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Abstract

Automatic analysis of hematoxylin and eosin (H&E) stained Whole Slide Images
(WSI) bears great promise for computer assisted diagnosis and biomarker discov-
ery. However, scarcity of annotated datasets leads to underperforming models.
Furthermore, the size and complexity of the image data limit their integration
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into bioinformatic workflows and thus their adoption by the bioinformatics com-
munity. Here, we present Giga-SSL, a self-supervised method for learning WSI
representations without any annotation. We show that applying a simple linear
classifier on the Giga-SSL representations improves classification performance
over the fully supervised alternative on five benchmarked tasks and across differ-
ent datasets. Moreover, we observe a substantial performance increase for small
datasets (average gain of 7 AUC point) and a doubling of the number of muta-
tions predictable from WSIs in a pan-cancer setting (from 45 to 93). We make the
WSI representations available, compressing the TCGA-FFPE images from 12TB
to 23MB and enabling fast analysis on a laptop CPU. We hope this resource will
facilitate multimodal data integration in order to analyze WSI in their genomic
and transcriptomic context.

Keywords: Mutation prediction, Machine learning, Representation learning,
pan-cancer setting, dataset, self-supervised learning

Cancer diagnosis heavily relies the examination of H&E stained tissue slides, which
offer crucial insights into the disease and potential treatment options and which are
routinely acquired in pathology labs. Digitizing these slides into Whole Slide Images
(WSI) enables automated analysis, aiming at assisting clinicians in executing tedious
tasks, such as counting mitoses [1], identification of metastases[2] and grading[3]. Fur-
thermore, the availability of large data repositories, such as The Cancer Genome
Atlas (TCGA) provides us with the challenging opportunity to identify morphological
biomarkers related to survival[4] or treatment response[5], and to unravel the complex
genotype-phenotype relationships by building predictive models for molecular features,
such as single gene mutations[6], mutational signatures[7] and molecular subtypes [6].

However, WSI are not yet extensively used outside the pathology community for
two primary reasons. First, the size and complexity of WSI require special skills and
equipment for their analysis. A single WSI may contain billions of pixels and thou-
sands of cells, complicating storage, processing, and analysis. Second, while pathology
labs are generating ever increasing WSI datasets, annotated WSI datasets are often
scarce, in particular for rare diseases, specific molecular subtypes or in the context of
clinical trials. Training current deep learning models on such datasets often leads to
underperforming models with poor generalization capability.

Self-supervised learning offers a promising approach for addressing these chalenges.
This training paradigm leverages unlabeled datasets to pretrain neural networks
which then demonstrate improved performance when fine-tuned on smaller, anno-
tated datasets. Numerous studies in the computational pathology field have already
adopted self-supervised learning, but only at the tile level ([3, 7-9]). They used such
pretrained networks to encode the small images that compose the WSI-the tiles-, effec-
tively reducing them from billions of pixels to a few thousand feature vectors. These
feature vectors then serve as the basis for training multiple instance learning (MIL)
algorithms ([9-12]). Nonetheless, the sheer volume of tiles per WSIs still makes MIL
models both computationally intensive to train and susceptible to overfitting. While
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[13] is a fair effort toward training without supervision wide histopathological images
-up to 4096 pixel squared-, they do not succeed in training WSI representations.

Here, we introduce Giga-SSL, a novel self-supervised method that utilizes large,
unlabeled WSI datasets to learn compact and highly discriminative WSI-level fea-
tures. It can encode a WSI into a single vector of 512 values, and we show that a
simple logistic regression operating on these representations achieves equal or bet-
ter performance than fully-supervised MIL architectures across several tasks and
datasets. Furthermore, we open-source these representations for the entire TCGA-
formalin-fixed, paraffin-embedded (FFPE), reducing its size from 12 TB to 23 MB
without loss of predictive power.

Results

Giga-SSL provides a framework for self-supervised learning at the slide-
level For this, Giga-SSL models a WSI as an array of tile representations, with the
objective to apply contrastive learning (CL) on this array. CL is a SSL framework
whose main task is to bring together the representations of two randomly transformed
versions of the same object, while pushing away -contrasting- the representations of
different objects.

In order to optimize this objective at the scale of WSIs, we devised a specialized
approach that involves both tile-scale and slide-scale transformations. This design is
executed through a two-step architecture, as illustrated in Figure 1A. The architecture
consists of two distinct neural networks; the first network, which is pretrained on
histopathological images, is responsible for encoding the transformed tiles, and only
the second network, comprising sparse convolutional layers, undergoes optimization
during the giga-SSL training process.

The output of this second block, the WSI representations, are used in all the
downstream analysis tasks by training L2-regularized logistic regressions. For the
sake of brevity, we refer to these models as Giga-SSL classification models. Their
corresponding performance metrics are designated as Giga-SSL performances.

Giga-SSL outperforms fully-supervised methods on several classifica-
tion tasks and across cancer types. We first compared Giga-SSL models to
state-of-the-art WSI classification algorithms across five TCGA benchmark tasks.
These include breast cancer subtyping (lobular/ductal), lung cancer subtyping (lung
adenocarcinoma (LUAD)/ lung squamous cell carcinoma (LUSC)), kidney subtyping
(clear /papillary /chromophobe cells), and two breast cancer-related tasks: homologous
recombination deficiency / proficiency (HRD/HRP) and molecular profiling (Triple
Negative Breast Carcinoma (TNBC)/luminal). We gradually reduced the training
dataset size through stratified subsampling down to 50 WSIs and assessed the perfor-
mance of models trained on these subsets (see Fig. 1B). We compared Giga-SSL to
the CLAM-SB algorithm [10] operating on the same tile representations as the one
used by the Giga-SSL model. Fig. 2 A. shows the performance difference between the
Giga-SSL and CLAM models as a function of the training set size. Each point above
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Fig. 1 A. Overview of the Giga-SSL architecture and training procedure: Initially, two distinct
views of the same Whole Slide Image (WSI) are created using tile and slide level augmentations. Each
augmented tile is encoded using a pre-trained convolutional tile-encoder. The objective of Giga-SSL
training is to optimize the second sparse convolutional block to minimize a contrastive loss at the slide
level. B. Benchmark tasks experiments workflow, detailing the computation of a WSI representation.
C. Workflow of the pancancer classification experiments.
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the red line indicates superior performance of Giga-SSL. Across all tasks, using 100%
of the training data, Giga-SSL consistently achieves state-of-the-art performance.
The advantage of Giga-SSL over CLAM grows as the training set size shrinks. With
only 50 WSIs, Giga-SSL provides an average gain of 7 AUC points over CLAM.

Giga-SSL transfers well to other datasets. To confirm these findings, we
performed external validation experiments to explore the generalization capabilities
of our representations. For this we applied Giga-SSL to two in-house WSI datasets for
two different cancer types:

® Breast cancer (BC): 788 in-house H&E stained WSIs from BC patients with known
Homologous Recombination status. We conducted two classification tasks: HRD
prediction and subtype prediction (TNBC/luminal) [7].

® Uveal Melanoma (UM): 516 in-house H&E stained WSIs from UM patients. The
objective here was to predict chromosome 3 status (disomy 3 or monosomy 3, which
represent two major UM subtypes with contrasted prognosis) [14].

Fig. 2.B shows the improved performance of logistic regression with Giga-SSL rep-
resentations compared to CLAM. The average AUC increase is 3.8% using 100% of
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Fig. 2 Evaluation Results. A. Displays the results for the four benchmark tasks. The first row of
graphs presents the ROC-AUC scores of Giga-SSL and CLAM as a function of the training set size.
The second row demonstrates the AUC improvement of Giga-SSL over CLAM as a function of the
training set size. B. Presents the results on the external validation datasets for both Giga-SSL and
CLAM. C. Indicates the time requirements for key computation steps, measured in GPU-days. CV:
Cross-validation. D. The number of predictable tasks for each model and each task type (mutations,
driver mutations, subtypes, and genetic signatures) in a pancancer setting. E. Displays the average
cross-validated AUC for the three different types of classification tasks- mutation, oncogenic drivers,
subtypes and genetic signatures-for Giga-SSL and MIL models. In the upper panel, the results are
averaged across all tasks that are predictable by the Giga-SSL or MIL model (union). The lower
one shows averages across the tasks predictable by both models. Error bars are indicate standard
deviations of these distributions of AUC. F. Provides a detailed breakdown of item D., focusing on
the granularity of the TCGA projects.
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the data and 5.7% using 50 WSIs: Giga-SSL weights maintain their performance and
label efficiency when applied to unseen datasets.

Giga-SSL can predict more mutations and genetic signatures than MIL.
We next turned to the prediction of mutations and genetic signatures across cancer
types. Kather et al. showed in a seminal study that many mutations and genetic
signatures are predictable from H&E stained tissue slides[6]. Our objective was to
assess whether logistic regression could effectively predict mutations and signatures
using Giga-SSL representations, as an alternative to employing a full MIL. The data
workflow for these experiments is delineated in Fig. 1D. In total, the prediction tasks
are (1) 830 point mutation predictions across 14 tumor types (2) 376 known oncogenic
driver mutations and (3) 182 subtyping and genetic signature tasks. Of note, genetic
variant prediction tasks are usually imbalanced, with the minority class comprising
8% of the dataset on average. This contrasts with subtyping and genetic signature
prediction tasks, where the minority class represents on average 33% of the dataset.
The Venn diagram in Figure Fig. 2.D illustrates the number of mutations that can
be predicted by the Giga-SSL model (represented by the blue areas), the Average
model -see methods and Fig. 1A.- (shown as the red area), and the MIL model [6]
(depicted by the green area). We observe that Giga-SSL is able to predict most of
the mutations that are predictable with the previously published method (30/45 for
the point mutations, 26/34 for the oncogenic driver mutations). Furthermore, the
Giga-SSL representations allow the prediction of an additional 64 point mutations
and 30 driver mutations, which roughly doubles the number of predictable mutations
from WSIs across these 14 cancer types. Details about the predictable mutations are
available in Supplementary Tables 3-6. A similar result is obtained for genetic signa-
tures: out of 374 binary classification tasks (see methods) the majority of signatures
predictable by the MIL model[6] can also be predicted by Giga-SSL (140 out of 154)
and the average model (127 out of 154). Compared to the MIL model, the Giga-SSL
model can predict an additional 50 signatures. Additionally, as illustrated in Fig. 2E,
Giga-SSL provides enhanced classification accuracy across all tasks. Details about the
performances of Giga-SSL on these tasks are available in Supplementary Figures 3-5

Giga-SSL is modular. Contrary to monolithic frameworks and algorithms,
Giga-SSL relies on the correct adjustment of different training elements: the tile-
encoder pre-training, tile-level and slide-level augmentations, and the aggregation
module. Each module can be updated independently, allowing the entire framework
to continuously benefit from advancements in their respective domains. We illustrate
this by comparing various pre-trained tile-encoders as shown in Supplementary Table
1, notably the recent ctranspath network, and demonstrate that the WSI Giga-SSL
representation benefits from an improved tile-encoder; a research effort that already
receives much attention [15-17].

Giga-SSL is computationally efficient. To highlight Giga-SSL’s computational
efficiency, Fig. 2.C shows the GPU-days required for our experiments. Training a Giga-
SSL model for 1000 epochs on the complete TCGA dataset takes only 10 GPU-hours
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on a single GPU. Once we have obtained the representations, downstream prediction
tasks become highly efficient. This is because the classification algorithm fits only
logistic regression, and the cross-validated experiments take approximately 1 hour on
a laptop CPU — a sharp contrast to the 92 GPU-days reported in [6]. When applied
to external datasets, Giga-SSL showcases good scalability. On average, a WSI can
be encoded by Giga-SSL in roughly 5 seconds using a single GPU. This implies that
encoding a typical dataset of 1000 WSIs can be completed in less than 1.5 hours.

Discussion

In this article, we present a framework providing generic representations for H&E
stained WSI, targeting robust solutions for small datasets and simplified training, thus
lowering barriers for morpho-molecular cancer analyses. Addressing these challenges,
we introduce Giga-SSL, the first SSL framework able to derive concise yet highly
discriminative WSI-level embeddings.

Using logistic regression, we highlight the advantages of these features, achieving
state-of-the-art classification performances on small datasets, exhibiting robust gener-
alization to external datasets and doubling the number of predictable gene mutations
in the TCGA across cancer types.

A major advantage of Giga-SSL is its computational efficiency, at training and
inference time. This efficiency allows for the potential training of Giga-SSL models
on datasets significantly larger than the TCGA at minimal cost and with much lower
environmental impact. Moreover, even scientists without detailed knowledge of image
analysis and deep learning can easily utilize this modality, facilitating tests on new
outcome variables or experiments with different datasets stratifications. We are releas-
ing the entire encoded TCGA-FFPE dataset to the public, reducing its size from
12 TB to 23 MB. Such readily available embeddings can be integrated into TCGA
genomics and transcriptomic analyses without any need for prior image-processing
know-how or specialized equipment. We are optimistic that this initiative will spark
interest within the bioinformatics sector, encouraging comprehensive integration of
pathology and molecular data, and fostering joint exploration of cancer’s molecular
and morphological landscape.

Methods
Tile embeddings

We obtain tile embeddings using contrastive learning. Specifically, we employ MoCo
[18], training a ResNet18 on 6 million tiles extracted from a random set of 3000 FFPE
slides from the TCGA over 200 epochs using MoCoV?2’s standard transformation. The
tile embeddings are obtained through spatial pooling of the activations of the third
block of this network. The tile representations are kept static, meaning they are not
further optimized during the Giga-SSL training phase.
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Giga-SSL architecture

The architecture of Giga-SSL combines the ResNet18 framework with SparseConvMIL
[19]. The first four residual convolution blocks independently encode each tile. The
resulting tile encodings are aggregated within a SparseMap and processed by 4 sparse
convolution blocks [19]. Together, these components achieve functionality akin to a
full ResNet18, as detailed in [20], and the final layer of this architectural blocks are
the WSI embeddings used in the downstream analysis. A final multi-layer perceptron
called projector further encodes the embeddings of the WSI, following [18]. The CL
loss is computed using the output of the projector network.

Slide-level transformations aim to generate different views that are to be pulled
closer or pushed apart, depending on whether they originate from the same WSI, while
maintaining part of the biological information of the WSI. To generate these views,
we use the following transformations:

® Subsampling: Tiles are randomly sampled among all the tissue-tiles of a WSI. The
harshness of the transformation is given by the number T of tiles subsampled per
view. Notably, when T = 1, the Giga-SSL training framework becomes equivalent
to HiDisc-Slide [21].

e Tile transformations: The tiles are randomly augmented with classical image aug-
mentations (hue, rotation, Gaussian blur, flips, crops) before being encoded by the
tile encoder. Training Giga-SSL requires this transformation to be shared among
views; that is, when building a transformed view of a WSI, the same augmentation
must be applied to all sampled tiles.

® Sparse-map transformations: The sparse-maps undergo scale, rotation and flips
transformation, augmenting the geometries of the WSIs.

Giga-SSL Training

Training is performed in 2 steps. First, the tile encoder is pre-trained on histopathology
data using MoCo [18] and frozen, like in [20]. This allows to compare Giga-SSL to
competing methods based on the same tile encodings. In a second step, the sparse units
(in orange 1) are trained on the full TCGA with the WSI-level contrastive pretext task
under the slide-level transformations mentioned in the text. Training is performed for
100 GPU-hours on a single V100 GPU. We use the Adam optimizer with a starting
learning rate of 0.003. We use a cosine annealing learning rate scheduler with 10
warming epochs and a final learning rate to 3e 6. As described in the methodological
publication [20], we approximate the tile-level augmentations by randomly sampling 25
augmentations per WSI. We then uniformly sample 64 tiles per WSI per augmentation,
augment and embed them using the tile-encoder described previously.

WSI representation computation

To regularize the embeddings, the Giga-SSL network is applied to R = 50 different
views of each slide. The Giga-SSL representations are the average of these 50 runs.
The Average representations are the feature-wise average of the representations of
all the tiles of a WSI. We call Average models the logistic regressions operating on
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these representations. Both the Average and Giga-SSL representation are then unit-
normalized using scikit-learn Normalizer.

Statistical procedure

To address downstream classification challenges, we deploy an L2-regularized logistic
regression (parameters: C=10, class_weight="balanced’).

We report the performance of these logistic regressions over 10 random dataset
splits for benchmarking and generalization experiments, and 3 splits for mutation
prediction experiments (to account for the very imbalanced nature of the mutation
prediction task). The same splits are used in compared methods.

For mutation prediction, the primary criterion is task predictability. As outlined in
[6], we accumulate the model’s posterior probabilities predicted throughout the cross-
validation folds. We then conduct a two-sided t-test between the predictions of the
samples belonging to one class and the predictions from the remainder of the dataset.
We adjusted the resulting p-values for multiple testing, accounting for a total of 1388
classification tasks, using the Benjamini-Hochberg correction. We set the significance
threshold, pthres, to 0.01 and compare the predictability of tasks between Giga-SSL
and the MIL model implemented in the original publication. Each task of the pan-
cancer experiments employs a patient-level three-fold cross validation strategy.

Data Availability

The TCGA-FFPE WSIs are publicly available through https://portal.gdc.cancer.gov/.
The in-house Curie datasets (breast cancer slides and UV) consist of confidential
medical data not open to the public.

The lightweight embeddings of all the TCGA-FFPE slides computed with giga-SSL
models trained using MoCo and CtransPath embeddings, as well as the used mod-
els, are made publicly available at https://data.mendeley.com/datasets/d573xfd9fg/3
(DOTI: 10.17632/d573xfd9fg.3).

Labels for various datasets are extracted from different sources:

Lung (LUAD/LUSC): GDC Portal

Breast Cancer (Ductal/Lobular): GDC Portal

Kidney (clear/papillary/chromophobe cells): GDC Portal

mhrd Breast Cancer (HRP/HRD): GerkeLab Repository, as in [22]. HRD score are
binarized using mean as threshold.

e All pancancer experiments: Supplementaries of [6]. The continuous variables are
binarized using mean as threshold.

Code Availability

We open-source the following softwares:

e A python package designed to train Giga-SSL models : https://github.com /trislaz/
gigassl.
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e A Python package for encoding WSIs using Giga-SSL models is available at https:
//github.com/trislaz/democratizing_WSI. The package was designed to be user-
friendly, enabling a wide range of users to utilize GigaSSL and our pre-trained
models.
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A Supplementaries

Tile-encoder task AUC F1 Score Balanced Accuracy
brca  0.919 + 0.023  0.792 %+ 0.024 0.84 + 0.031

kidney 0.982 + 0.014  0.891 + 0.033 0.91 + 0.028

MoGCo [18] lung  0.959 + 0.014  0.897 + 0.012 0.898 & 0.012
mhrd  0.783 + 0.042  0.734 + 0.035 0.734 + 0.035

thrd  0.843 £ 0.032  0.778 £ 0.036 0.779 + 0.036

brca  0.95 + 0.024  0.849 + 0.019 0.875 + 0.026

kidney  0.991 + 0.005 0.929 + 0.023 0.943 £ 0.016

lung  0.968 + 0.013  0.914 + 0.023 0.914 & 0.022

CtransPath [16]  } 1 0814+ 0045 0.749 + 0.032 0.749 + 0.032
thrd  0.879 £ 0.026  0.795 =+ 0.036 0.796 =+ 0.036

Table 1 Effect of the tile-encoder on Giga-SSL representation performance.
Results show a 5-fold patient-level stratified cross-validated average. Models are logistic
regressions (C=10, class_weight="balanced’) built on Giga-SSL representations using
various tile-encoders. Advances in tile-encoder design enhance the efficacy of Giga-SSL
representations. The tasks referenced are the 5 benchmark tasks from the main paper.
The same cross-validation folds are used for all the experiment of the same task.

N Patients N Slides Labels repartition
TCGA - brca 1041 977 831 (ductal) / 210 (lobular)
TCGA - lung 1033 936 528 (TCGA-LUAD) / 505 (TCGA-LUSC)
TCGA - mhrd 912 853 465 (0) / 447 (1)
TCGA - kidney 924 882 510 (ClearCell) / 294 (Papillary) / 120 (Chromophobe)
TCGA - thrd 634 586 318 (HRD) / 316 (HRP)
Curie - HRD 787 787 485 (HRD) / 302 (HRP)
Curie - Subtype 787 787 514 (luminal) / 273 (TNBC)
Curie Melanoma 515 515 336 (Monosomy) / 179 (Disomy)

Table 2 Detail of the composition of the datasets used for the benchmark tasks.
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Project Mutations predictables by GigaSSL and MIL

BRCA  MAP3K1 PIK3CA TP53

CESC STK11

CRC APC BRAF KMT2B KMT2D  KRAS
MGA PIK3CA PTCH1 RNF43 TP53

HNSC CASPS8 NSD1 TP53

KIRC PBRM1

KIRP SETD2

LIHC CTNNB1

LUAD PDGFRB TP53

PRAD TP53

STAD FBXW7 KMT2B KMT2C KMT2D MTOR

PIK3CA TP53

Table 3 All point mutations predictable by Giga-SSL and the MIL of
[6], sorted by TCGA project.

Project Mutations predictables by GigaSSL only

BRCA BRCA1 ERBB2 FBXW7 GATA3 PBRM1

CESC APC ERBB2 KMT2D KRAS TCERGI1 TP53
ACVR2A ATM BRCA2 CDC27 FAT1 FBXW7

CRC JAK?2 MIER3 MSH6 PPP6C PTEN RB1

RHOA TCERG1 TTN

HNSC APC HRAS JAK2

KIRP PBRM1

LIHC TP53 TSC2

LUAD EGFR KRAS MED12 NFE2L2 TTN

LUSC KEAP1 RAC1 TP53

PAAD TP53

PRAD TTN

STAD ACVR2A ARHGAP6 ARIDI1A B2M CDK12 KMT2A
MAP3K1 MET MGA RBM10 RHOA TCERGI1

SKCMO1 MGA PIK3CA RNF43 TTN

SKCMO06 CDC27 CDKN2A  FBXW7 GNAS KDM6A PPP6C

Table 4 All point mutations newly predictable with the Giga-SSL features, sorted by
TCGA project.
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Project Driver mutations predictable by GigaSSL and MIL

BRCA MAP3K1 PIK3CA TP53

CRC APC BRAF KMT2B KMT2D KRAS
PIK3CA RNF43 TP53

HNSC NSD1 TP53

KIRC PBRM1

KIRP KRAS SETD2

LIHC CTNNB1

LUAD EGFR TP53

PAAD KRAS

PRAD TP53

STAD BRCA2 FBXW7 KMT2B KMT2D PIK3CA

Table 5 Oncogenic driver mutations predictable by Giga-SSL and the
MIL of [6], sorted by TCGA project.

Project Driver mutations predictable only by GigaSSL

BRCA BRCAL1 GATA3 SMAD4

CESC KRAS STK11

CRC BRCA2 MGA NRAS PTEN
HNSC CASPS8

KIRC TP53

KIRP MET PBRM1

LIHC TP53

LUAD KRAS MGA U2AF1

LUSC NFE2L2 PIK3CA

PAAD TP53

SKCMO01 PIK3R1
SKCMO06 CDKN2A CTNNBI1
AMER1 ARID1A KMT2C PTCH1
RHOA RNF43 TP53

STAD

Table 6 Oncogenic driver mutations newly predictable with
the Giga-SSL features, sorted by TCGA project.
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Fig. 3 Performances of the non-mutation tasks for BRCA, CRC, CESC and HNSC
TCGA projects. Plots shows the performances of the logistic regression trained on top of the
Giga-SSL features against the performances of the MIL model used in [6]. Red line indicates same
performances between the two models. PR - PRStatus (Progesterone Receptor); AR - AR_protein (Androgen Recep-
tor); N_-HistGrade - Neoplasm Histologic Grade; T-Grade - Tumor Grade; DCellsAct - Activated Dendritic Cells; SCNA -
Somatic Copy Number Alterations; TCGA_Sub - TCGA Subtypes; HER2 - HER2 Final Status; ImmSub - Immune Subtypes;
HypMethCat - Hypermethylation Category; WHeal - Wound Healing; CD8_T - T Cells CD8; PanGyn - Pan-Gynecologic Clus-
ters; GHistClass - Gastric Histological Classification; GrowthPat - Major Growth Pattern; Prolif - Proliferation; ClinGleason
- Clinical Gleason Sum; PanKidPath - Pan-Kidney Pathology; IFN_gResp - IFN-gamma Response; MReg - Macrophage Regu-
lation; HomRecDef - Homologous Recombination Defects; HCCSub - Hepatocellular Carcinoma Subtypes; ERG - ERG Status;
ColCMS - Colorectal Cancer CMS; MSI - Microsatellite Instability Status; ER - Estrogen Receptor Status; BRCA_Path -
BRCA Pathology; Hypermut - Hypermutated; TGF_bResp - TGF-beta Response; BRCA_SubP50 - BRCA Subtype (PAM50)
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Fig. 4 Performances of the non-mutation tasks for KICH, KIRC, KIRP and LIHC
TCGA projects. Plots shows the performances of the logistic regression trained on top of the
Giga-SSL features against the performances of the MIL model used in [6]. Red line indicates same
performances between the two models. PR - PRStatus (Progesterone Receptor); AR - AR_protein (Androgen Recep-
tor); N_HistGrade - Neoplasm Histologic Grade; T_Grade - Tumor Grade; DCellsAct - Activated Dendritic Cells; SCNA -
Somatic Copy Number Alterations; TCGA_Sub - TCGA Subtypes; HER2 - HER2 Final Status; ImmSub - Immune Subtypes;
HypMethCat - Hypermethylation Category; WHeal - Wound Healing; CD8.T - T Cells CD8; PanGyn - Pan-Gynecologic Clus-
ters; GHistClass - Gastric Histological Classification; GrowthPat - Major Growth Pattern; Prolif - Proliferation; ClinGleason
- Clinical Gleason Sum; PanKidPath - Pan-Kidney Pathology; IFN_gResp - IFN-gamma Response; MReg - Macrophage Regu-
lation; HomRecDef - Homologous Recombination Defects; HCCSub - Hepatocellular Carcinoma Subtypes; ERG - ERG Status;
ColCMS - Colorectal Cancer CMS; MSI - Microsatellite Instability Status; ER - Estrogen Receptor Status; BRCA_Path -
BRCA Pathology; Hypermut - Hypermutated; TGF_bResp - TGF-beta Response; BRCA_SubP50 - BRCA Subtype (PAM50)
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Fig. 5 Performances of the non-mutation tasks for LUAD, LUSC, PRAD, STAD and
SKCM TCGA projects. Plots shows the performances of the logistic regression trained on top of
the Giga-SSL features against the performances of the MIL model used in [6]. Red line indicates same
performances between the two models. PR - PRStatus (Progesterone Receptor); AR - AR_protein (Androgen Recep-
tor); N_HistGrade - Neoplasm Histologic Grade; T_Grade - Tumor Grade; DCellsAct - Activated Dendritic Cells; SCNA -
Somatic Copy Number Alterations; TCGA_Sub - TCGA Subtypes; HER2 - HER2 Final Status; ImmSub - Immune Subtypes;
HypMethCat - Hypermethylation Category; WHeal - Wound Healing; CD8_T - T Cells CD8; PanGyn - Pan-Gynecologic Clus-
ters; GHistClass - Gastric Histological Classification; GrowthPat - Major Growth Pattern; Prolif - Proliferation; ClinGleason
- Clinical Gleason Sum; PanKidPath - Pan-Kidney Pathology; IFN_gResp - IFN-gamma Response; MReg - Macrophage Regu-
lation; HomRecDef - Homologous Recombination Defects; HCCSub - Hepatocellular Carcinoma Subtypes; ERG - ERG Status;
ColCMS - Colorectal Cancer CMS; MSI - Microsatellite Instability Status; ER - Estrogen Receptor Status; BRCA_Path -
BRCA Pathology; Hypermut - Hypermutated; TGF_bResp - TGF-beta Response; BRCA_SubP50 - BRCA Subtype (PAMS50)
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