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Abstract
High-content screening (HCS) provides an excellent tool to understand the mechanism of action of drugs on
disease-relevant model systems. Careful selection of fluorescent labels (FLs) is crucial for successful HCS assay
development. HCS assays typically comprise (1) FLs containing biological information of interest, and (2) addi-
tional structural FLs enabling instance segmentation for downstream analysis. However, the limited number of
available fluorescence microscopy imaging channels restricts the degree to which these FLs can be experimen-
tally multiplexed. In this paper, we present a segmentation workflow that overcomes the dependency on structural
FLs for image segmentation, typically freeing 2 fluorescence microscopy channels for biologically relevant FLs. It
consists in extracting structural information encoded within readouts that are primarily biological, by fine-tuning
pre-trained state-of-the-art generalist cell segmentation models for different combinations of individual FLs, and
aggregating the respective segmentation results together. Using annotated datasets that we provide, we confirm
our methodology offers improvements in performance and robustness across several segmentation aggregation
strategies and image acquisition methods, over different cell lines and various FLs. It thus enables the biologi-
cal information content of HCS assays to be maximized without compromising the robustness and accuracy of
computational single-cell profiling.

Impact Statement

This methodological paper describes a framework enabling cell segmentation for datasets without struc-

tural fluorescent labels to highlight cell organelles. Such capabilities favorably impact costs and possible

discoveries in single-cell downstream analysis by improving our ability to incorporate more biological read-

outs into a single assay. The perspective of computational and experimental biologist coauthors ensures a

multidisciplinary viewpoint and accessibility for a wide readership.
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1. Introduction

Image-based cellular assays allow us to investigate cellular and population phenotypes and signaling
and thus to understand biological phenomena with high precision.

In order to investigate specific biological processes and pathways, one can use tailored fluorescent

labels (FL) such as immunofluorescence staining or fluorescent proteins. Cellular and subcellular fea-
tures can then be detected and quantified by measuring fluorescence signal intensity and localization or
by using multi-parametric measurements in a machine-learning framework [1]. Cell instance segmen-
tation is a key part of such bioimage analysis pipelines as it allows us to study the cells at a single-cell
level rather than at the population level.

Each FL has a function in an assay design. If a FL has as a primary function to label a specific cel-
lular compartment, we call it a structural FL; otherwise it is a non-structural FL. Some non-structural
FLs tend to consistently label cellular compartments, even if it is not their primary function. We
refer to them as structurally strong. Indeed, a FL can also, on top of its primary role (e.g. to label
a protein associated with a signaling pathway), highlight cellular structures useful for segmentation.
If they do not consistently do so, we call them structurally weak. For example, due to the unique
behavior of individual cells when exposed to chemical compounds, signaling pathways highlighted by
non-structural FLs can lead to translocation to different cellular compartments, increased/decreased
expression, or altered distribution. In fact, we observe that non-structural FLs lie on a continuum
between both categories: the structural and morphological information they carry can vary significantly.

Deep learning models for cell instance segmentation have recently reached the quality of manual
annotations [2]–[4], especially thanks to the emergence of models like U-Net [5]. Cellpose [4] is a
notable U-Net based approach, which uses a multi-modal training dataset spanning several cell types
and cell lines imaged under a variety of different imaging methods. It also benefits from being asso-
ciated with a large community which incrementally increases the size and diversity of the dataset, in
turn improving the performance of the model. Cellpose approaches the problem of multiple instance
segmentation by predicting spatial gradient maps from the images, from which individual cell segmen-
tations can be inferred. Other recent deep learning segmentation methods for cell biology are StarDist
[2] and NucleAIzer [3] which make use of the U-Net architecture as well but with different repre-
sentation for their images, and Mask-RCNN [6] which directly segments regions of interests (ROIs)
in images with deep learning methods. We select Cellpose as a foundation for our approach as it is a
widely used and well-designed framework which offers to be the most generalist with its community
driven, ever-expanding training dataset.

However, a limitation of Cellpose is its heavy reliance on structural FLs for nucleic and cytoplasmic
segmentation.
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Cellpose was trained on several datasets, most of which relied on active staining of organelles’ struc-
tural proteins (e.g. cytoskeleton for cytoplasm) [7]. Indeed, only 15% of the Cellpose training dataset
contain other fluorescent FLs. While such structural FLs are generally integrated in assay designs,
being able to segment cells without using them allows to maximise the number of non-structural FLs.
Since the total number of available microscopy channels is subject to numerous limitations – such as
the bleed through effect [8] – and is typically limited to 4, the two extra channels made available can
lead to assays delivering richer information about cellular processes.

In this paper, we demonstrate that non-structural FLs may contain information about cell and nuclear
morphology that can be leveraged, even though they are not optimized in this regard, in contrast with
structural FLs. Additionally we demonstrate that a collection of non-structural FLs are a sufficient
substitute for structural FLs with regards to segmentation.

We note that our approach follows recent trends towards the “expertization” of generalist models like
Cellpose 2.0 [9], encouraging the prediction of a wider range of cellular image types and styles, with
very small additional training from humans in the loop. However, while those recent approaches still
only apply to cell images with structural FLs, we hereby propose an extension to non-structural FLs.

We thus propose a generic framework for nuclear and cytoplasmic segmentation without the need to
include corresponding structural FLs in the assay design. Our framework requires few annotations to
finetune a pre-trained generalist deep learning segmentation base-model –here Cellpose– on each FL
with a small set of annotated images. We show, on multiple datasets that we provide, that by combining
the predictions from multiple non-structural FLs with various structural characteristics, we are able to
reach segmentation performance comparable to the state of the art without relying on structural FLs.

Our contribution has a significant impact on: (1) cost, as we reduce the number of assays needed to
extract the same biological information, by removing the dependency on 1 or 2 experimental structural
FLs for accurate cell segmentation and (2) possible discoveries in downstream analysis, as we can
monitor additional functionally relevant FLs for the exact same cells, thus obtaining a richer description
of each cell’s phenotypic response to a perturbation.

2. Data

The context of our work is a very flexible live-cell imaging experimental framework, that enables the
analysis of a variety of cell lines and FLs reporting on a wide range of cellular processes over time.
Furthermore, experimental parameters such as temporal and spatial resolution can be changed, as well
as acquisition conditions. Those characteristics impact the microscope’s acquisition mode and thus the
resulting noise and appearance of cells.

Accordingly, it is important to ensure our computational workflow is sufficiently flexible to
accommodate changes in FLs, cell lines and acquisition parameters.
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2.1. Image data

We acquired data on five multi-color reporter cell lines derived from commonly used U2OS [10] and
A375 [11] cancer cell lines, that we designated CL1, ..., CL5. In this paper, we work with live-cell
imaging data where fluorescent labeling is done by tagging proteins of interest with fluorophores,
the combination of which we refer to as fluorescent reporter proteins (FRPs). Each reporter cell line
expresses 3 or 4 spectrally distinct FRPs. Unless otherwise stated, we acquired all images with a
Nikon A1R confocal microscope as a live video microscopy imaging sequence. For each experimental
condition, we acquired images on 3 𝑥𝑦 positions every 3 hours for 72 hours, at various optical zooms.

The dataset was acquired in the context of perturbation screens, in which cells are treated with
multiple compounds, in a HCS setup. It aggregates images from five assays. A table listing applied
compounds is available in the Supplementary Material section.

Table 1 helps understanding the structural nature of the non-structural FRPs used in the cell lines
evaluated here. While some are structurally strong, labeling consistently a specific organelle (e.g. P1
of CL1), most are dynamic and can be considered as weak. Cell line CL5, for example, only expresses
structurally weak FRPs.

2.2. Annotated dataset

We manually annotated the nuclei and cell boundary of 50 (resp. 28 and 22) images for each cell line/FL
combination of cell lines CL1, CL4, CL5 (resp. cell lines CL2 and CL3). We randomly selected these
images from different experimental conditions and evenly distributed over time in order to capture the
dynamic localization of certain proteins (e.g. due to experimental treatments and levels of expression
at different stages of cell cycle) as well as possible variations in population size caused by cell division
or cell death. The number of cells per image ranges from 20 cells to more than 100 in some images.
For each set of annotated images, 80% were used for training, 10% for validation and the last 10% for
evaluation.

With an average of 50 cells per images, we have about 250 cells per validation/test set and approx-
imately 2000 individual cells in the training set, an appropriate number for training and evaluation. The
annotations were carried out and validated by multiple biologists using the different channels available
in combination.. Example images and manual annotations are displayed in Figure 1.

Furthermore, to test our method for robustness to changes in assay and acquisition parameters, we
also annotated 5 additional images of the CL1 cell line acquired with a different microscope (widefield)
and higher temporal resolution, resulting in noisier images. We used this dataset for evaluation purposes
only as presented in Section 4.3.2.

All datasets are publicly available at doi.org/10.6084/m9.figshare.21702068.
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Parental
Cell Line Cell Line # Annotated

Samples
Pixel

Size (µM) FRP Channel # Localization Structural
Characterisation

U2OS

CL1 50 1.24
mCerulean-RAF 0 Constant (cytoplasm)

Cyto: Strong
Nuclei: Weak

Venus-RAS 1 Constant (nuclei and cytoplasm)
Cyto: Weak

Nuclei: Strong

mCherry-ERK 2 Dynamic (nuclei and cytoplasm)
Cyto: Weak

Nuclei: Weak

CL2 28 0.43

mCerulean-53BP1trunc 0 Constant (nuclei)
Cyto: Weak

Nuclei: Strong

Venus-ATF6 1 Dynamic (endoplasmic reticulum)
Cyto: Weak

Nuclei: Strong

H2B-mCherry 2 Constant (nuclei)
Cyto: Weak

Nuclei: Strong

MTS-miRFP 3 Dynamic (mitochondria)
Cyto: Weak

Nuclei: Weak

CL3 22 0.43

H2B-TagBFP 0 Constant (nuclei)
Cyto: Weak

Nuclei: Strong

Venus-LC3 1 Dynamic (cytoplasm)
Cyto: Weak

Nuclei: Weak

MTS-mCherry 2 Dynamic (mitochondria)
Cyto: Weak

Nuclei: Weak

palm-miRFP 3 Dynamic (membrane)
Cyto: Weak

Nuclei: Weak

A375

CL4 50 1.24

mCerulean-RAF 0 Constant (cytoplasm)
Cyto: Strong
Nuclei: Weak

Venus-RAS 1 Constant (nuclei and cytoplasm)
Cyto: Strong
Nuclei: Weak

mCherry-ERK 2 Dynamic (nuclei and cytoplasm)
Cyto: Strong
Nuclei: Weak

miRFP-MEK 3 Constant (cytoplasm)
Cyto: Strong
Nuclei: Weak

CL5 50 1.24
AKT-KTR-mCerulean 0 Dynamic (nuclei and cytoplasm)

Cyto: Weak
Nuclei: Weak

ERK-KTR-Venus 1 Dynamic (nuclei and cytoplasm)
Cyto: Strong
Nuclei: Weak

miRFP-LC3 2 Dynamic (cytoplasm)
Cyto: Strong
Nuclei: Weak

Table 1. Description of cell line components used in the assays - Parental Cell Line, Cell Line name,
Number of Annotated images, Size of pixels, Fluorescent Reporter Protein (FRP), Channel Number,

localization and structural characterisation. MTS - mitochondria targeting signal; palm -
palmitoylation signal; 53BP1trunc - 53BP1trunc(1220-1711); KTR - kinase translocation reporter.

For RAS and RAF proteins different isoforms and/or mutations were tagged.

3. Methods

3.1. Generalist Segmentation Model Backbone

In this paper, we use Cellpose [4], a state-of-the-art cell segmentation model, as a generalist
segmentation model backbone.

We note however, that our approach is model-agnostic and could therefore use alternative back-
bones [2], [3].

Cellpose segments images using a three-part pipeline: Firstly, it resizes the images so that the average
cell diameter of the dataset conform to the model original training cells’ diameter.
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Figure 1. Image samples from the different assays showing individual fluorescence channels as well as
a color version with manual segmentation annotations overlay. The images are cropped for ease of

visualization.

Secondly, for a cell object 𝑜 ∈ {𝑛𝑢𝑐𝑙𝑒𝑖, 𝑐𝑦𝑡𝑜}, a Cellpose model 𝑀𝑜 maps a rescaled image 𝐼 intrin-
sic intensity space to a flow and probability space (𝐹𝑋, 𝐹𝑌 , 𝑃). The flow maps 𝐹𝑋, 𝐹𝑌 are the derivatives
(along the X and Y axes) of a spatial diffusion representation of individual cell pixels from the cell’s
center of mass to its extremities. Thirdly, Cellpose combines the (𝐹𝑋, 𝐹𝑌 , 𝑃) flow and probability maps
to predict instance segmentations 𝑆𝑜 using flow analysis and thresholding on all three maps combined.
First, the flows 𝐹𝑋 and 𝐹𝑌 are interpolated and consolidated where the pixel-wise probabilities 𝑃 are
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Figure 2. Training and inference workflow for the segmentation of cell organelles without the use of
structural FL using the channel-wise approach (top) and multi-channel approach (bottom). (I)

Training: (a) Training set of multi-modal fluorescent images (3 channels represented as red blue and
green), (b) Training set annotations of the organelles segmentations, (c) Out-of-the-box pre-trained
Cellpose model (Vanilla Cellpose), (d) Finetuned model trained for each of the individual channels

(channel-wise) or trained with a subset of the channels (multi-channel) . (II) Inference: (a)
Multi-modal fluorescent image (3 channels), (b) Models selected from the model zoo corresponding to
the image’s cell line and FL channel combination, (c) Spatial flows and probability maps output by the

finetuned models for each of the channels, (d) Channel-wise averaging of the maps, (e) Integration
into the segmentation labels.

above a pre-set threshold. The instance masks are then generated by analysing the flows histogram from
their peak. Cellpose overall segmentation process is summarized in the following equation:

𝑀𝑜 (𝐼) → (𝐹𝑋, 𝐹𝑌 , 𝑃) −−−−−−−−−−−→
flow integration

𝑆𝑜, 𝑜 ∈ {𝑛𝑢𝑐𝑙𝑒𝑖, 𝑐𝑦𝑡𝑜}. (1)

3.2. Segmentation Model Finetuning Approach

In order to segment images with non-structural FLs, we leverage the generalization powers of Cellpose
to build a model zoo of pre-trained models finetuned on each of our cell line’s FLs using annotated data.
Similarly to the out-of-the-box pre-trained generalist Cellpose model (which we call Vanilla Cellpose in
the remainder of this article), our method rescales the images to the average diameter of the training set.
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To finetune Vanilla Cellpose, we train for each organelle and cell line (𝑜, 𝑐𝑙) combination (with
𝑜 ∈ {𝑛𝑢𝑐𝑙𝑒𝑖, 𝑐𝑦𝑡𝑜} and 𝑐𝑙 one of the dataset cell lines) several Cellpose models on subsets of channels
𝐶 ⊂ P({𝑐𝑘}𝐾𝑘=0) \ {∅} taken from the powerset of the set of channels (excluding the empty set),
with 𝐾 the total number of channels. For simplicity we denote this powerset as {𝑐0, . . . , 𝑐𝐾 }. When
|𝐶 | > 1, each individual channel of 𝐶 from the same image sample are inputted as independent training
samples. Each finetuned model 𝑀𝑜,𝑐𝑙,𝐶 is then used to predict segmentation flows by evaluating each
channel from 𝐶 individually. Those segmentations are then fused together at inference to produce a
single segmentation map. To segment an image for an (𝑜, 𝑐𝑙) combination we end up using the model
trained using the channels 𝐶 train

∗ for which the highest score is achieved on our evaluation set using the
channels 𝐶eval

† .

𝑀𝑜,𝑐𝑙,𝐶 ({𝐼𝑐}𝑐∈𝐶 ) → {(𝐹𝑐𝑋, 𝐹𝑐𝑌 , 𝑃𝑐)}𝑐∈𝐶 , 𝐶 ⊂ {𝑐0, . . . , 𝑐𝐾 } (2)

When |𝐶 | = 1, we refer to the finetuning method as channel-wise (CW), such that a model is trained
for each individual channel (see upper part of Figure 2). The respective CW models can be used on their
respective training channels or can be aggregated together to produce a channel-wise segmentation for
several channels at once.

When |𝐶 | > 1, we refer to the finetuning method as multi-channel (MC), such that a model is
trained on several channels at once (see bottom part of Figure 2). The MC segmentation models can be
evaluated on any subset of the channel set 𝐶 they were trained with.

3.3. Segmentation Model Finetuning Parameters

To finetune Cellpose, we train from the available generalist pre-trained model on our dataset using the
approach detailed in Section 3.2. We retain the model’s hyper-parameters from the original Vanilla Cell-
pose training with the following two exceptions:(1) as detailed in Section 3.4, we use non-deterministic
augmentations on each of our training samples; (2) we stop the training using early stopping on the
validation set [12], with a patience of 50.

Both additions are efficient regularization methods limiting over-fitting and contributing to the
overall robustness of the segmentation methods with respect to changes in the imaging setting.

3.4. Data Augmentation

Augmentation methods are used during training the Vanilla Cellpose model to both virtually increase
the size of our dataset as well as offer better generalization. They are performed iteratively from
scratch on each image batch. For methods involving random distributions, the parameters are uniformly
sampled from a pre-defined parameter range.

Each augmentation has an application probability 𝑝augment = 0.5, adding more variability across
epochs and samples. The augmentation methods are described in Table 2.
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Augmentation
Method Parameter(s) Parameter(s)

Distribution Intent

Scaling scaling factor 𝑠 𝑠 ∼ U(0.5, 1) Expand dataset with invariance to cell size
Rotation rotation angle 𝜙 𝜙 ∼ U(− 𝜋

2 ,
𝜋
2 ) Expand dataset with invariance to cell orientation

Flipping probability 𝑝𝑋 and 𝑝𝑌 𝑝𝑋 = 𝑝𝑌 = 0.5 Expand dataset with invariance to cell orientation
Additive White
Gaussian Noise

(AWGN)

mean 𝜇 and
standard deviation 𝜎

N(𝜇 = 0, 𝜎)
𝜎 ∼ U(0, 0.1)

Emulate variation in the expression of the lit-up
fluorescent pixels and random

background noise [13]

Poisson Noise - -
Emulate the noise generated by the fluorescence\

microscope imaging[14][15]

Salt and Pepper
𝐼𝑠 , 𝐼𝑝

and 𝛽𝑠𝑎𝑝 = 0.05 𝐼𝑠/𝑝 ∼ U(0, 1)
Emulate variation in the location and expression of

the FLs by simulating activation
or inhibitions of fluorescent proteins[16]

Brightness shift Δ Δ ∼ U(−0.1, 0.1) Emulate the variance in microscope image acquisition and
fluorescence intensity[17]

Table 2. Augmentations applied to the training set during the finetuning of Cellpose models.

3.5. Segmentation Fusion

Once the segmentations are generated for each image channel using finetuned models, a final image
segmentation is generated by fusing the individual channel segmentation maps. We implement a method
we name Flow Averaging (FA) to do so. We also consider several state-of-the-art methods. Fusion
methods are described in Table 3.

Method Description Reference

Flow Averaging (FA) (This study) Fusion of flow maps
followed by flow analysis -

Selective and Iterative
Method for Performance

Level Estimation (SIMPLE)

Iterative majority voting
over propagated segmentations,

weighted by estimated performance
[18]

Simultaneous Truth and
Performance Level

Estimation (STAPLE)

Statistical fusion framework
using hierarchical models

of rater performance
[19]

Voting (V) Pixel-wise voting [20]
Majority Voting (MV) Majority label voting in images patches [21]

Table 3. Description of the segmentation fusion methods considered to generate aggregated
segmentations from channel-wise segmentations

The FA method uses Cellpose internal representations to aggregate the segmentation maps. FA aver-
ages the segmentation probability maps and flow maps obtained by running finetuned models on each
channel individually, to obtain a final aggregated segmentation map.

Given |𝐶 | channels selected for an image, our approach yields |𝐶 | segmentation tuples
{(𝐹𝑐

𝑋
, 𝐹𝑐
𝑌
, 𝑃𝑐}𝑐∈𝐶 generated by the Cellpose-U-Net(s). From these tuples we average each individ-

ual maps along the channel dimensions, yielding maps (𝐹𝑋, 𝐹𝑌 , 𝑃̄). The averaged maps are then
transformed into instance segmentation masks using Cellpose’s integration method.
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𝐹𝐴({𝑀𝑜,𝑐𝑙,𝑐}𝑐∈𝐶 ) := (𝐹𝑋, 𝐹𝑌 , 𝑃̄) = ( 1
|𝐶 |

∑︁
𝑐∈𝐶

𝐹𝑐𝑋,
1
|𝐶 |

∑︁
𝑐∈𝐶

𝐹𝑐𝑌 ,
1
|𝐶 |

∑︁
𝑐∈𝐶

𝑃𝑐)

−−−−−−−−−−−→
flow integration

𝑆𝑜, 𝑜 ∈ {𝑛𝑢𝑐𝑙𝑒𝑖, 𝑐𝑦𝑡𝑜}
(3)

3.6. General Workflow Summary

Our workflow can be summarized as follows, for an organelle and cell line (𝑜, 𝑐𝑙) combination:

1. Annotate the organelles 𝑜 on 𝑁 images of the imaging assay of cell line 𝑐𝑙
2. Finetune a Vanilla Cellpose model 𝑀𝑜,𝑐𝑙,𝐶𝑖 using the FL channels of 𝐶𝑖 , for all (non-empty)

subsets 𝐶𝑖 of the powerset of available channels in 𝑐𝑙. For better readability, we consider the cell
line 𝑐𝑙 and organelle 𝑜 fixed in the latter and denote the model 𝑀𝑜,𝑐𝑙,𝐶𝑖 as 𝑀𝐶𝑖 .

3. Evaluate the finetuned models on a validation set, using the channel-wise and multi-channel
strategies on individual channels or the fusions of channels.

4. Select out the best performing model 𝑀𝐶∗ and channels upon which to evaluate it 𝐶† using an
evaluation metric 𝑆 (as defined in Section 4.1) on a validation set:

𝑀𝐶 train
∗
, 𝐶eval

† = arg max
(𝐶 train
𝑖

,𝐶eval
𝑗

)⊂{𝑐0 ,...,𝑐𝐾 }2
{𝑆(𝑀𝐶 train

𝑖
, 𝐶eval

𝑗 )}
𝐶eval
𝑗

⊂𝐶 train
𝑖

∪ {𝑆({𝑀𝑐}𝑐∈𝐶 train
𝑖
, 𝐶eval

𝑗 )}
𝐶 train
𝑖

=𝐶eval
𝑗

(4)

with 𝑆(𝑀𝐶 train
𝑖
, 𝐶eval

𝑗
) corresponding to the score obtained on average on a validation set when

using a model trained on training channel(s) 𝐶 train
𝑖

for inference on evaluation channel(s) 𝐶eval
𝑗

,
using segmentation fusion when |𝐶eval

𝑗
| > 1.

5. Use 𝑀𝐶 train
∗

for inference with channels 𝐶eval
† – using segmentation fusion if |𝐶eval

∗ | > 1 – on new
images of the (o, cl) combination, while keeping other models in the model zoo for potential
future cell lines stemming from the same parental cell-line and with some intersections in the
respective sets of FLs.

A pseudo-code version of the proposed workflow is provided in the Supplementary Material.

4. Performance Evaluation Results

4.1. Evaluation Metrics

For segmentation evaluation, we use the precision, recall and F1-score. A predicted segmentation is
considered as a true positive if the intersection-over-union (IoU) between this segmentation and a
ground truth segmentation is above a threshold here set at 0.5. Recall is the percentage of cells detected,
precision the probability that a detected cell is really a cell and F1-score is the harmonic mean of the
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Organelle Fusion Method CL1
0, 1, 2 (CW)

CL2
0, 1, 2, 3 (CW)

CL3
0, 1, 2, 3 (CW)

CL4
0, 1, 2, 3 (CW)

CL5
0, 1, 2 (CW)

Cytoplasm

FA 0.8135 0.5138 0.3264 0.7769 0.6873
SIMPLE 0.729 0.4744 0.2967 0.6846 0.4218
STAPLE 0.8043 0.4043 0.2876 0.6881 0.6635
Voting 0.729 0.4571 0.3094 0.6916 0.4218

Majority Voting 0.729 0.4344 0.3122 0.7035 0.4218

Nuclei

FA 0.904 0.6871 0.843 0.8758 0.7994
SIMPLE 0.8016 0.3804 0.7634 0.7303 0.638
STAPLE 0.8016 0.4398 0.7341 0.6822 0.6449
Voting 0.8016 0.2968 0.7194 0.6784 0.6449

Majority Voting 0.8016 0.3266 0.6941 0.6817 0.6449

Table 4. Comparison of the performance of the different channel fusion methods on the test set
images, assessed with F1-score as a segmentation metric. It must be noted that the comparison is

drawn between the fusion of all channels for each cell lines, evaluated using the Channel-wise
strategy - and not the best scoring strategy or set of training/evaluation channels. Although the fusion

method performance holds for other variants of our overall method.

two. We use the F1-score as our principal metric of evaluation for our models performance, as it mea-
sures accuracy through both precision and recall. Additionally, we also compute the Jaccard similarity
[22], the aggregated Jaccard index [23] and the average precision [2]. The evaluation using these metrics
are available in the supplementary material.

4.2. Segmentation Fusion Methods Evaluation

Table 4 conveys the performance of the different segmentation fusion methods tested in this work.
The benchmarking is shown on the aggregation of all channels for each image, on both nuclei and
cytoplasm, using the channel-wise method. The results clearly indicate a better performance when
using the Flow Averaging (FA) method introduced in Section 3.5: FA always appears as the best fusion
method among the ones benchmarked here, in some cases with a large margin.

We believe that this result is owed to the fact that the diffusion maps are optimized representations
combining information about the pixel-level probability and object-level shape properties. This makes
them particularly useful for fusion and conveys them an advantage over raw image fusion and fusion of
segmentation masks. We therefore set FA as the default fusion method, and present our worklow results
using FA in the remainder of the paper.

4.3. Segmentation Evaluation

4.3.1. Results

Figures 3 and 4 display the performance of our method using the F1-score metric. Those results
were computed using 5-fold cross validation on annotated datasets. We evaluate the performance of
Vanilla Cellpose against our method across every combination of training channels (channel-wise and
multi-channel) upon every combination of evaluation channel aggregated together using the FA fusion
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(a) CL1 (b) CL2 (c) CL3

(d) CL4 (e) CL5

Figure 3. 5-fold cross validated F1-scores for cytoplasm segmentation on all 5 cell-lines. These tables
show the evaluation using Vanilla Cellpose (V), the channel-wise (CW) strategy and the multi-channel

(MC) strategy as columns, on the powerset of channels as rows, aggregated together using the flow
averaging (FA) method.

(a) CL1 (b) CL2 (c) CL3

(d) CL4 (e) CL5

Figure 4. 5-fold cross validated F1-scores for nuclei segmentation on all 5 cell lines. These tables
show the evaluation using Vanilla Cellpose (V), the channel-wise (CW) strategy and the multi-channel

(MC) strategy as columns, on the powerset of channels as rows, aggregated together using the flow
averaging (FA) method.
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method. The Vanilla Cellpose scores are evaluated on several channels at once using this fusion method
as well. Examples of our segmentation are displayed in Figure 5.

Our results indicate that fine-tuning is an essential step when dealing with datasets which do not
contain cytoplasmic and nucleic structural FLs, as indicated in Table 1. With fine-tuning, we indeed
obtain state-of-the-art level results on individual channels trained independently (CW), the fusion of
channels evaluated through independently trained models (CW) and on the fusion of channels trained
together (MC).

Furthermore, we observe that combining the different segmentations together outperforms not only
the Vanilla Cellpose results but also the results of those finetuned models on their respective channels
in all cases (the only exception being CL3 on cytoplasm which we will discuss in the next Section).
That is particularly striking for structurally weak FLs which, when aggregated together using either
the CW or MC approach, reach the segmentation quality of structurally strong FLs (e.g. static FLs in a
single organelle). Additionally it can be noted that when trained on a set of channels which include both
strong and weak FLs, the model performs well upon evaluation on the subset of its training channels
which excludes the structurally strong FLs.

4.3.2. Impact of acquisition method on model generalization

We test the generalization capabilities of our model to other imaging acquisition procedures by eval-
uating the performance drift of a model trained on images with acquisition parameters 𝐴1 (confocal
microscope, image size 512x512 pixels, and image scale of 1.24µM per pixel) when applied to images
acquired with parameters 𝐴2 (widefield microscope, image size 2044x2044 pixels, and image scale of
0.32µm per pixel). We use 50 annotated images acquired under conditions 𝐴1 of cell line CL1 for train-
ing and testing a model, and 5 annotated images acquired under condition 𝐴2 of the same cell line to
evaluate the aforementioned model performance drift.

The segmentation evaluation results are shown in Figure 6 and demonstrate the ability of our model
to generalize to acquisition method 𝐴2 by producing similar segmentation scores and out-performing
Vanilla Cellpose. These results indicate that our approach does not merely finetune Cellpose to our
dataset, but rather to a specific set of FLs of a cell line, successfully generalizing to other datasets with
the same assay-related conditions.

5. Discussion

Our work provides a reliable, re-usable and scalable method for the segmentation of cell images without
structural FLs, with manageable annotation effort. Our results show that the proposed workflow leads
to models outperforming Vanilla Cellpose on datasets with only non-structural FLs, while requiring
few annotated examples by leveraging Cellpose extended pre-training.

Our results show that leveraging non-structural (and even structurally weak) FLs in concert improves
segmentation, even when the signal is very heterogeneous between cells, and some cells do not appear
at all in some channels.
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(a)

(b)

(c)

(d)

(e)

Figure 5. Segmentation examples using the proposed method on the test set images for (a)-(e) CL1 to
CL5. We compare: ground truth, Vanilla Cellpose result for best evaluation channel combination,
channel-wise (CW) and multi-channel (MC) finetuning strategies. The respective training channel

combination and evaluation channel combination are detailed on the figures. The images are cropped
for ease of visualization.
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(a) Cytoplasmic segmentation (b) Nucleic segmentation

Figure 6. Evaluation of the F1 scores on the CL1 cell-line imaged with the 𝐴2 acquition method
(widefield). The tables are organized the same way as in Figures 3 and 4.

Indeed, each channel provides some useful and potentially complementary information on nucleus
and cytoplasm, which can be combined by segmentation fusion. Thus, aggregating channels together
allows benefiting from complementary non-structural FLs to outline individual cell objects. This is
demonstrated by results in Figures 3 and 4 and qualitative examples in Figure 5. This observation is
especially salient for cell lines which do not contain any structurally strong FLs (such as CL2 and
CL3 for cytoplasm, and CL4 for nuclei) or for cell lines which segmentation models were trained
and evaluated without their structurally strong FLs (e.g. CL1 without channel 0 for both nuclei and
cytoplasm, or CL2 and CL3 without channel 0 and 2 for nuclei). For example, while cell line CL5
only expresses structurally unreliable FLs, it can be seen in Figure 3 and 4 that it is able to leverage its
different FLs together to produce cytoplasmic segmentation with an F1-score of 0.81 when evaluated
on the fusion of channels 0 and 2 using a model finetuned on all of its channels together. Excluding
a structurally strong channel from the evaluation results in the same conclusion. For example, nucleic
segmentation on CL2 scores an 𝐹1 of 0.7 when trained using channels 1 and 3 in MC, with FLs
that highlight the endoplasmic reticulum and the mitochondria. Using Vanilla Cellpose on the same
evaluation channels yields an F1 score of 0.4 . Similar results can be observed for CL3 on the same
channels.

Furthermore, it is significant to note that the use of a structurally strong FL influences the seg-
mentation quality, even when that FL channel is not used at inference. For example, cell line CL3,
which has two structurally strong FLs highlighting the nucleic structure (channels 0 and 2), performs
nonetheless very well on segmenting nuclei using only the fusion of channels 1 and 3 when trained
using all 4 channels (𝐹1 = 0.82). The same can be observed for CL4 on cytoplasmic segmentation:
excluding channels 0 and 3 during the evaluation yields an F1-score of 0.85 with a model finetuned
on all 4 available channels. This is particularly interesting for the segmentation of cell lines containing
subsets of the FLs trained for in our model zoo. Future cell lines could benefit from the multi-channel
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models trained on some of their FLs as well as stronger – although possibly absent – FLs which would
improve the segmentation quality.

However one must select non-structural FLs carefully when applying the proposed workflow.
Indeed, some FLs by nature or under the influence of a compound introduced in the assay regimen may
be too unreliable for the segmentation task. This is exemplified in our results with channel 1 of CL2
on cytoplasmic segmentation. That FL which is dynamic in the endoplasmic reticulum carries almost
no information relevant to the cytoplasmic segmentation by itself, as can be seen in Figure 1. Although
models finetuned using this channel benefit from its presence (reaching a 0.91 F1-score on evaluation
of the fusion of channel 0 and 2 trained using all 4 channels), models evaluated on it or trained with it in
over-proportions perform poorly. If a cell-line was constituted only of FLs of similarly unreliable struc-
tural information, our worklow would not be able to segment cells. It cannot – like any segmentation
method – segment any organelles out of thin air, but it can leverage structurally unreliable FLs together
- with structurally medium or strong FLs when they are available - to reach the quality of segmentation
one would get by including functionally structural FLs in the cell lines.

For instance, CL3 is only constituted of structurally weak FLs with regards to cytoplasmic segmen-
tation. The presence of those FLs explains the low F1-score displayed in 3(c). However, as can be seen
in Figure 5(c), it nevertheless outperforms Vanilla Cellpose in terms of recall and detection of each indi-
vidual cell. In this specific instance – with highly dynamic and unreliable FLs – our method generates
segmentation masks in the likes of a Voronoi diagram. While not optimal in its boundary detections,
it translates to a better segmentation than Vanilla Cellpose, especially in the context of single-cell
phenotypic analysis.

Finally, our approach is limited by the same limitations as Cellpose. Although it works as an
“expertization” of generalist models similarly to [9], it is still constrained by the same limitations. For
example, it does not handle occluded or overlapping cells. It is also susceptible to merging or splitting
of individual cell instances which could only be corrected with a robust post-processing step. It is also
limited in terms of building cell objects, as – like Cellpose – it detects nuclei and cytoplasm indepen-
dently, thus yielding standalone cytoplasm and nuclei. In theory, these limitations can be overcome by
using a different backbone than Cellpose, one which would handle such issues. It is indeed possible to
apply our methodology with different architectures using our finetuning approach, although changes to
the fusion method would be required.

6. Conclusion

In this work, we have designed, built and tested a workflow to train and infer segmentations of nuclei
and cytoplasm on images without functionally structural FLs and for a variety of cell line/FLs con-
figurations. We demonstrated that our approach could be used for a range of assays while freeing up
fluorescence channels for two experiment-specific FLs, where the use of structural FLs take space.
We have shown that satisfactory segmentation performance can be achieved and replicated on various
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assays by leveraging multiple non-structural FLs. The advantage of our method is that the freed fluo-
rescence channels can then be used to monitor additional functionally relevant FLs. We thus obtain a
richer description of each cell’s response to the perturbation, while limiting costs of assays needed to
obtain the same biological information.

Our method is easily adaptable to fit a generalist image processing pipeline and be applied on various
assays by aggregating segmentation models trained on multiple cell lines and FLs into a model zoo.
Such a zoo of fine-tuned models will greatly support microscopy based cellular assays, and HCS.
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