for the recently introduced class of nonlin-
ear “two-frame systems”. The information is quantified in terms of
the trace of the observability Gramian (OG) along a trajectory. In
general, this quantity nontrivially depends on the control inputs and
the state trajectory, resulting in a difficult optimal control problem.
Herein, we leverage the property of invariant filtering that Jacobians
are state-trajectory independent, that is, only depend on the control
inputs, which enables us to mathematically derive optimal trajectories
in closed form. We illustrate the results numerically on problems from
robotics such as 3D robot localization, and 2D simultaneous localiza-
tion and mapping.
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1 Introduction

The notion of observability of linear systems does not depend on the system’s
trajectory. By contrast, when turning to nonlinear systems, some trajectories
may make the state unobservable, whereas others make it observable. As an
extreme example, think of a wheeled robot whose position is measured: if it
stays still, its orientation is unobservble, whereas if it is moving in straight
line, its orientation is readily recovered. Beyond observability, which is a
binary criterion, some trajectories are more informative than others in terms
of state estimation of nonlinear systems. In the context of navigation of ve-
hicles, amongst others, it may be useful to know which trajectory brings the
most information about the state, to safely move in a constrained environ-
ment.

This has prompted previous authors to develop methods for trajectory
generation that facilitate state estimation [1–3], or online parameter estima-
tion [4]. This pertains to the theory of optimal experiment design [5] as these
methods seek to find a control sequence to be applied in order to maximize
the information acquired along the trajectory.

As an information measure, it is customary to use the observability Gramian,
e.g., [6]. Some other criteria were used, though, such as Fisher’s information,
or the covariance matrix associated to the Riccati equation of an extended
Kalman filter [7], or measures specifically tailored to the problem, e.g., [8]
which targets trajectories leading to easier-to-exploit images from the on-
board camera. More generally, active simultaneous localization and mapping
(SLAM) improves state estimation through control, see e.g., [9].

The most widespread criterion to measure the extent of observability
brought by a trajectory is the local OG, introduced by Krener and Ide [10].
In some simple cases, the optimal trajectories might be computed analyt-
ically, see [6], but this is generally not the case, and one needs to resort
to numerical methods for trajectory planning [11] or trajectory modification
for sensors calibration [1]. Despite the drawbacks of Gramian maximization
based planning methods [7], the local OG or the closely related Constructibil-
ity Gramian [3] remains a relevant tool to establish the most informative tra-
jectories, especially when the system’s model is well-known, i.e., the process
noise is low.

In this paper, we consider the recently introduced theory of two-frame
systems [12], which introduces a large class of navigating vehicles having
remarkable properties in terms of state estimation. For those systems, we



benefit from the properties of invariant filtering that provide state-trajectory
independent Jacobians [13]. This makes the OG independent of the trajec-
tory being followed, and only dependent on the controls, and hence simplifies
the associated optimal control problem. Leveraging this property enables us
to derive optimal trajectories in closed form that maximize the trace of the
OG for two-frames systems.

The main contributions of this paper are:

• The use of the invariant errors to make the observability Gramian in-
dependent of the system’s state;

• A general analytical computation of the optimal control that maximizes
the observability Gramian for a broad class of systems that fall into the
theory of two-frames navigating systems;

• Application to three problems: a vehicle that navigates in 3D and
estimates its state from position measurements performed by a GNSS,
a 2D vehicle equipped with a GNSS mounted on an arm with unknown
position in the vehicle (lever arm), and the problem of SLAM for a 2D
wheeled robot.

Section II formulates the perception-aware control problem, Section III
summarizes the theory of two-frame systems, Section IV calculates the op-
timal control to apply when facing world frame measurements, Section V
addresses the problem when facing vehicle frame measurements, and Section
VI illustrates the results numerically.

2 Optimal perception-aware trajectories

In this section we recall the problem of active sensing. It is a path planning
problem where the objective function is an information criterion. Therefore,
it will be easier to estimate the system state along the optimized trajectory.
Let us consider a general discrete-time dynamical system:

xn+1 = f(xn, un), x0 = x0 (1)

yn = h(xn) (2)

where xn ∈ Rp represents the state of the system, un ∈ Rm is the control
input, yn ∈ Rq is the sensor output at time n.



One approach to measure the extent of observability associated to a given
trajectory is based on the observability Gramian (OG). The discrete-time
OG is defined by:

WK =
K∑

n=1

ΦT
nH

T
nHnΦn (3)

where Hn = ∂h(xn)
∂xn

and Φn = FnΦn−1, Φ−1 = Id with Fn = ∂f(xn,un)
∂xn

and K
the estimation horizon. It should be noted that in the case of linear systems,
Fn neither depends on the state of the system nor the controls. This implies
that the OG does not depend on the trajectory: all trajectories are equally
informative. However, in the nonlinear case, observability depends on the
trajectory, see [6, 10]. The optimal inference problem consists then in find-
ing the trajectories along which the OG is maximum. Thus, the trajectory
planning problem writes:

u∗ = argmax
u0,...,uK−1

Tr(WK)

subject to ∀n xn+1 = f(xn, un)

∀n un ∈ Cn

(4)

u∗ ∈ RpK refers to the sequence of vectors of controls to apply. At each time
instant n, the control vector is required to belong to a bounded set Cn ⊂ Rp.

The interest of the above criterion is its simple interpretation in terms of
the (linearized) error variables denoted by δxn := xn− x̄n and δyn := yn− ȳn.
Up to the first order, they evolve according to the linearized Jacobians, that
is, δxn+1 = Fnδxn and δyn = Hnxn. As the initial error is unknown, we
may assume it be random and isotropically distributed, for instance δx0 ∼
N (0, Id). We have then.

Lemma 1. Assume δx0 ∼ N (0, Id) denotes the discrepancy between two
initial states. We have, neglecting second order terms, the equality

E

(
K∑

n=1

||δyn(δx0)||22

)
= Tr (WK) . (5)



This is proved by writing

E

(
K∑

n=1

||δyn(δx0)||22

)
= E

(
K∑

n=1

δxT
0Φ

T
nH

T
nHnΦnδx0

)

=
K∑

n=1

E
(
Tr
(
δxT

0Φ
T
nH

T
nHnΦnδx0

))
= Tr

(
K∑

n=1

ΦT
nH

T
nHnΦnE(δx0δx

T
0 )

)
= Tr (WK)

where we used the commutation properties of the trace and that E(δx0δx
T
0 ) =

Id.
This provides the following simple interpretation: the optimal sequence

of control inputs makes on average the (first-order) discrepancy between the
predicted and measured outputs as large as possible, for a random error
about which we do not have any information. The trace of the OG is thus
a way of measuring the extent of observability gained from the generated
trajectory.

In general, the optimisation problem is difficult to solve because of the
numerous constraints. To overcome this difficulty, several authors [3], [1] re-
strict the study to flat systems [14]. In this case one may perform parametric
(suboptimal) optimization, where the parameters are a number of waypoints
for the flat output. In the following, we consider the recently introduced
class of two-frames navigating systems, and leverage their properties to show
problem (4) is amenable to a more simple optimal control problem, that may
be solved analytically.

3 Reminder: the theory of two-frame sys-

tems

The theory of two-frame natural systems [12] is general and encompasses
numerous examples from robotics and inertial navigation. The idea is to
consider systems consisting of a body that navigates, and whose state is
defined by a set of vectors, as well as a variable encoding a change of frame
from the world frame to the frame attached to the body. In the present



paper, we will focus on the following two-frames systems. The state writesR
x
x

 ∈ SO(d)× RdNx × RdNx , x =

 x1

...
xNx

 , x =

 x1

...
xNx

 .

R ∈ G = SO(d) with d = 2 or d = 3 is a rotation matrix that encodes the
orientation of the frame attached to the navigating body with respect to the
world-fixed frame, x is a set of Nx vectors of Rd, that is, the d-dimensional
world in which the body is navigating, which encode physical quantities
expressed in the fixed frame, such as the position and velocity of a craft, and
x is a set of vectors expressed in the body frame, such as a sensor bias, where
the sensor is attached to the body, see Figure 1.

Figure 1: The state of a navigating two-frames system, to be estimated,
consists of a rotation matrix R, and vectors, e.g., the position, velocity,
or sensor biases, stacked in x (when expressed in the fixed frame) and x
(when expressed in the body frame). R transforms vectors of the body frame
denoted by uppercase letters to vectors of the world-fixed frame denoted by
lowercase letters, and as such encodes the orientation of the craft.

To fix ideas, let us start by giving two examples of interest, before we
turn to the unifying theory of two-frame systems.

3.1 Examples

The first example is in 2D and the second one in 3D.



3.1.1 First example, from [12]

Consider the classical 2D model of a non-holonomic car, see e.g., [13], or
equivalently a wheeled robot or a unicyle. The position of the car in 2D
is described by the middle point of the rear wheels axle xn ∈ R2 , and its
orientation (heading) denoted by θn ∈ R and parameterized by the planar

rotation matrix Rn of angle θn that is

(
cos θ − sin θ
sin θ cos θ

)
. The car is equipped

with a GNSS located at unknown position xn ∈ R2 in the car frame with
respect to point xn (a lever arm to be estimated), which provides the world
(fixed) frame position measurements

yn = xn +Rnxn ∈ R2. (6)

In the schematic diagram below, the triangle is the car and the square is the
position measured by the GNSS.

xn

θnxn

yn

The discrete-time dynamics of a mobile wheeled robot write:

Rn+1 = RnΩn, xn+1 = xn +Rnun, xn+1 = xn, (7)

The control inputs are the angular velocity Ωn, which can be controlled
through steering or via the difference between wheel speeds, and un that is
the average of wheel speeds.

3.1.2 Second example

We consider a body that navigates in 3D, and which is equipped with a
GNSS. We consider the acceleration in the body frame as well as the an-
gular velocity to be (possibly high-level) control inputs, and discretize the
continuous-time equations, yielding dynamics of the form

Rn+1 = RnΩn

pn+1 = pn +∆t vn

vn+1 = vn +Rnun

, (8)



with observation Yn = pn.
Let us now turn to the unifying framework of two-frame systems, that

encompasses the two latter examples.

3.2 Two-frames general theory

In this paper, we consider the following subclass of discrete-time dynamics
amongst the two-frame dynamics of [12]Rn+1

xn+1

xn+1

 =

 RnΩn

FFFxn + dn +Rn ∗ un

xn

 , (9)

where ∗ defines the following operation, called an action

R ∗ x = R ∗

 x1

...
xNx

 :=

 Rx1

...
RxNx

 , R ∗ x :=

 Rx1

...
RxNx

 , (10)

and where the matrix FFF : RdNx 7→ RdNx is of the form

FFF =

 α11IIId . . . α1NxIIId
...

...
αNx1IIId . . . αNxNxIIId

 (11)

with αij ≥ 0’s real nonnegative numbers, and dn,un ∈ RdNx . It can be readily
noticed that such a matrix commutes with the action, that is FFF (R ∗ x) =
R ∗ (FFFx).

The rotation R maps vectors of the body frame to vectors of the world-
fixed frame. It is reasonable to assume that the control inputs are vectors
expressed in the body frame, as actuators are attached to the craft. We
will therefore consider dn to be a known input, and Ωn,un to consist of the
(possibly high-level) control inputs we will use for trajectory generation. The
fact that un ∈ RdNx , does not preclude the system from being underactuated,
since as many components of un as necessary may be set to 0 (through con-
straints). The reason for the equation xn+1 = xn in (9) is that the variables
of the body frame that we seek to estimate are considered as parameters, as
is the case of lever arms (see the first example above) and accelerometer and
gyrometer biases in the general theory of two-frames.



Regarding state estimation, the two-frames systems are endowed with sen-
sors providing the vehicle with measurements. In the theory of two-frames
systems of [12], they are of two types. Indeed we use either an output map
h representing measurements in the fixed frame, or h representing measure-
ments in the frame of the vehicle, defined as

fixed-frame: h(R, x,x) =HHHxx+R ∗ [HHHxx] (12)

body-frame: h(R, x,x) = R−1 ∗ [−HHHxx]−HHHxx (13)

with HHHx : RdNx 7→ Y and HHHx : RdNx 7→ Y two linear maps that commute
with the action of G, that is, are of the form

HHHx =

 β11IIId . . . β1NxIIId
...

...
βNy1Id . . . βNyNxId

 (14)

and similarly for HHHx, and where Y = RdNy denotes the output space. In the
theory, R also acts on Y = RdNy via term-by-term action similarly to (10).

3.2.1 Link to the first example

We see the first example fits the present framework of two-frames systems
indeed, as (7) correspond to (9), with d = 2, Nx = 1, Nx = 1, hence action
∗ is trivially the matrix-vector product, and FFF = I2. The measured output
corresponds to fixed-frame measurements (12), with HHHx =HHHx = I2.

3.2.2 Link to the second example

We see the second example above fits the present framework of two-frames
systems indeed, as (7) correspond to (9), with d = 3, Nx = 2, Nx = 0, dn = 0,
action ∗ is R ∗ (p, v) = (RP,Rv), and

FFF =

(
I3 ∆tI3
03 I3

)
,

which is of the form (11). The measured output corresponds to fixed-frame
measurement (12), with HHHx = I2.



3.3 State-trajectory independent error evolution

The theory of invariant filtering [15], having its roots in the theory of in-
variant observers [16,17], and which underlies the recent theory of two-frame
systems, uses alternative error variables to recover some properties of linear
systems, especially the fact the errors evolve independently from the state
trajectory. This notably allows for state-trajectory independent Jacobians,
when linearizing the system.

When confronted with observations in the fixed frame (12), we use as an
alternative state error, the left-invariant error between two states defined as

Obs. (12) ⇒ e =

 R̄−1R
R̄−1 ∗ (xn − x̄)
x− (R−1R̄) ∗ x̄

 :=

eR

ex

ex

 . (15)

If observations are performed in the body frame instead (13) one should
use the right-invariant error defined as

Obs. (13) ⇒ e =

 RR̄−1

x− (RR̄−1) ∗ x̄
R̄ ∗ (x− x̄)

 :=

eR

ex

ex

 . (16)

If we evolve two state variables through (9), the corresponding left-invariant
error evolves as:

eR
n+1 = Ω−1

n eR
nΩn

ex
n+1 = Ω−1

n ∗ [FFFex
n + eR

n ∗ un − un]

ex
n+1 = x− Ω−1

n eR
nΩn ∗ x̄.

(17)

We see the evolution of the error is independent of the state variable (R, x,x)
but for the last line. However, if d = 2, rotations commute and the last
line becomes ex

n+1 = ex
n and the error evolution is wholly state-trajectory

independent. This is Theorem 5 of [12].
If we evolve two state variables through (9), the corresponding right-

invariant error evolves as:

eRn+1 = eRn

exn+1 = FFF ne
x
n + dn − eRndn

exn+1 = R̄Ωn ∗ (x− x̄).

(18)



We see the evolution of the error is independent of the state variable (R, x,x)
but for the last line. However, if d = 2, rotations commute and the last line
becomes exn+1 = Ωn ∗ exn and the error evolution is wholly state-trajectory
independent. This is Theorem 5 of [12].

3.4 State-trajectory independent prediction error

Instead of using the usual prediction error y − ȳ = h(R, x,x) − h(R̄, x̄, x̄)
of state estimation, called innovation in the literature devoted to Kalman
filtering, the theory of invariant filtering advocates the use of alternative
innovation variables, that also reflect the prediction error. The innovation
variable z associated to fixed-frame output y, i.e., Obs. (12), writes:

z = R̄−1 ∗ (y −HHHxx̄)−HHHxx̄ (19)

while the innovation variable z associated to body-frame output Y, i.e., Obs.
(13), writes:

z = R̄ ∗ (Y+HHHxx̄) +HHHxx̄ (20)

The interest of those alternative innovation variables, is the strong link they
bear with the alternative errors we have defined. Indeed,

Error (15) ⇒ zn =HHHxex
n +HHHxeR

n ∗ ex
n, (21)

Error (16) ⇒ zn = −HHHxexn −HHHx
(
eRn
)−1 ∗ exn. (22)

This result of [12] is easily proved. It will allow for state-independent Ja-
cobian of the output map h, that we are about to leverage to simplify our
perception-aware control problem.

4 Optimal solutions to active sensing control

with world frame measurements

This section addresses the problem of optimal perception-aware trajectory
generation for the class of two-frames systems we have considered. Our main
result is to prove that they can be computed explicitly for this general enough
class of systems modeling vehicles that navigate.

Our goal is to maximize the global information acquired over a given
future horizon, i.e., K-steps trajectory. This is measured as the trace of the



observability Gramian matrix, see problem (4). To get this matrix using our
alternative errors, we need the Jacobians resulting from linearizing the error
system. In Subsection 4.3, we will relate this to the original control objective
based on standard linear errors in the original variables, as classically used
by the extended Kalman filter.

In this section we consider the case of measurements performed in the
world frame. In the next, we will consider body-frame measurements.

4.1 Linearized error system and observability Gramian

We would like, for (R, x,x) close to (R̄, x̄, x̄), a first-order (i.e., linearized)
approximation to the left-invariant error (15). Recall that we may relate
a rotation matrix with a vector through the matrix exponential R̄−1R =
exp((ξR)×) where

d = 3 ⇒ ξR ∈ R3, (ξR)× =

 0 −ξR3 ξR2
ξR3 0 −ξR1
−ξR2 ξR1 0


and d = 2 ⇒ ξR ∈ R, (ξR)× = ξRJ with J =

(
0 −1
1 0

)
. Using a first order

expansion of the matrix exponential we have eR = R̄−1R ≈ Id + (ξR)× and
the linearized error is then defined as (ξR, ξx, ξx), where we let ξx = x − x̄
and ξx = x− x̄. Substituting those approximations in (17) we find in the 2D
case d = 2

ξRn+1 = ξRn

ξxn+1 = Ω−1
n ∗ [FFFξxn + Junξ

R
n ]

ξxn+1 = ξxn,

(23)

and in the 3D case d = 3 by not including x in the state

ξRn+1 = Ω−1
n ξRn

ξxn+1 = Ω−1
n ∗ [FFFξxn − un × ξRn ]

(24)

where we also used that Ω−1
n (ξRn )×Ωn = (Ω−1

n ξRn )×. This yields the linearized
system (hence the Jacobian) associated to the dynamics, when written in
the invariant variables. Regarding the Jacobian of map h, it is related to
the linearization of the innovation, which yields from (21) neglecting second



order terms

δzn =HHHxξxn +HHHxξxn. (25)

Our goal is to find the control inputs Ωn,un’s that maximize the trace of
the observability Gramian associated to the linearized systems (23), (25) in
2D and (24)-(25) in 3D. Recalling the derivation (5), this is equivalent to
maximizing

∑K
k=1E (||δzk||2), for a random isotropically distributed initial

error.

4.2 Optimal trajectory generation

Recalling that u ∈ RdNx is a multi-vector, we take as constraints that at all
time i, each component Uk

i of the input must remain in a predefined bounded
set Cik ⊂ RNx .

Our first main theoretical result states that, in the case of world-frame
measurements, optimal solutions are obtained by maintaining a fixed orien-
tation Rn and taking the control inputs collinear and of maximum authorized
norm.

Theorem 1. Consider a two-frames system with dynamics (9) and observa-
tions in the fixed frame given by (12), such that the βij’s in (14) related to
HHHx (only) are either all nonnegative or all nonpositive. Moreover, suppose
that:

1. Either d = 2, that is, the vehicle evolves in 2D space,

2. or d = 3 and there is no variable x in the state, that is, the state
consists of variables (R, x).

Then, assume we may take Ω∗
k = Id and u∗

k such that the scalar product
across components and times satisfies uk

i .u
l
j = maxCik

||uk
i ||maxCjl

||ul
j|| for

0 ≤ i, j ≤ K − 1, 1 ≤ k, l ≤ Nx. This defines an optimal trajectory.

Proof. We begin noticing from (24) the variable ξx is fixed when d = 2,
and when d = 3 we supposed it was not part of the state. As the compo-
nents of the error are assumed initially independent, this yields E (||δzk||2) =
E (||HHHxξxk ||2)+E (||HHHxξxk ||2). As a result all we need is to maximize

∑K
k=1E (||HHHxξxk ||2).



Without loss of generality let us focus on the 3D case (24). By recursion we
may prove

ξRk = Ω−1
k−1 . . .Ω

−1
0 ξR0 = (Πk−1

0 Ωj)
−1ξR0

ξxk = (Πk−1
0 Ωl)

−1 ∗FFF kξx0

−
k∑

j=1

(Πk−1
l=j−1Ωl)

−1 ∗FFF k−juj−1 × ξRj−1

(26)

where we have used that Ω∗ and FFF commute. We see the goal boils down
to finding the control sequence that maximizes E||HHHx

∑k
j=1(Π

k−1
l=j−1Ωl)

−1 ∗
FFF k−juj−1 × (Πk−1

0 Ωj)
−1ξR0 ||2.

Lemma 2. Let u1, u2 ∈ Rd with d = 2, 3, let Ω ∈ SO(d) and let ξ ∼ N (0, Id).
We have E(u1 × ξ . u2 × Ωξ) ≤ (d − 1)||u1|| ||u2||. Equality is obtained for
Ω = Id and u2 = γu1, γ > 0. For d = 3 it is unique. For d = 2 the maximum
is attained for all combinations Ω ∈ SO(2), u2 = γΩu1, γ > 0.

Proof. Using the properties of mixed product followed by triple product
expansion we find u1 × ξ . u2 × Ωξ = (u1.u2)(ξ.Ωξ) − (u1.ξ)(u2.Ωξ) =
(u1.u2)Tr(ξ

TΩξ)−Tr(uT
1 ξξ

TΩTu2), whose expectation equals (u1.u2)Tr(ΩEξξT ))−
Tr(uT

1E(ξξT )ΩTu2) = Tr(Ω)(u1.u2)−uT
1Ω

Tu2 := g(u1, u2,Ω). We write that

max
||u1||=||u2||=1,Ω∈SO(d)

g = max
||u1||=1

max
Ω∈SO(d)

max
||u2||=1

g

As g(u1, u2,Ω) = (Tr(Ω)u1 − Ωu1).u2 the method of Lagrange multipliers
yields that max||u2||=1 g is attained for u∗

2 = [Tr(Ω)u1 − Ωu1]/||Tr(Ω)u1 −
Ωu1||, and g(u1, u

∗
2,Ω) = ||Tr(Ω)u1−Ωu1|| =

√
1 + Tr(Ω)2 − 2Tr(Ω)uT

1Ωu1.
To conclude we use two facts. First, letting θ be the rotation angle associated
to Ω, we have Tr(Ω) = 1+2 cos θ for d = 3. Then, we have cos θ ≤ Ωu1.u1 ≤
1, for ||u1|| = 1. This stems from using the Rodrigues formula and the
triple product expansion that proves Ωu.u = 1 + (1 − cos(θ))((v.u)2 − 1) ≥
1 + (1 − cos(θ))(−1) = cos θ, with v the unit vector encoding the rotation
axis. Thus g2 ≤ 1 + Tr(Ω)2 − 2Tr(Ω) cos θ = 2 + 2 cos θ. This proves g ≤ 2
with equality attained if and only if cos θ = 0, that is, Ω = I3.

If d = 2, only the trace is modified and we find g = 1, that is, the
maximum is non uniquely attained for arbitrary Ω, letting u2 = u∗

2. In
particular it is attained for Ω = I2 and u∗

2 = u2.



Let us go back to our control objective of maximizing E||HHHx
∑k

j=1(Π
k−1
l=j−1Ωl)

−1∗
FFF k−juj−1 × (Πk−1

0 Ωj)
−1ξR0 ||2. We need to recall we are dealing with multi-

vectors, and that HHHx is of the form (14), where the βij’s have the same sign.
We may expand the squared norm, and we recover a linear combination with
positive coefficients of scalar products of the form E(ũ1 × ξ . ũ2 × Ωξ), us-
ing our assumption on FFF and using that for rotation matrices A,B we have
(Aũ1)× (Aξ) . (Bũ2)× (Bξ) = ũ1 × ξ . (ATBũ2)× (ATBξ). We may bound
those terms using the lemma, and to get an equality we take all Ωk to be Id.
If the condition of the theorem uk

i .u
l
j = maxCik

||uk
i ||maxCjl

||ul
j|| is met, it

implies from Cauchy-Schwarz inequality the collinearity of the components
and we see from the lemma the sum reaches its maximum.

For instance, if we consider Example 2 with dynamics (8) and constraints
||un|| ≤ γ, we see the optimal trajectory is obtained by fixing the orientation,
and taking full acceleration. Note that, there is no requirement regarding Rn

apart from it being fixed: the maximizing acceleration could be lateral if
constraints permit. Besides, we note that such a system is not flat, as the
vehicle’s orientation is not related to the trajectory, contrary to wheeled
robots.

Remark 1. The optimal trajectory of the theorem is not necessarily unique
mathematically. However, when d = 3, the proof shows the condition Ω∗

k = Id
is inevitable. Moreover, when d = 2, the other maximizing trajectories are
in practice not feasible (they violate the constraints) and in any case more
complicated to achieve while not improving the objective.

4.3 Connection to the original variables

We now relate this to the original Gramian maximization problem. Indeed,
the fact that the trajectory be optimal for given modified error and inno-
vation, does not a priori mean it is optimal in the problem’s original er-
ror variables, or more prosaically speaking using the conventionally defined
Jacobians in (4). It turns out, though, that in the present case both are
equivalent.

Proposition 1. The optimal trajectories of Theorem 1 are optimal too for
the problem (4) using the original variables of the problem.

Proof. The proof is based on the use of the equivalent formulation (5).
Indeed, we see that if we take a two-frame system above, we have z =



R̄−1 ∗ (y − ȳ), where ȳ = HHHxx̄ − R̄ ∗ [HHHxx̄] denotes the predicted output.
As a result ||z|| = ||y − ȳ|| so that both objectives coincide.

5 Optimal solutions to active sensing control

with body frame measurements

In this section, we first provide the counterpart of Theorem 1 for body-frame
measurements. Then, we step back and discuss the trace criterion.

5.1 Optimal trajectory generation

When facing body-frame measurements, one should use right-invariant errors,
leading to the error system (18). Along the lines of the theory of two-frames,
we see the two following cases lead to a state-independent error:

1. Either d = 2, that is, the vehicle evolves in 2D space,

2. or d = 3 and there is no variable x in the state, that is, the state
consists of variables (R, x),

which are the hypotheses we used in Theorem 1. In the first case, the ro-
tations commute, leading to autonomy of the error evolution. In the case
of body-frame measurements, it turns out that all trajectories bring equal
information, exactly as is the case for linear systems. This is due to the
linearized error system being virtually independent of the controls.

Theorem 2. Consider a two-frame system with dynamics (9) and observa-
tions in the body frame given by (13). Then, under any of the two assump-
tions above, all trajectories yield an equal trace of the observability Gramian,
in other words all trajectories are optimal for problem (4).

Proof. The proof is in two steps. First we show the result using the Jacobians
related to the right-invariant error, as a natural consequence of the fact the
error evolution is (almost) independent of the controls. Then, we relate the
result to the Jacobians expressed using the original variables.

As before, we may linearize the innovation (22) which yields δzk =
−HHHxξxk−HHHxξxk . Both ξx and ξx evolve independently, so that we have E (||δzk||2) =
E (||HHHxξxk ||2)+E (||HHHxξxk ||2). The latter term is independent of the controls,



see (18). Regarding ξx, we see from (18) that in the case where it is present
in the state, that is, when d = 2, it evolves as ξxn+1 = Ωn ∗ ξxn. Recall-
ing we are dealing with multi-vectors and the form of the matrix (14), and
that rotations are isometries, we see E (||HHHxξxk ||2) is also independent of the
controls. This proves all trajectories yield the same trace of the Gramian,
when using the Jacobians of invariant filtering, that is, those related to the
right-invariant error.

If we turn to the original variables of the problem, we may exploit the link
between problem (4) and relation (5). Besides, we see that z = R̄ ∗ (Y− Ȳ),
where Ȳ = R̄−1 ∗ b− R̄−1 ∗HHHxx̄−HHHxx̄, denotes the predicted output. As a
result ||z|| = ||Y− Ȳ|| so that both objectives coincide.

5.2 Discussion and further results

Whether in the case of fixed-frame or body-frame observations, we were
able to derive closed-form expressions for the trajectories that maximize the
information for a large class of problems, in the sense of the trace of the
OG criterion, for which we provided a probabilistic interpretation in terms
of averaged observed linearized error. In this subsection, we would like to
step back and reflect on the limitations of this widespread criterion.

Albeit useful, and allowing for closed-form expressions, the trace criterion
might prove insufficient for a number of applications revolving around navi-
gation of 2-frames systems. Indeed, as shown in (5), the trace is related to
an average over random (unknown) initial error. A trajectory that optimizes
such a criterion does not preclude the risk of falling into an unobservable
configuration for a particular initial error, though. As a result, the following
objective shall also be interesting for a variety of applications

max
u0,...uK−1

min
||ξ0||=1

K∑
k=1

||δzk(ξ0)||22, (27)

which coincides with maxu0,...uK−1
mini λi(WK), i.e., maximizing the smallest

eigenvalue of the Gramian as seen from (5), and advocated in [3]. We see
that in 3D a uniformly accelerated motion fails to allow for estimation of the
vehicle’s angle around the acceleration axis, and as such it may be optimal
for the Gramian’s trace criterion but not for the latter. Deriving the optimal



trajectories in closed form - as we just did - for this max-min eigenvalue may
prove involved, and is left for future research.

There is some overlap between the objectives, though.

Corollary 1. a) Assume that d = 2 and there is no body-frame-expressed
variables x to be estimated in the state. Then the optimal trajectory of Theo-
rem 1 solves the minimium eigenvalue optimization problem (27) in the case
of fixed-frame measurements. b) In the case of body-frame measurements,
under the assumption of Theorem 2 all trajectories are optimal in the sense
of (27).

Proof. In the 2D case, the last expression of (26) becomes
(∑k

j=1(Π
k−1
l=j−1Ωl)

−1∗
FFF k−jJuj−1

)
ξR0 . Maximizing the expectation of its squared norm w.r.t. ξR0 ∼

N (0, 1) or its squared norm with (ξR0 )
2 = 1 yields identical problems. For

body-frame measurements we have independence w.r.t. the controls.

6 Numerical illustrations

We now illustrate the theoretical results for the two motivating examples of
Section 3.1, plus a 2D SLAM example.

6.1 Navigation with GNSS measurement in 3D

In the case of 3D navigation as presented in section 3.1.2, the position of the
system is directly observed. However, the attitude of the vehicle must be
estimated. The quality of the estimation depends on the chosen trajectory.
To illustrate the result of Theorem 1 of Section 4.2, we compare the evolu-
tion of the OG’s trace over time for the optimal trajectory and an arbitrary
trajectory with same (maximum) energy u. The results in Figure 2 confirm
the theorem.

6.2 Navigation with online GNSS lever arm calibra-
tion in 2D

One of the advantages of the two-frame theory is the possibility to apply
invariant filtering to state variables expressed in the body frame. The mod-
elling of a wheeled robot with unknown lever arm between the GNSS and the
middle point of the rear axle can be found in Section 3.1.1. In Theorem 1 of



Figure 2: On the left is shown the evolution of the OG trace for the optimal
trajectory in blue and an arbitrary trajectory in orange. On the right, the
two trajectories in 3D.

Section 4.2, optimal trajectories were computed. To illustrate the result, we
compute the trace of the OG of the optimal trajectory and compare it with
another trajectory with identical energy. The results in Figure 3 confirm the
theorem.

6.3 2D Simultaneous localization and mapping

Consider the 2D SLAM problem with two unknown landmarks and observa-
tions of the relative distance between the vehicle and these points [18]. The
state vector is:

Ξn = (θn, xn, p
1
n, p

2
n)

where θn is the vehicle’s heading, xn ∈ R2 is the position of the vehicle, and
pin ∈ R2, i ∈ {1, 2} denotes the position of the unknown landmarks. The
system’s equations are [12]:

θn = θn−1 + ωn

xn = xn−1 + unR(θn−1)e1

pin = pin−1

yin = R(θn)
T (pin − xn)

, (28)



Figure 3: On the left is shown the evolution of the OG trace for the optimal
trajectory in blue and an arbitrary trajectory in orange. On the right, the
two trajectories in the 2D plane are plotted.

with un, ωn ∈ R the control inputs, R(θ) is the rotation matrix encoding the
planar rotation of angle θ, and yin is the observation of the i-th landmark’s
position in the vehicle frame. Letting the error variables ξn be classically
defined as:

ξθn = θ̄ − θ, ξxn = x̄n − xn, ξin = p̄in − pin, (29)

the system can be linearized as follows:

ξn = Fnξn−1 and zn = ȳn − yn = Hnξn (30)

with

Fn =


1 02,1 02,1 02,1

unJRne1 I2,2 02,2 02,2
02,1 02,2 I2,2 02,2
02,1 02,2 02,2 I2,2

 ,

Hn =

(
JRT

n (p
1
n − xn) −RT

n RT
n 02,2

JRT
n (p

2
n − xn) −RT

n 02,2 RT
n

)
,

(31)

Using these error variables, it is not obvious at the first sight that the
Gramian does not depend on the controls and that all trajectories are equally
informative as ωn implicitly acts on Rn and xn. However, the system (28)
obviously fits into the class considered here, and applying Theorem 2, we find



that all trajectories lead to identical objective. This is similar to the linear
case, where the Gramian depends neither on the controls nor on the state.
Figure 4 confirms the result.

Figure 4: On the left, the traces of the OG for the two trajectories are
identical over time. On the right, the two trajectories are plotted with the
two unknown landmarks.

7 Conclusion

In this paper we have considered the problem of optimal active sensing, and
we have derived the optimal trajectories in closed form for a large subclass
of two-frame systems, that model vehicles that navigate in 2D and in 3D,
leveraging the properties of invariant filtering and the isometry properties of
rotation matrices. Although the results are not surprising (straight lines with
full acceleration allow for distinguishing a heading error best), they have the
merit of being quite general. They are nontrivial to derive, in that it is rare to
solve explicitly optimal control problems outside of the LQR framework, and
they have indeed necessitated the combination of various ingredients: a) the
discrete time, which is not widespread in Gramian-based active sensing (in
continuous time we generally have no closed form for the Gramian itself), b)
a recent general theory, which highlights systems whose properties are akin
to those of linear systems, c) a proof which is not straightforward and heavily
relies on the properties of scalar and cross products, d) the detour via (5)



while directly maximizing the trace–as is done by numerical methods–would
have been more difficult analytically.

In the future, we would like to derive the counterpart for the max-min
criterion (27) for the same class of systems. Besides, we would like to con-
sider more general problems that do not perfectly fit into the invariant fil-
tering theory, such as navigation with online calibration of gyrometers’ and
accelerometers’ biases. In this case, the trajectory remains partially state-
trajectory independent, which may lead to speedups of numerical methods,
in the spirit of [19].
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