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Observer design for hybrid systems
with linear maps and known jump times

G. Q. B. Tran, P. Bernard, L. Marconi

Abstract This chapter unifies and develops recent developments in observer de-
sign for hybrid systems with linear dynamics and output maps, whose jump times
are known. We define and analyze the (pre-)asymptotic detectability and uniform
complete observability of this class of systems, then present two different routes
for observer design. The first one relies on a synchronized Kalman-like observer
that gathers observability from both flows and jumps. The second one consists in
decomposing the state into parts with different observability properties and coupling
observers estimating each of these parts, possibly exploiting an extra fictitious mea-
surement coming from the combination of flows and jumps. These observers are
based on a Linear Matrix Inequality (LMI) or the Kazantzis-Kravaris/Luenberger
(KKL) paradigm. A comparison of these methods is presented in a table at the end.

1 Introduction

Consider a hybrid system with linear maps

H
{

¤𝑥 = 𝐹𝑥 + 𝑢𝑐 (𝑥, 𝑢𝑐) ∈ 𝐶 𝑦𝑐 = 𝐻𝑐𝑥

𝑥+ = 𝐽𝑥 + 𝑢𝑑 (𝑥, 𝑢𝑑) ∈ 𝐷 𝑦𝑑 = 𝐻𝑑𝑥
(1)

where 𝑥 ∈ R𝑛𝑥 is the state, 𝐶 and 𝐷 are the flow and jump sets, 𝑦𝑐 ∈ R𝑛𝑦,𝑐 and
𝑦𝑑 ∈ R𝑛𝑦,𝑑 are the outputs known during the flow intervals and at the jump times
respectively, 𝑢𝑐 ∈ R𝑛𝑥 and 𝑢𝑑 ∈ R𝑛𝑥 are known exogenous input signals, as well

Gia Quoc Bao Tran, Pauline Bernard
Centre Automatique et Systèmes, Mines Paris, Université PSL, 60 boulevard Saint-Michel, 75006
Paris, France e-mail: {gia-quoc-bao.tran,pauline.bernard}@minesparis.psl.eu

Lorenzo Marconi
Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", Univer-
sity of Bologna, Bologna, Italy e-mail: lorenzo.marconi@unibo.it

1



2 G. Q. B. Tran, P. Bernard, L. Marconi

as the dynamics matrices 𝐹, 𝐽 ∈ R𝑛𝑥×𝑛𝑥 and the output matrices 𝐻𝑐 ∈ R𝑛𝑦,𝑐×𝑛𝑥 ,
𝐻𝑑 ∈ R𝑛𝑦,𝑑×𝑛𝑥 which are all known and possibly time-varying. Models of the form
(1) include not only hybrid systems with linear maps described in the setting of [23],
but also switched and/or impulsive systems with linear maps where the active mode
is seen as an exogenous signal making (𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑) time-varying (see [1, 17, 25]
among many other ones), and continuous-time systems with sporadic or multi-rate
sampled outputs where the “jumps” correspond to sampling events, 𝐽 = Id, 𝑢𝑑 = 0,
𝑦𝑐 = 0, and 𝑦𝑑 the outputs available at the sampling event [21, 12, 24]. See [23, 28]
for some examples of those classes of systems set in the framework of (1).
The goal of this chapter is to present in a unified and more complete way recent

advances concerning the design of an asymptotic observer for system (1), assuming
that its jump times are known or detected. In practice, we may be interested in
estimating only certain trajectories of “physical interest”, initialized in some set
X0 ⊂ R𝑛𝑥 and with exogenous terms (𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑 , 𝑢𝑐, 𝑢𝑑) in some setU of interest.
We then denoteSH (X0,U) as the set of thosemaximal solutions of interest. Because
we look for an asymptotic observer, we assume maximal solutions are complete as
stated next.
Assumption 1 Given X0 andU, each maximal solution in SH (X0,U) is complete.
Since the jump times of system H in (1) are known, it is natural to strive for a

synchronized asymptotic observer of the form

Ĥ


¤̂𝑧 = Ψ𝑐 (𝑧, 𝑦𝑐, 𝑢𝑐) whenH flows
𝑧+ = Ψ𝑑 (𝑧, 𝑦𝑑 , 𝑢𝑑) whenH jumps
𝑥 = Υ(𝑧, 𝑦𝑐, 𝑦𝑑 , 𝑢𝑐, 𝑢𝑑)

(2)

where 𝑧 ∈ R𝑛𝑧 is the observer state (with 𝑛𝑧 ≥ 𝑛𝑥 in general), Υ : R𝑛𝑧 × R𝑛𝑦,𝑐 ×
R𝑛𝑦,𝑑 ×R𝑛𝑥 ×R𝑛𝑥 → R𝑛𝑥 is the observer output map,Ψ𝑐 : R𝑛𝑧 ×R𝑛𝑦,𝑐 ×R𝑛𝑥 → R𝑛𝑧
andΨ𝑑 : R𝑛𝑧 ×R𝑛𝑦,𝑑 ×R𝑛𝑥 → R𝑛𝑧 are respectively the observer flow and jumpmaps
designed such that each maximal solution (𝑥, 𝑧) to the cascadeH − Ĥ initialized in
X0 × R𝑛𝑧 with inputs inU is complete and verifies

lim
𝑡+ 𝑗→+∞

(𝑡 , 𝑗) ∈dom 𝑥

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | = 0. (3)

The knowledge of the jump times is not only used to trigger the observer jumps
at the same time as those of the system, but it can also be used to design the observer
mapsΨ𝑐 andΨ𝑑 . The way this information is exploited varies depending on whether
these maps rely on:

• Gains that are computed offline (for example via matrix inequalities), according
to all possible lengths of flow intervals in between jumps, i.e., they depend on
each individual flow length, not the particular sequence of them. This is the path
taken by [1, 18, 12, 24, 22, 6, 29];

• Or, gains that are computed online along the time domain of each solution of
interest, i.e., they depend on the sequence of flow lengths in each particular
solution. This is the path taken by all Kalman-like approaches in [17, 26, 28].
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In the former case, the design requires some information about the possible duration
of flow intervals between successive jumps in each solution of interest (at least after
a certain time) as defined next. In the context of switched (resp. sampled) systems,
this corresponds to information about the possible switching (resp. sampling) rates.
Definition 1 (Set of flow lengths of a hybrid arc)
For a closed subset I of [0, +∞) and some 𝑗𝑚 ∈ N, we say that a hybrid arc

(𝑡, 𝑗) ↦→ 𝑥(𝑡, 𝑗) has flow lengths within I after jump 𝑗𝑚 if

• 0 ≤ 𝑡 − 𝑡 𝑗 (𝑥) ≤ supI for all (𝑡, 𝑗) ∈ dom 𝑥;
• 𝑡 𝑗+1 (𝑥) − 𝑡 𝑗 (𝑥) ∈ I holds for all 𝑗 ∈ N with 𝑗 ≥ 𝑗𝑚 if sup dom 𝑗 𝑥 = +∞, and for
all 𝑗 ∈ { 𝑗𝑚, 𝑗𝑚 + 1, . . . , sup dom 𝑗 𝑥 − 1} otherwise.
In brief, I contains all the possible lengths of the flow intervals between succes-

sive jumps, at least after some time. The first item is to bound the length of the flow
intervals not covered by the second item, namely possibly the first ones before 𝑗𝑚,
and the last one, which is dom𝑡 𝑥 ∩ [𝑡𝐽 (𝑥) , +∞) where 𝑡𝐽 (𝑥) is the time when the last
jump happens (when defined). If I is unbounded, the system may admit (eventually)
continuous solutions and the observer should correct the estimate at least during
flows, while 0 ∈ I means the hybrid arc can jump more than once at the same time
instance or have flow lengths going to zero (including (eventually) discrete and Zeno
solutions) and the observer should reduce the estimation error at least at jumps.
From there, one may design either:

• A flow-based observer with an innovation term during flows only, exploiting the
observability of the full state during flows from 𝑦𝑐 when 0 ∉ I [1, 6];

• A jump-based observer with an innovation term at jumps only, exploiting the
detectability of the full state via the combination of flows and jumps from 𝑦𝑑
available at the jumps only when I is bounded [6, 17, 12, 24, 26];

• An observer with innovation terms during both flows and jumps, exploiting the
observability from both 𝑦𝑐 and 𝑦𝑑 and the combination of flows and jumps:
this is done via a hybrid Kalman-like approach in [28], or via an observability
decomposition in [29], or Lyapunov-based LMIs in [22, 6].

This chapter deals with the third case, where the full state is not necessarily
instantaneously observable during flows and not observable from the jump output
only. It unifies and extends the work of [28, 29]. More precisely, in Section 2, we
start with an observability analysis allowing us to exhibit necessary conditions and
sufficient conditions for observer design: first through hybrid Gramian conditions,
and then via an observability decomposition. The latter decomposes the state in two
parts: the first one is instantaneously observable through the flow output 𝑦𝑐, while the
second one must be detectable from an extended jump output featuring the available
jump output 𝑦𝑑 and an additional fictitious one, describing how the non-observable
states impact the observable ones at jumps and become visible through 𝑦𝑐. While the
Gramian-based analysis has led in [28] to a systematic hybrid Kalman-like design,
we show how the observability decomposition lets us design observers made of:

• A high-gain flow-based observer of the state components that are instantaneously
observable from 𝑦𝑐;
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• A jump-based observer for the remaining components, derived from a discrete
LMI-based (resp. KKL-based) observer in Section 3 (resp. Section 4), thus re-
visiting and extending [28].

Notations: Let R (resp. N) denote the set of real numbers (resp. natural numbers,
i.e., {0, 1, 2, . . .}) and N>0 = N \ {0}. We denote R𝑚×𝑛 (resp. S𝑛

>0) as the set of real
(𝑚 × 𝑛)- (resp. symmetric positive definite (𝑛 × 𝑛)-) dimensional matrices. Given
a set 𝑆, int(𝑆) denotes its interior. Let ℜ(𝑧) and ℑ(𝑧) be the real and imaginary
parts of the complex variable 𝑧, respectively. Denote Id as the identity matrix of
appropriate dimension. Let | · | be the Euclidean norm and ∥ · ∥ the induced matrix
norm. Let 𝐴⊥ be the orthogonal complement of matrix 𝐴 satisfying 𝐴𝐴⊥ = 0 and
such that

(
𝐴⊤ 𝐴⊥) is invertible, and 𝐴† be the Moore-Penrose inverse of 𝐴 [20]. For

a solution (𝑡, 𝑗) ↦→ 𝑥(𝑡, 𝑗) of a hybrid system, we denote dom 𝑥 its time domain [13],
dom𝑡 𝑥 (resp. dom 𝑗 𝑥) the domain’s projection on the ordinary time (resp. jump)
component, and for 𝑗 ∈ dom 𝑗 𝑥, 𝑡 𝑗 (𝑥) the unique time such that (𝑡 𝑗 (𝑥), 𝑗) ∈ dom 𝑥

and (𝑡 𝑗 (𝑥), 𝑗 − 1) ∈ dom 𝑥, and T𝑗 (𝑥) := {𝑡 ∈ dom𝑡 𝑥 : (𝑡, 𝑗) ∈ dom 𝑥} (for hybrid
systems with inputs, see [23]). The mention of 𝑥 is omitted when no confusion
is possible. A solution 𝑥 to a hybrid system is complete if dom 𝑥 is unbounded and
Zeno if it is complete and sup dom𝑡 𝑥 < +∞. Let diag(_1, _2, . . . , _𝑛) be the diagonal
matrix with entries _𝑖 , 𝑖 = 1, 2, . . . , 𝑛. Occasionally, ★ denotes the symmetric part,
i.e.,★⊤𝑃 = 𝑃⊤𝑃 or sometimes★⊤𝑄𝑃 = 𝑃⊤𝑄𝑃. Last, let sat𝑠 be a saturation function
with level 𝑠, i.e., sat𝑠 (𝑀) = 𝑀 if ∥𝑀 ∥ ≤ 𝑠 and sat𝑠 is bounded otherwise.

2 Detectability and observability analysis

The existence of an asymptotic and synchronized observer (2) for system (1) requires
system (1) to be asymptotically detectable, in the following sense.

Definition 2 ((Pre-)asymptotic detectability with known jump times)
System (1) with known jump times, initialized in X0, and with inputs in U is

pre-asymptotically detectable if any complete solutions 𝑥𝑎 and 𝑥𝑏 in SH (X0,U)
with the same inputs (𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑 , 𝑢𝑐, 𝑢𝑑), such that dom 𝑥𝑎 = dom 𝑥𝑏, and whose
flow outputs 𝑦𝑎,𝑐, 𝑦𝑏,𝑐 and jump outputs 𝑦𝑎,𝑑 , 𝑦𝑏,𝑑 satisfy

𝑦𝑎,𝑐 (𝑡, 𝑗) = 𝑦𝑏,𝑐 (𝑡, 𝑗), ∀𝑡 ∈ int(T𝑗 (𝑥𝑎)),∀ 𝑗 ∈ dom 𝑗 𝑥𝑎, (4a)
𝑦𝑎,𝑑 (𝑡 𝑗 , 𝑗 − 1) = 𝑦𝑏,𝑑 (𝑡 𝑗 , 𝑗 − 1), ∀ 𝑗 ∈ dom 𝑗 𝑥𝑎, 𝑗 ≥ 1, (4b)

verify
lim

𝑡+ 𝑗→+∞
(𝑡 , 𝑗) ∈dom 𝑥𝑎

|𝑥𝑎 (𝑡, 𝑗) − 𝑥𝑏 (𝑡, 𝑗) | = 0. (5)

If in addition, all solutions in SH (X0,U) are complete, then we have asymptotic
detectability. The setX0 (resp.U) may be omitted if the property holds for any initial
condition in X0 = 𝐶 ∪ 𝐷 (resp. any input).
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Remark 1 In Definition 2, when all the flow intervals have non-empty interior (i.e.,
int(T𝑗 (𝑥𝑎)) ≠ ∅ for all 𝑗 ∈ dom 𝑗 𝑥𝑎), condition (4a) is equivalent to

𝑦𝑎,𝑐 (𝑡, 𝑗) = 𝑦𝑏,𝑐 (𝑡, 𝑗), ∀(𝑡, 𝑗) ∈ dom 𝑥𝑎, (6)

by the continuity of 𝑡 ↦→ 𝑦𝑐 (𝑡, 𝑗) during flows for all 𝑗 ∈ dom 𝑗 𝑥𝑎. On the contrary,
when a solution admits consecutive jumps, condition (4a) is required only on the
flow intervals with a non-empty interior since it holds vacuously on the other ones.
In other words, the equality of 𝑦𝑐 is only required when the system is flowing.

The necessity of asymptotic detectability is typically obtained as follows. First, by
definition of a synchronized asymptotic observer initialized in X0 with inputs inU,
all solutions in SH (X0,U) must be complete. Then, pick a pair of solutions (𝑥𝑎, 𝑥𝑏)
as inDefinition 2 verifying (4). A solution 𝑥 produced by observer (2) fedwith outputs
(𝑦𝑎,𝑐, 𝑦𝑎,𝑑) shares the same time domain and must converge asymptotically to 𝑥𝑎;
but, 𝑥 is also a solution to observer (2) fed with outputs (𝑦𝑏,𝑐, 𝑦𝑏,𝑑) according to (4),
so that it must also converge asymptotically to 𝑥𝑏. It follows that 𝑥𝑎 and 𝑥𝑏 necessarily
converge asymptotically to each other, thus giving us asymptotic detectability. Note
that compared to [5], Definition 2 is restricted to pairs of complete solutions with
the same time domain because the knowledge of the jump times is used to trigger the
jumps of the observer so that only complete solutions with the same time domain
and the same outputs are required to converge asymptotically to each other.
For observer design, one typically requires stronger observability assumptions

depending on the class of observers and the required observer properties [3]. Ob-
servability typically means that the equality of the outputs in (4), possibly over a
large enough time window, implies that the solutions 𝑥𝑎 and 𝑥𝑏 are actually the same
or said differently, there does not exist any pair of different solutions with the same
time domain and the same outputs in the sense of (4). Actually, in the context of
observer design, a more relevant property is the ability to determine uniquely the
current state from the knowledge of the past outputs over a certain time window
Δ > 0, which is typically called backward distinguishability [27] or constructibility
[15]. In other words, for all (𝑡, 𝑗) in the domain such that 𝑡 + 𝑗 ≥ Δ, the equality of
the outputs (𝑦𝑐, 𝑦𝑑) along 𝑥𝑎 and 𝑥𝑏 at all past times (𝑡 ′, 𝑗 ′) in the domain such that
0 ≤ (𝑡 + 𝑗) − (𝑡 ′ + 𝑗 ′) ≤ Δ implies that 𝑥𝑎 (𝑡, 𝑗) = 𝑥𝑏 (𝑡, 𝑗) (see later in Section 2.1).
For continuous-time systems, this property is equivalent to observability over a time
window because of the uniqueness of solutions in forward and backward time. How-
ever, they cease to be equivalent in discrete-time or hybrid systems when the jump
maps are not invertible: a system could be constructible without being observable
(see [15, Section 2.3.3] for a detailed discussion on those notions).

2.1 Hybrid observability Gramian

Consider a pair of solutions 𝑥𝑎 and 𝑥𝑏 in SH (X0,U) with the same inputs
(𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑 , 𝑢𝑐, 𝑢𝑑) such that dom 𝑥𝑎 = dom 𝑥𝑏 := D. Then, for all hybrid times
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((𝑡 ′, 𝑗 ′), (𝑡, 𝑗)) ∈ D × D, we have

𝑥𝑎 (𝑡, 𝑗) − 𝑥𝑏 (𝑡, 𝑗) = Φ𝐹,𝐽 ((𝑡, 𝑗), (𝑡 ′, 𝑗 ′)) (𝑥𝑎 (𝑡 ′, 𝑗 ′) − 𝑥𝑏 (𝑡 ′, 𝑗 ′)), (7)

where Φ𝐹,𝐽 is a hybrid transition matrix defined as

Φ𝐹,𝐽 ((𝑡, 𝑗), (𝑡 ′, 𝑗 ′)) = 𝜙𝐹 (𝑡, 𝑡 𝑗+1)
©«
𝑗′+1∏
𝑘= 𝑗

𝜙𝐹 (𝑡𝑘+1, 𝑡𝑘)𝐽 (𝑡𝑘 , 𝑘 − 1)ª®¬ 𝜙𝐹 (𝑡 𝑗′+1, 𝑡
′), (8)

if 𝑡 ≥ 𝑡 ′ and 𝑗 ≥ 𝑗 ′, and, if the jump matrix 𝐽 is invertible at the jump times,

Φ𝐹,𝐽 ((𝑡, 𝑗), (𝑡 ′, 𝑗 ′)) = 𝜙𝐹 (𝑡, 𝑡 𝑗 )
©«

𝑗′∏
𝑘= 𝑗+1

𝜙𝐹 (𝑡𝑘−1, 𝑡𝑘)𝐽−1 (𝑡𝑘 , 𝑘 − 1)ª®¬ 𝜙𝐹 (𝑡 𝑗′ , 𝑡 ′), (9)
if 𝑡 ≤ 𝑡 ′ and 𝑗 ≤ 𝑗 ′, with the domain of 𝐹 and 𝐽 inherited from D, where 𝜙𝐹 denotes
the continuous-time transition matrix associated with 𝐹, i.e., describing solutions
to ¤𝑥 = 𝐹𝑥. By summing and integrating squares, it follows that the equality of the
outputs (𝑦𝑐, 𝑦𝑑) along 𝑥𝑎 and 𝑥𝑏 between time (𝑡 ′, 𝑗 ′) ∈ D and a later time (𝑡, 𝑗) ∈ D
is equivalent to

(𝑥𝑎 (𝑡 ′, 𝑗 ′) − 𝑥𝑏 (𝑡 ′, 𝑗 ′))⊤G(𝐹,𝐽,𝐻𝑐 ,𝐻𝑑) ((𝑡 ′, 𝑗 ′), (𝑡, 𝑗)) (𝑥𝑎 (𝑡 ′, 𝑗 ′) − 𝑥𝑏 (𝑡 ′, 𝑗 ′)) = 0,
(10)

or, assuming the invertibility of 𝐽 at the jump times,

(𝑥𝑎 (𝑡, 𝑗) − 𝑥𝑏 (𝑡, 𝑗))⊤G𝑏𝑤
(𝐹,𝐽,𝐻𝑐 ,𝐻𝑑) ((𝑡

′, 𝑗 ′), (𝑡, 𝑗)) (𝑥𝑎 (𝑡, 𝑗) − 𝑥𝑏 (𝑡, 𝑗)) = 0, (11)

where G(𝐹,𝐽,𝐻𝑐 ,𝐻𝑑) ((𝑡 ′, 𝑗 ′), (𝑡, 𝑗)) (resp. G𝑏𝑤
(𝐹,𝐽,𝐻𝑐 ,𝐻𝑑) ((𝑡

′, 𝑗 ′), (𝑡, 𝑗))) is the ob-
servability Gramian (resp. backward observability Gramian) between those times as
defined next.

Definition 3 (Observability Gramians)
The observability Gramian and backward observability Gramian of a quadruple

(𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑) defined on a hybrid time domain D, between time (𝑡 ′, 𝑗 ′) ∈ D and a
later time (𝑡, 𝑗) ∈ D, are defined as

G(𝐹,𝐽,𝐻𝑐 ,𝐻𝑑) ((𝑡 ′, 𝑗 ′), (𝑡, 𝑗)) =∫ 𝑡 𝑗′+1

𝑡′
★⊤Ψ𝑐 ((𝑠, 𝑗 ′), (𝑡 ′, 𝑗 ′))𝑑𝑠 +

𝑗−1∑︁
𝑘= 𝑗′+1

∫ 𝑡𝑘+1

𝑡𝑘

★⊤Ψ𝑐 ((𝑠, 𝑘), (𝑡 ′, 𝑗 ′))𝑑𝑠

+
𝑗−1∑︁
𝑘= 𝑗′

★⊤Ψ𝑑 ((𝑡𝑘+1, 𝑘), (𝑡 ′, 𝑗 ′)) +
∫ 𝑡

𝑡 𝑗

★⊤Ψ𝑐 ((𝑠, 𝑗), (𝑡 ′, 𝑗 ′))𝑑𝑠, (12)

and, when 𝐽 is invertible at the jump times,
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G𝑏𝑤
(𝐹,𝐽,𝐻𝑐 ,𝐻𝑑) ((𝑡

′, 𝑗 ′), (𝑡, 𝑗)) =∫ 𝑡 𝑗′+1

𝑡′
★⊤Ψ𝑐 ((𝑠, 𝑗 ′), (𝑡, 𝑗))𝑑𝑠 +

𝑗−1∑︁
𝑘= 𝑗′+1

∫ 𝑡𝑘+1

𝑡𝑘

★⊤Ψ𝑐 ((𝑠, 𝑘), (𝑡, 𝑗))𝑑𝑠

+
𝑗−1∑︁
𝑘= 𝑗′

★⊤Ψ𝑑 ((𝑡𝑘+1, 𝑘), (𝑡, 𝑗)) +
∫ 𝑡

𝑡 𝑗

★⊤Ψ𝑐 ((𝑠, 𝑗), (𝑡, 𝑗))𝑑𝑠, (13)

respectively, where

Ψ𝑐 ((𝑠, 𝑘), (𝑡, 𝑗)) = 𝐻𝑐 (𝑠, 𝑘)Φ𝐹,𝐽 ((𝑠, 𝑘), (𝑡, 𝑗)), (14a)
Ψ𝑑 ((𝑡𝑘+1, 𝑘), (𝑡, 𝑗)) = 𝐻𝑑 (𝑡𝑘+1, 𝑘)Φ𝐹,𝐽 ((𝑡𝑘+1, 𝑘), (𝑡, 𝑗)), (14b)

with all the jump times determined from D.

According to (10), we deduce that the observability between times (𝑡 ′, 𝑗 ′) and
(𝑡, 𝑗), namely the ability to reconstruct the initial state 𝑥(𝑡 ′, 𝑗 ′) from the knowledge
of the future output until (𝑡, 𝑗), is equivalent to the positive definiteness of the
observability Gramian over this period. On the other hand, when 𝐽 is invertible at the
jump times, the ability to reconstruct the current state 𝑥(𝑡, 𝑗) from the knowledge of
the past output until (𝑡 ′, 𝑗 ′), i.e. the backward distinguishability or constructibility,
is characterized by the positive definiteness of the backward observability Gramian
over this period according to (11). Actually, in that case, both notions are actually
equivalent but the backward observability Gramian tends to appear more naturally
in the analysis of observers.

Remark 2 Note that unlike for purely continuous- or discrete-time linear systems,
the inputs (𝑢𝑐, 𝑢𝑑) involved in the hybrid dynamics (1) may impact the observability
properties since they may change the domain of the solutions and thus the Gramian.

For observer design, the invertibility of the Gramian is typically assumed to be
uniform, leading to the following hybrid uniform complete observability, extending
the classical UCO condition of the Kalman and Bucy’s filter [16].

Definition 4 (Uniform complete observability (UCO))
The quadruple (𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑) defined on a hybrid time domain D is uniformly

completely observable with data (Δ, `) if there exists Δ > 0 and ` > 0 such that for
all ((𝑡 ′, 𝑗 ′), (𝑡, 𝑗)) ∈ D × D verifying (𝑡 − 𝑡 ′) + ( 𝑗 − 𝑗 ′) ≥ Δ, we have

G(𝐹,𝐽,𝐻𝑐 ,𝐻𝑑) ((𝑡 ′, 𝑗 ′), (𝑡, 𝑗)) ≥ ` Id . (15)

In [28], this condition is stated with G𝑏𝑤 replacing G because the former ap-
pears directly in the analysis. They are actually equivalent, assuming the uniform
invertibility of 𝐽 at the jump times and the boundedness of 𝐹 and 𝐽. In [28], this
UCO condition is exploited to design a systematic hybrid Kalman-like observer of
the form
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¤̂𝑥 = 𝐹𝑥 + 𝑢𝑐 + 𝑃𝐻⊤

𝑐 𝑅
−1
𝑐 (𝑦𝑐 − 𝐻𝑐𝑥)

¤𝑃 = _𝑃 + 𝐹𝑃 + 𝑃𝐹⊤ − 𝑃𝐻⊤
𝑐 𝑅

−1
𝑐 𝐻𝑐𝑃

}
whenH flows

𝑥+ = 𝐽𝑥 + 𝑢𝑑 + 𝐽𝐾 (𝑦𝑑 − 𝐻𝑑𝑥)
𝑃+ = 𝛾−1𝐽 (𝐼 − 𝐾𝐻𝑑)𝑃𝐽⊤

}
whenH jumps

(16a)

with
𝐾 = 𝑃𝐻⊤

𝑑 (𝐻𝑑𝑃𝐻
⊤
𝑑 + 𝑅𝑑)−1, (16b)

where _ ≥ 0 and 𝛾 ∈ (0, 1] are design parameters, 𝑅𝑐 ∈ S𝑛𝑦,𝑐

>0 and 𝑅𝑑 ∈ S𝑛𝑦,𝑑

>0
are (possibly time-varying) weighting matrices that are positive definite and are
uniformly upper- and lower-bounded. In [28], it is shown that the estimation error:

• Converges asymptotically to zero under UCO and the boundedness of the system
matrices along each of the considered solutions in SH (X0,U);

• Is exponentially stable with an arbitrarily fast rate and robustly stable (as defined
in [2] but for hybrid systems) after a certain time, under UCO and the boundedness
of the system matrices uniformly across the considered solutions in SH (X0,U),
when additionally _ is sufficiently large and 𝛾 is sufficiently small.

Example 1 Consider a pendulum equipped with an IMU and bouncing on a vertical
wall, with angular position 𝜽 ∈ R3. The IMU contains a gyroscope measuring its
angular velocity 𝝎 ∈ R3 and an accelerometer measuring its proper acceleration
(linear acceleration minus gravity) 𝒚𝒂 ∈ R3 in the IMU frame, modulo an unknown
constant bias 𝒃𝒂 ∈ R3. We assume its tilt 𝒕 ∈ R3 is measured at the jump times
(when the mass impacts the wall) and that the linear velocity 𝒗 ∈ R3 in the sensor
frame can be deduced from the gyroscope measurement via kinematics [31]. We
also assume the velocity magnitude is reduced by an unknown constant restitution
coefficient 𝑐 ∈ (0, 1] at each impact. With these in mind, we model the system in
hybrid form with state 𝑥 = ( 𝒕, 𝒗, 𝒃𝒂, 𝑐) as (see [31] for the flow dynamics)

¤𝒕 = −[𝝎]× 𝒕
¤𝒗 = −[𝝎]×𝒗 + 𝒚𝒂 − 𝒃𝒂 + 𝑔𝒕

¤𝒃𝒂 = 0
¤𝑐 = 0

𝑦𝑐 = 𝒗,


𝒕+ = 𝒕
𝒗+ = −𝑐𝒗
𝒃+𝒂 = 𝒃𝒂
𝑐+ = 𝑐

𝑦𝑑 = (𝒗, 𝒕), (17)

where [𝝎]× =
©«

0 −𝜔3 𝜔2
𝜔3 0 −𝜔1
−𝜔2 𝜔1 0

ª®¬ and 𝑔 is the gravitational acceleration, with the flow
and jump sets depending on the wall configuration. This system takes the form (1)

where 𝐹 =

©«
−[𝝎]× 0 0 0
𝑔 Id −[𝝎]× − Id 0

0 0 0 0
0 0 0 0

ª®®®¬, 𝐽 =

©«
Id 0 0 0
0 0 0 −𝑦𝑑,𝒗
0 0 Id 0
0 0 0 1

ª®®®¬1, 𝑢𝑐 =

©«
0
𝒚𝒂
0
0

ª®®®¬, and 𝑢𝑑 = 0,

1 Note that 𝐽 is not invertible at jumps, but it can be made invertible by considering an alternative
jump map 𝒗+ = 𝒗 + 𝑐𝑦𝑑,𝒗 − 𝑦𝑑,𝒗 and seeing −𝑦𝑑,𝒗 as part of 𝑢𝑑 . Simulations have shown that this
invertibility may not be necessary for the Kalman-like observer.
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with 𝑦𝑑,𝒗 the 𝒗-component of 𝑦𝑑 . We would like to estimate both 𝒃𝒂 and 𝑐. Assuming
the system is persistently not at rest (with external excitation if 𝑐 < 1), it is observable
over each period of time containing at least one jump and a flow interval, because

• 𝒕 is available at jumps and its dynamics are independent of the other state com-
ponents, making it observable, independently of the input signal [𝝎]×;

• 𝒗 and 𝒃𝒂 are both instantaneously observable during flows from 𝑦𝑐 once 𝒕 is
known, also independently of [𝝎]×;

• 𝑐 is observable at jumps by seeing 𝒗 as a known input, because 𝒗 is measured.

It follows that if the pendulum velocity is uniformly lower-bounded (thanks to an
appropriate input in the mechanical system, whose effects are in fact contained in
𝒚𝒂 in the IMU frame), the observability Gramian computed over a time window Δ

larger than the maximal length of flow intervals would be uniformly positive definite.
Then, assuming the boundedness of 𝐹 and 𝐽, a Kalman-like observer (16) fed with
(𝑦𝑐, 𝑦𝑑 ,𝝎, 𝒚𝒂) can be designed for system (17). Now, consider the case where there
is an unknown constant bias 𝒃𝒈 ∈ R3 in the gyroscope measurement. As a result,
[𝝎]× in system (17) is replaced by [𝝎𝒎−𝒃𝒈]×, where𝝎𝒎 is the biasedmeasurement.
Assume an estimate �̂�𝒈 of 𝒃𝒈 is available such that �̂�𝒈 − 𝒃𝒈 asymptotically vanishes.
Then, the dynamics (17) may be re-written as

¤𝑥 = �̂�𝑥 + (𝐹 − �̂�)𝑥, (18)

where [𝝎𝒎 − �̂�𝒈]× replaces [𝝎𝒎 − 𝒃𝒈]× in �̂�. Consider the previous Kalman-like
observer, but designedwith the known �̂� instead of 𝐹. According to our observability
analysis above, the observability of the quadruple (𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑) does not depend
on 𝐹 and therefore still holds for (�̂�, 𝐽, 𝐻𝑐, 𝐻𝑑). The robust stability of the Kalman-
like observer [28, Theorem 3] then ensures that the error converges asymptotically
to zero because: (i) The UCO condition holds with �̂� replacing 𝐹, and (ii) The
“disturbance” (𝐹 − �̂�)𝑥 vanishes asymptotically thanks to �̂�𝒈 converging to 𝒃𝒈 and
the boundedness of 𝑥. In other words, we only need to find an asymptotic estimate
of 𝒃𝒈 and feed it to the hybrid Kalman-like observer of 𝑥. For that, notice that the
pendulum position 𝜽 verifies the hybrid dynamics{ ¤𝜽 = 𝝎𝒎 − 𝒃𝒈

¤𝒃𝒈 = 0 𝑦′𝑐 = 0,
{
𝜽+ = 𝜽
𝒃+𝒈 = 𝒃𝒈

𝑦′𝑑 = 𝜽 , (19)

with the flow and jump sets depending on the wall configuration. In other words,
𝜽 has continuous-time dynamics, but with sampled measurement at each impact
obtained via the impact condition. Because system (19) has linear maps and only the
jump output, we can design a jump-based observer with a constant gain using LMIs
on the equivalent discrete-time system sampled at the jumps (see [6, Corollary 5.2]).
All in all, still if the pendulum velocity is uniformly lower-bounded away from zero
and (𝐹, 𝐽) upper-bounded, an observer of 𝑥 is obtained by the cascade of a jump-
based observer of 𝒃𝒈 and a Kalman-like one for system (17) fed with [𝝎𝒎 − �̂�𝒈]×
instead of [𝝎]×.
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Inwhat follows,we attempt to analyzemore precisely the observability/detectability
of the system by decomposing the state according to the different sources of observ-
ability. Beyond a finer comprehension, this allows for the design of observers when
UCO is not satisfied, for instance under mere detectability properties, or to design
observers of smaller dimensions through decoupling (see Table 1 for a comparison).

2.2 Observability decomposition

In the case where the full state is instantaneously observable during flows via the
flow output 𝑦𝑐 and the system admits an average dwell time, a high-gain flow-based
observer (using only 𝑦𝑐) can be designed (see [6, Section 4]); and when the full
state is observable from the jump output 𝑦𝑑 only, a jump-based observer based on an
equivalent discrete-time system can be designed if the jumps are persistent (see [6,
Section 5]). We are thus interested here in the case where observability rather comes
from the combination of flows and jumps and/or the combination of (𝑦𝑐, 𝑦𝑑). The
idea of the decomposition is thus to isolate state components that are instantaneously
observable during flows from 𝑦𝑐, from other ones that become visible thanks to 𝑦𝑑
or the combination of flows and jumps. It follows that both the flow and jump outputs
may need to be fully exploited to reconstruct the state and that neither (eventually)
continuous nor discrete/Zeno trajectories are allowed: both flows and jumps need to
be persistent at least after a certain time, unlike in Section 2.1, as assumed next.

Assumption 2 There exists 𝑗𝑚 ∈ N such that solutions have flow lengths within a
compact set I ⊆ [𝜏𝑚, 𝜏𝑀 ] where 𝜏𝑚 > 0 after jump 𝑗𝑚.

Assumption 2means that, for all solutions 𝑥 ∈ SH (X0,U), the hybrid arc (𝑡, 𝑗) ↦→
(𝑥(𝑡, 𝑗), 𝑡 − 𝑡 𝑗 ) is solution after some time to the hybrid system

H 𝜏


¤𝑥 = 𝐹𝑥 + 𝑢𝑐
¤𝜏 = 1

}
(𝑥, 𝜏) ∈ 𝐶𝜏 𝑦𝑐 = 𝐻𝑐𝑥

𝑥+ = 𝐽𝑥 + 𝑢𝑑
𝜏+ = 0

}
(𝑥, 𝜏) ∈ 𝐷𝜏 𝑦𝑑 = 𝐻𝑑𝑥

(20a)

with the flow and jump sets

𝐶𝜏 = R𝑛𝑥 × [0, 𝜏𝑀 ], 𝐷𝜏 = R𝑛𝑥 × I, (20b)

where 𝜏 ∈ R is a timer keeping track of the time elapsed since the previous jump.Note
that H 𝜏 admits (after the first 𝑗𝑚 jumps) a larger set of solutions than SH (X0,U)
since the information of the flow and jump sets are replaced by the knowledge of
flow lengths in I only (as long as the inputs (𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑 , 𝑢𝑐, 𝑢𝑑) are defined along
the time domains of those extra solutions). But, as discussed in Section 1, when
the observer contains gains that are computed offline, based on the knowledge of
the possible flow lengths only, it is actually designed for H 𝜏 instead of H and
it is thus the detectability/observability of H 𝜏 that is relevant. In that case, the
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design depends only implicitly on the sets X0,U, 𝐶, and 𝐷 through the choice of I
satisfying Assumption 2.
In view of observer design and motivated by [10], we start by proposing a change

of variables decomposing the state 𝑥 ofH 𝜏 into components associatedwith different
types of observability. In order to guarantee the existence of the decomposition, we
assume in the next section that the flow pair (𝐹, 𝐻𝑐) is constant. However, the
subsequent results of this chapter still hold with (𝐹, 𝐻𝑐) varying, as long as the
transformation into the decomposition form exists and is invertible uniformly in
time as explained in Remark 3.

2.3 Observability from 𝒚𝒄 during flows

Assume (𝐹, 𝐻𝑐) is constant. Let the (flow) observability matrix be

O := row(𝐻𝑐, 𝐻𝑐𝐹, . . . , 𝐻𝑐𝐹
𝑛𝑥−1), (21)

and assume it is of rank 𝑛𝑜 := dim Im O < 𝑛𝑥 . Consider a basis (𝑣𝑖)1≤𝑖≤𝑛𝑥
of R𝑛𝑥

such that (𝑣𝑖)1≤𝑖≤𝑛𝑜 is a basis of the observable subspace and (𝑣𝑖)𝑛𝑜+1≤𝑖≤𝑛𝑥
is a

basis of the non-observable subspace ker O. Then, we define the invertible matrix
D :=

(
D𝑜 D𝑛𝑜

)
where

D𝑜 :=
(
𝑣1 . . . 𝑣𝑛𝑜

)
∈ R𝑛𝑥×𝑛𝑜 , (22a)

D𝑛𝑜 :=
(
𝑣𝑛𝑜+1 . . . 𝑣𝑛𝑥

)
∈ R𝑛𝑥×𝑛𝑛𝑜 , (22b)

which by definition satisfies for all 𝜏 ≥ 0,

OD𝑛𝑜 = 0, 𝐻𝑐𝑒
𝐹𝜏D𝑛𝑜 = 0. (23)

We denoteV := D−1 which we decompose consistently into two partsV =:
(
V𝑜

V𝑛𝑜

)
,

so thatV𝑜𝑥 represents the part of the state that is instantaneously observable during
flows (see [9, Theorem 6.O6]).
A first idea could be to stop the decomposition here and design a sufficiently fast

high-gain observer for V𝑜𝑥 while estimating the rest of the state V𝑛𝑜𝑥 through 𝑦𝑑
and detectability. However, as noticed in [10, Proposition 6], the fact that V𝑜𝑥 and
V𝑛𝑜𝑥 possibly interact with each other during flows prevents achieving stability by
further pushing the high gain. The case of such a decomposition where V𝑜𝑥 and
V𝑛𝑜𝑥 evolve independently during flows is exploited in a more general context in
[30]. Here, because the maps are linear, we can go further and solve this possible
coupling by more efficiently decoupling the state components as follows.
Indeed, the estimation of any state that is not instantaneously observable during

flows needs to take into account the combination of flows and jumps. That is why it
is relevant to exhibit explicitly this combination via the change of coordinates
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𝑥 ↦→ 𝑧 =

(
𝑧𝑜
𝑧𝑛𝑜

)
= V𝑒−𝐹𝜏𝑥 =

(
V𝑜

V𝑛𝑜

)
𝑒−𝐹𝜏𝑥, (24)

whose inverse transformation is

𝑥 = 𝑒𝐹𝜏D𝑧 = 𝑒𝐹𝜏 (D𝑜𝑧𝑜 + D𝑛𝑜𝑧𝑛𝑜), (25)

and which, according to (23), transformsH 𝜏 into

¤𝑧𝑜 = 𝐺𝑜 (𝜏)𝑢𝑐
¤𝑧𝑛𝑜 = 𝐺𝑛𝑜 (𝜏)𝑢𝑐
¤𝜏 = 1

𝑧+𝑜 = 𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜 + V𝑜𝑢𝑑
𝑧+𝑛𝑜 = 𝐽𝑛𝑜𝑜 (𝜏)𝑧𝑜 + 𝐽𝑛𝑜 (𝜏)𝑧𝑛𝑜 + V𝑛𝑜𝑢𝑑
𝜏+ = 0,

(26a)

with the flow and jump sets

R𝑛𝑜 × R𝑛𝑛𝑜 × [0, 𝜏𝑀 ], R𝑛𝑜 × R𝑛𝑛𝑜 × I, (26b)

and the measurements

𝑦𝑐 = 𝐻𝑐,𝑜 (𝜏)𝑧𝑜, 𝑦𝑑 = 𝐻𝑑,𝑜 (𝜏)𝑧𝑜 + 𝐻𝑑,𝑛𝑜 (𝜏)𝑧𝑛𝑜, (26c)

where 𝐺𝑜 (𝜏) = V𝑜𝑒
−𝐹𝜏 , 𝐺𝑛𝑜 (𝜏) = V𝑛𝑜𝑒

−𝐹𝜏 , 𝐽𝑜 (𝜏) = V𝑜𝐽𝑒
𝐹𝜏D𝑜, 𝐽𝑜𝑛𝑜 (𝜏) =

V𝑜𝐽𝑒
𝐹𝜏D𝑛𝑜, 𝐽𝑛𝑜𝑜 (𝜏) = V𝑛𝑜𝐽𝑒

𝐹𝜏D𝑜, 𝐽𝑛𝑜 (𝜏) = V𝑛𝑜𝐽𝑒
𝐹𝜏D𝑛𝑜,𝐻𝑐,𝑜 (𝜏) = 𝐻𝑐𝑒

𝐹𝜏D𝑜,
𝐻𝑑,𝑜 (𝜏) = 𝐻𝑑𝑒

𝐹𝜏D𝑜, and 𝐻𝑑,𝑛𝑜 (𝜏) = 𝐻𝑑𝑒
𝐹𝜏D𝑛𝑜. This idea of bringing at the

jumps the whole combination of flows and jumps is similar to the so-called equiv-
alent discrete-time system exhibited in [6] for jump-based observer designs. Notice
that by definition and thanks to linearity, the observability decomposition through
V ensures that the flow dynamics of 𝑧𝑜 and 𝑦𝑐 are totally independent of 𝑧𝑛𝑜,
which only impacts 𝑧𝑜 at jumps. In other words, the whole dependence of the ob-
servable part on the non-observable part via flows and jumps has been gathered at
the jumps. Besides, 𝑧𝑜 is by definition instantaneously observable from 𝑦𝑐. More
precisely, for any 𝛿 > 0, there exists 𝛼 > 0 such that the observability Gramian of
the continuous-time pair (0, 𝐻𝑐,𝑜 (𝜏)) satisfies∫ 𝑡+𝛿

𝑡

𝐻⊤
𝑐,𝑜 (𝑠)𝐻𝑐,𝑜 (𝑠)𝑑𝑠 =

∫ 𝑡+𝛿

𝑡

D⊤
𝑜 𝑒

𝐹⊤𝑠𝐻⊤
𝑐 𝐻𝑐𝑒

𝐹𝑠D𝑜𝑑𝑠 ≥ 𝛼 Id, ∀𝑡 ≥ 0.

(27)
Indeed, this Gramian corresponds to the observability Gramian of the pair (𝐹, 𝐻𝑐)
projected onto the observable subspace. This condition is thus related to the uniform
complete observability of the continuous-time pair (0, 𝐻𝑐,𝑜 (𝜏)) in the Kalman lit-
erature [16] (continuous-time version of the one in Definition 4), but here with an
arbitrarily small window 𝛿. Since 𝑧𝑜 is observable via 𝑦𝑐, we propose to estimate
𝑧𝑜 sufficiently fast during flows to compensate for the interaction with 𝑧𝑛𝑜 at jumps.
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Then, intuitively from system (26), information about 𝑧𝑛𝑜 may be drawn from two
sources: the jump output 𝑦𝑑 and the part of 𝑧𝑛𝑜 impacting 𝑧𝑜 at jumps, namely
𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜, which may become “visible” in 𝑧𝑜, via 𝑦𝑐 during the following flow
interval. This is illustrated in Example 2 below. Actually, we show next in Section
2.4 that the detectability of 𝑧𝑛𝑜 comes from these two sources of information only.

Example 2 Consider a hybrid system of form (1) with state 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4),
𝑢𝑐 = 0, 𝑢𝑑 = 0, and the matrices

𝐹 =

©«
0 −1 0 0
1 0 0 0
0 0 0 −2
0 0 2 0

ª®®®¬ , 𝐻𝑐 =
(
1 0 0 0

)
, 𝐽 =

©«
0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 1

ª®®®¬ , 𝐻𝑑 =
(
0 0 1 0

)
, (28)

with random flow lengths varying in some compact set I ⊂
(
0, 𝜋

2
)
. It can be seen

that only 𝑥1 and 𝑥2 are instantaneously observable during flows from 𝑦𝑐, but 𝑥3
impacts 𝑥1 at jumps (or 𝑦𝑑) and 𝑥4 impacts 𝑥3 during flows. Therefore, we may hope
to estimate the full state. In order to decouple those various impacts and analyze
detectability more easily, we proceed with the change of variables (24). We obtain

𝑧𝑜 =

(
cos(𝜏) sin(𝜏) 0 0
− sin(𝜏) cos(𝜏) 0 0

)
𝑥, 𝑧𝑛𝑜 =

(
0 0 cos(2𝜏) sin(2𝜏)
0 0 − sin(2𝜏) cos(2𝜏)

)
𝑥, (29)

and system (26) with the matrices 𝐽𝑜 (𝜏) =
(
0 0
0 0

)
, 𝐽𝑜𝑛𝑜 (𝜏) =

(
cos(2𝜏) − sin(2𝜏)

0 0

)
,

𝐽𝑛𝑜𝑜 (𝜏) =

(
0 0
0 0

)
, 𝐽𝑛𝑜 (𝜏) =

(
cos(2𝜏) − sin(2𝜏)
sin(2𝜏) cos(2𝜏)

)
, 𝐻𝑐,𝑜 (𝜏) =

(
cos(𝜏) − sin(𝜏)

)
,

𝐻𝑑,𝑜 (𝜏) =
(
0 0

)
, and 𝐻𝑑,𝑛𝑜 (𝜏) =

(
cos(2𝜏) − sin(2𝜏)

)
. It can be seen that in this

case, the terms 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜 and 𝐻𝑑,𝑛𝑜 (𝜏)𝑧𝑛𝑜 contain the same information on 𝑧𝑛𝑜
and both should be able to let us estimate this part.

Remark 3 In what follows, a varying pair (𝐹, 𝐻𝑐) can be considered as long as the
transformation into the form (26) satisfying (27) exists and is invertible uniformly
in time. This can be done with the transition matrix of 𝐹 replacing the exponential
form, if the observable subspace remains the same at all times. In that case, the jump
matrices 𝐽𝑜, 𝐽𝑜𝑛𝑜, 𝐽𝑛𝑜𝑜, 𝐽𝑛𝑜, 𝐻𝑐,𝑜, 𝐻𝑑,𝑜, and 𝐻𝑑,𝑛𝑜 are (discrete) known inputs that
are no longer functions of 𝜏 only, but of the (discrete) jump index, which is not
considered in this chapter. Similarly, 𝐽 could vary at each jump as long as every
related condition in the rest of this chapter holds uniformly in 𝑢𝑑 .

2.4 Detectability analysis

Wefirst provide amore specific characterization of the (pre-)asymptotic detectability
of system (26) in the case of zero inputs (𝑢𝑐, 𝑢𝑑). Indeed, we will see in Theorem 2
that this detectability is relevant to characterize that of the initial systemH .
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Lemma 1 System (26) with known jump times and zero inputs (𝑢𝑐, 𝑢𝑑) is pre-
asymptotically detectable if and only if any of its complete solutions (𝑧, 𝜏) with zero
inputs (𝑢𝑐, 𝑢𝑑) and flow and jump outputs satisfying

𝑦𝑐 (𝑡, 𝑗) = 0, ∀𝑡 ∈ int(T𝑗 (𝑧)),∀ 𝑗 ∈ dom 𝑗 𝑧, (30a)
𝑦𝑑 (𝑡 𝑗 , 𝑗 − 1) = 0, ∀ 𝑗 ∈ dom 𝑗 𝑧, 𝑗 ≥ 1, (30b)

verifies
lim

𝑡+ 𝑗→+∞
(𝑡 , 𝑗) ∈dom 𝑧

𝑧(𝑡, 𝑗) = 0. (31)

Proof First, assume system (26) is pre-asymptotically detectable. Let (𝑧, 𝜏) be a
complete solution to system (26)with zero inputs (𝑢𝑐, 𝑢𝑑) andwith outputs satisfying
(30). Notice that the hybrid arc (𝑧′, 𝜏), with dom 𝑧′ = dom 𝑧 and 𝑧′ constantly zero,
is also solution to system (26) (thanks to linearity in the maps and the inputs (𝑢𝑐, 𝑢𝑑)
being zero). It can be seen that this solution is complete and also satisfies (30). By the
pre-asymptotic detectability of system (26),we have lim 𝑡+ 𝑗→+∞

(𝑡 , 𝑗) ∈dom 𝑧

|𝑧(𝑡, 𝑗)−𝑧′(𝑡, 𝑗) | =

0, which implies that lim 𝑡+ 𝑗→+∞
(𝑡 , 𝑗) ∈dom 𝑧

𝑧(𝑡, 𝑗) = 0. Second, let us prove the converse. For

that, assume that any complete solution to system (26) with zero inputs (𝑢𝑐, 𝑢𝑑) and
with outputs verifying (30) is such that 𝑧 converges to zero. Consider two complete
solutions (𝑧𝑎, 𝜏𝑎) and (𝑧𝑏, 𝜏𝑏) to system (26) with dom(𝑧𝑎, 𝜏𝑎) = dom(𝑧𝑏, 𝜏𝑏), with
zero inputs (𝑢𝑐, 𝑢𝑑), and with outputs satisfying (4). By definition of the flow set,
𝑧𝑎 and 𝑧𝑏 jump at least once. Because the timers are both reset to zero at jumps,
we have 𝜏𝑎 (𝑡, 𝑗) = 𝜏𝑏 (𝑡, 𝑗) := 𝜏(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom 𝑧𝑎 such that 𝑡 ≥ 𝑡1 and
𝑗 ≥ 1. By removing [0, 𝑡1] × {0} from the time domain, we see that (𝑧𝑎 − 𝑧𝑏, 𝜏)
is a complete solution to system (26) with outputs verifying (30) (thanks to system
(26) having linear maps in 𝑧 and the flow and jump sets being independent of 𝑧).
Therefore, by assumption, we have lim 𝑡+ 𝑗→+∞

(𝑡 , 𝑗) ∈dom 𝑧𝑎

(𝑧𝑎 − 𝑧𝑏) (𝑡, 𝑗) = 0, which implies

the (pre-)asymptotic detectability of system (26). □

Note that the equivalence of the incremental detectability as in Definition 2 with
the zero detectability as in Lemma 1 is classical for linear continuous- or discrete-
time systems, but it is not automatic for hybrid systems with linear maps due to the
flow/jump conditions. Here, it holds only because:

• The flow and jump conditions in system (26) do not depend on 𝑧 but only on 𝜏;
• 𝜏 is determined uniquely after the first jump by the time domain of solutions;
• The inputs (𝑢𝑐, 𝑢𝑑) are removed, thus avoiding a restriction of solutions to system
(26) due to a mismatch of time domains.

Theorem 1 Assume that 0 ∉ I and I is compact. Then, the following three state-
ments are equivalent:

1. The hybrid system (20) with zero inputs (𝑢𝑐, 𝑢𝑑) and known jump times is asymp-
totically detectable;
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2. The hybrid system (26) with zero inputs (𝑢𝑐, 𝑢𝑑) and known jump times is asymp-
totically detectable;

3. The discrete-time system defined as

𝑧𝑛𝑜,𝑘+1 = 𝐽𝑛𝑜 (𝜏𝑘)𝑧𝑛𝑜,𝑘 , 𝑦𝑘 = 𝐻𝑑,ext (𝜏𝑘)𝑧𝑛𝑜,𝑘 , (32)

where 𝐻𝑑,ext (𝜏𝑘) =

(
𝐻𝑑,𝑛𝑜 (𝜏𝑘)
𝐽𝑜𝑛𝑜 (𝜏𝑘)

)
, with 𝜏𝑘 ∈ I for all 𝑘 ∈ N, is asymptotically

detectable.

Proof First, notice that all maximal solutions to systems (20) and (26) are complete
because their dynamics maps are linear and the flow and jump conditions do not
depend on the state but only on the timer. Notice also that since 0 ∉ I, consecutive
jumps cannot happen, so that condition (4a) is equivalent to (6) following Remark 1.
Because systems (20) and (26) are the same system modulo a uniformly invertible
change of variables, 1. and 2. are equivalent. Then, let us prove that 2. implies 3. So
assume 2. holds and consider a solution (𝑧𝑛𝑜,𝑘)𝑘∈N to system (32) with input (𝜏𝑘)𝑘∈N
in I, such that 𝑦𝑘 = 0 for all 𝑘 ∈ N. We want to show that (𝑧𝑛𝑜,𝑘)𝑘∈N asymptotically
goes to zero. For that, we build and analyze the complete solution 𝑧 = (𝑧𝑜, 𝑧𝑛𝑜) to
system (26) initialized as 𝑧𝑜 (0, 0) = 0, 𝑧𝑛𝑜 (0, 0) = 𝑧𝑛𝑜,0, and 𝜏(0, 0) = 0with jumps
verifying 𝜏(𝑡 𝑗 , 𝑗 − 1) = 𝜏𝑗−1 ∈ I for all 𝑗 ≥ 1 and zero inputs (𝑢𝑐, 𝑢𝑑). It follows2
from the fact that (i) 𝑧𝑜 and 𝑧𝑛𝑜 are constant during flows, (ii) 𝑦𝑐 is independent of
𝑧𝑛𝑜, and (iii) 𝑦𝑘 = 0 for all 𝑘 ∈ N, that for all 𝑗 ∈ N,

𝑧𝑜 (𝑡, 𝑗) = 0, ∀𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1],
𝑧𝑛𝑜 (𝑡, 𝑗) = 𝑧𝑛𝑜, 𝑗 , ∀𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1],
𝑦𝑐 (𝑡, 𝑗) = 0, ∀𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1],

𝑧𝑜 (𝑡 𝑗+1, 𝑗 + 1) = 𝐽𝑜𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜, 𝑗 = 0,
𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗 + 1) = 𝐽𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜, 𝑗 = 𝑧𝑛𝑜, 𝑗+1,

𝑦𝑑 (𝑡 𝑗+1, 𝑗) = 𝐻𝑑,𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜, 𝑗 = 0.

By 2. and Lemma 1, this implies lim 𝑡+ 𝑗→+∞
(𝑡 , 𝑗) ∈dom 𝑧

𝑧𝑛𝑜 (𝑡, 𝑗) = 0. Because this solution

𝑧𝑛𝑜 coincides with (𝑧𝑛𝑜,𝑘)𝑘∈N at the jumps, we deduce lim𝑘→+∞
𝑘∈N

𝑧𝑛𝑜,𝑘 = 0, implying
3. Finally, let us prove that 3. implies 2. Consider a complete solution (𝑧, 𝜏) =

(𝑧𝑜, 𝑧𝑛𝑜, 𝜏) to system (26) with zero inputs (𝑢𝑐, 𝑢𝑑) and such that (30) holds. By
definition of the jump set, for all 𝑗 ∈ dom 𝑗 𝑧, 𝜏𝑗 := 𝜏(𝑡 𝑗+1, 𝑗) ∈ I. Since 0 ∉ I, the
solution admits a dwell time and, becausewe look for an asymptotic property, wemay
assume without any loss of generality that the solution starts with a flow, possibly
overlooking the first part of the domain (with 𝑗 = 0) in case of a jump at time 0. Since
𝑧𝑜 is instantaneously observable during flows according to (27), 𝑦𝑐 = 0 implies that
𝑧𝑜 is zero during each flow interval. Next, as 0 ∉ I, there is no more than one jump at
each jump time so that 𝑧𝑜 (𝑡, 𝑗) = 0 for all (𝑡, 𝑗) ∈ dom 𝑧. Besides, sinceI is compact,

2 Note that 0 ∉ I and the compactness of I are not needed to prove this direction.
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dom 𝑗 𝑧 = N and from (26a), we then have 𝐽𝑜𝑛𝑜 (𝜏(𝑡 𝑗 , 𝑗 − 1))𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗 − 1) = 0 for
all 𝑗 ∈ dom 𝑗 𝑧 with 𝑗 ≥ 1. Therefore, since 𝑧𝑛𝑜 is constant during flows and
𝑦𝑑 (𝑡 𝑗 , 𝑗 − 1) = 0, for all 𝑗 ∈ dom 𝑗 𝑧, 𝑗 ≥ 1, we have for all 𝑗 ∈ N,

𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗 + 1) = 𝐽𝑛𝑜 (𝜏(𝑡 𝑗+1, 𝑗))𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗) = 𝐽𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗),
𝐻𝑑,𝑛𝑜 (𝜏(𝑡 𝑗+1, 𝑗))𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗) = 𝐻𝑑,𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗) = 0,
𝐽𝑜𝑛𝑜 (𝜏(𝑡 𝑗+1, 𝑗))𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗) = 𝐽𝑜𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗) = 0.

By considering the sequence (𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗)) 𝑗∈N solution to system (32) with input
(𝜏𝑗 ) 𝑗∈N in I and applying 3., we obtain lim 𝑗→+∞

𝑗∈N
𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗) = 0. Since 𝑧𝑛𝑜 is

constant during flows, we have lim 𝑡+ 𝑗→+∞
(𝑡 , 𝑗) ∈dom 𝑧

= 0, implying 2. according to Lemma

1. □

We thus conclude that (at least when the inputs (𝑢𝑐, 𝑢𝑑) are zero) the asymptotic
detectability of system (20) requires 𝑧𝑛𝑜 to be asymptotically detectable through the
output made of the measured output 𝑦𝑑 and the fictitious one 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜, which
describes how 𝑧𝑛𝑜 impacts 𝑧𝑜 at jumps. We insist also that the detectability of 𝑧𝑛𝑜
comes from the combination of flows and jumps and not due to jumps alone since
the useful information contained in the flow dynamics and output is gathered at the
jumps via the transformation (24).
It follows from this analysis that the design of an asymptotic observer for H

with gains computed offline from the knowledge of I only (without any special
consideration of X0,U, 𝐶, or 𝐷), namely an observer for system (20), without
considering the possible restrictions of time domains by the inputs (𝑢𝑐, 𝑢𝑑), requires
the asymptotic detectability of the discrete-time system (32). This is because any time
domain with flow lengths inI is a priori possible. This will be done in Section 3 with
an LMI-based design. On the other hand, if we consider the more precise problem
of observer design with time domains restricted to that of solutions in SH (X0,U),
we end up with the following sufficient condition for asymptotic detectability ofH .

Theorem 2 Suppose Assumptions 1 and 2 hold. Then,H initialized inX0 with inputs
inU is asymptotically detectable if for each 𝑥 ∈ SH (X0,U), the discrete-time system
(32)with input (𝜏𝑘)𝑘∈N defined as 𝜏𝑘 = 𝑡𝑘+1 (𝑥)−𝑡𝑘 (𝑥) for all 𝑘 ∈ N is asymptotically
detectable.

Proof Pick solutions 𝑥𝑎 and 𝑥𝑏 inSH (X0,U)with the same inputs (𝐹, 𝐽, 𝐻𝑐, 𝐻𝑑 , 𝑢𝑐, 𝑢𝑑),
such that dom 𝑥𝑎 = dom 𝑥𝑏, and with outputs 𝑦𝑎,𝑐, 𝑦𝑏,𝑐, 𝑦𝑎,𝑑 , 𝑦𝑏,𝑑 satisfying (4). By
Assumptions 1 and 2, these solutions are complete with dom 𝑗 𝑥𝑎 = dom 𝑗 𝑥𝑏 = N.
By Assumption 2, for all 𝑗 ≥ 𝑗𝑚, 𝜏𝑗 := 𝑡 𝑗+1 (𝑥𝑎) − 𝑡 𝑗 (𝑥𝑎) = 𝑡 𝑗+1 (𝑥𝑏) − 𝑡 𝑗 (𝑥𝑏) ∈ I.
Since 0 ∉ I, the solutions admit a dwell time after the first 𝑗𝑚 jumps. Since we
look for an asymptotic property, we may discard the first part of the solutions with
𝑗 < 𝑗𝑚, and assume without any loss of generality that they start with a flow interval
and have a dwell time. Then, condition (4a) is equivalent to (6) following Remark 1.
Consider the hybrid signals (𝑧𝑎, 𝑧𝑏, 𝜏) defined for all (𝑡, 𝑗) ∈ dom 𝑥𝑎 as
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𝜏(𝑡, 𝑗) = 𝑡 − 𝑡 𝑗 ,(
𝑧𝑎,𝑜 (𝑡, 𝑗)
𝑧𝑎,𝑛𝑜 (𝑡, 𝑗)

)
=

(
V𝑜

V𝑛𝑜

)
𝑒−𝐹𝜏 (𝑡 , 𝑗)𝑥𝑎 (𝑡, 𝑗),(

𝑧𝑏,𝑜 (𝑡, 𝑗)
𝑧𝑏,𝑛𝑜 (𝑡, 𝑗)

)
=

(
V𝑜

V𝑛𝑜

)
𝑒−𝐹𝜏 (𝑡 , 𝑗)𝑥𝑏 (𝑡, 𝑗).

We see that both (𝑧𝑎, 𝜏) and (𝑧𝑏, 𝜏) are solutions to system (26) with the same 𝜏-
dependent matrices (𝐺𝑜, 𝐺𝑛𝑜, 𝐽𝑜, 𝐽𝑜𝑛𝑜, 𝐽𝑛𝑜𝑜, 𝐽𝑛𝑜, 𝐻𝑐,𝑜, 𝐻𝑑,𝑜, 𝐻𝑑,𝑛𝑜) and the same
inputs (𝑢𝑐, 𝑢𝑑). Since 𝑧𝑎,𝑜 and 𝑧𝑏,𝑜 are instantaneously observable during flows
according to (27), 𝑦𝑎,𝑐 = 𝑦𝑏,𝑐 implies that 𝑧𝑎,𝑜 = 𝑧𝑏,𝑜 during each flow interval.
Next, as 0 ∉ I, there is no more than one jump at each jump time so that 𝑧𝑎,𝑜 (𝑡, 𝑗) =
𝑧𝑏,𝑜 (𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom 𝑥𝑎. Besides, since𝑢𝑑 is the same for both solutions, from
(26a), we have 𝐽𝑜𝑛𝑜 (𝜏(𝑡 𝑗 , 𝑗 − 1))𝑧𝑎,𝑛𝑜 (𝑡 𝑗 , 𝑗 − 1) = 𝐽𝑜𝑛𝑜 (𝜏(𝑡 𝑗 , 𝑗 − 1))𝑧𝑏,𝑛𝑜 (𝑡 𝑗 , 𝑗 − 1)
for all 𝑗 ≥ 1. Therefore, since 𝑧𝑎,𝑛𝑜 and 𝑧𝑏,𝑛𝑜 evolve in the same way during flows
(with the same 𝑢𝑐) and 𝑦𝑎,𝑑 (𝑡 𝑗 , 𝑗 − 1) = 𝑦𝑏,𝑑 (𝑡 𝑗 , 𝑗 − 1), for all 𝑗 ≥ 1, by defining
𝑧𝑛𝑜 = 𝑧𝑎,𝑛𝑜 − 𝑧𝑏,𝑛𝑜, we have that 𝑧𝑛𝑜 is constant during flows and for all 𝑗 ∈ N,

𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗 + 1) = 𝐽𝑛𝑜 (𝜏(𝑡 𝑗+1, 𝑗))𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗) = 𝐽𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗),
𝐻𝑑,𝑛𝑜 (𝜏(𝑡 𝑗+1, 𝑗))𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗) = 𝐻𝑑,𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗) = 0,
𝐽𝑜𝑛𝑜 (𝜏(𝑡 𝑗+1, 𝑗))𝑧𝑛𝑜 (𝑡 𝑗+1, 𝑗) = 𝐽𝑜𝑛𝑜 (𝜏𝑗 )𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗) = 0.

By considering the sequence (𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗)) 𝑗∈N solution to system (32) with input
(𝜏𝑗 ) 𝑗∈N in I and using the asymptotic detectability of system (32) for the particular
sequence (𝜏𝑘)𝑘∈N generated by 𝑥𝑎 and 𝑥𝑏, we obtain lim 𝑗→+∞

𝑗∈N
𝑧𝑛𝑜 (𝑡 𝑗 , 𝑗) = 0. Since

𝑧𝑛𝑜 is constant during flows, we have lim 𝑡+ 𝑗→+∞
(𝑡 , 𝑗) ∈dom 𝑥𝑎

𝑧𝑛𝑜 (𝑡, 𝑗) = 0, which means that

lim 𝑡+ 𝑗→+∞
(𝑡 , 𝑗) ∈dom 𝑥𝑎

(𝑧𝑎,𝑛𝑜 (𝑡, 𝑗) − 𝑧𝑏,𝑛𝑜 (𝑡, 𝑗)) = 0, implying thatH initialized in X0 with

inputs inU is asymptotically detectable according to Lemma 1. □

UnlikeTheorem1, Theorem2does not give a necessary condition for detectability
(and thus observer design). The reason is that the flow and jump conditions of H
are not taken into account in system (32). But it still suggests us to build observers
forH under observability/detectability conditions on system (32) for the flow length
sequences (𝜏𝑘)𝑘∈N appearing in SH (X0,U). This will be done in Section 3 and 4
through LMI- or KKL-based design.

Remark 4 Compared to the preliminary work [29], the observer designs in this
chapter do not require an extra (constant) transformation decoupling the part of 𝑧𝑛𝑜
detectable from 𝑦𝑑 and the part detectable from the fictitious output 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜.
We instead consider an extended output in system (32) and the decomposition (26)
proposed in this chapter is thus less conservative. For instance, Example 2 can be
cast into the decomposition (26), but fails to fall into the scope of the decomposition
of [29] unless I =

{
𝜋
2
}
.
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Example 3 Consider the system in Example 2. It is possible to check, by computing
the (time-varying) observability matrix of the pair (𝐽𝑛𝑜 (𝜏𝑘), 𝐻𝑑,𝑛𝑜 (𝜏𝑘)), that system
(32) is observable for any sequence (𝜏𝑘)𝑘∈N as long as sin(𝜏𝑘 + 𝜏𝑘+1) ≠ 0 at some
𝑘 ∈ N, which is the case for 𝜏𝑘 ∈ I since I ⊂

(
0, 𝜋

2
)
. This implies in particular

that system (32) is detectable. Actually, even if 𝐻𝑑 = 0, i.e., no output is available
at jumps, the pair (𝐽𝑛𝑜 (𝜏𝑘), 𝐽𝑜𝑛𝑜 (𝜏𝑘)) is also observable using the same arguments.
This means that 𝑧𝑛𝑜 is actually observable through the fictitious measurement of 𝑧𝑜
at jumps. We see from this example that thanks to the flow-jump coupling, by using
𝑧𝑜 as a fictitious measurement, state components that are not observable during flows
from the flow output may become observable via jumps even without any additional
measurements at jumps (hidden dynamics), only through the way they impact the
observable ones.

3 LMI-based observer design from discrete quadratic
detectability in observability decomposition

Inspired by the detectability analysis of Theorem 1, we propose a first observer
design under the following detectability assumption.

Assumption 3 Given 𝜏𝑀 and I defined in Assumption 2, there exist 𝑄𝑛𝑜 ∈ S𝑛𝑛𝑜
>0 ,

𝐿𝑑,𝑛𝑜 : [0, 𝜏𝑀 ] → R𝑛𝑛𝑜×𝑛𝑦,𝑑 bounded on [0, 𝜏𝑀 ] and continuous on I, and 𝐾𝑛𝑜 ∈
R𝑛𝑛𝑜×𝑛𝑜 such that

★⊤𝑄𝑛𝑜

(
𝐽𝑛𝑜 (𝜏) −

(
𝐿𝑑,𝑛𝑜 (𝜏) 𝐾𝑛𝑜

) (𝐻𝑑,𝑛𝑜 (𝜏)
𝐽𝑜𝑛𝑜 (𝜏)

))
−𝑄𝑛𝑜 < 0, ∀𝜏 ∈ I. (33)

We refer the reader to Remark 5 for constructive methods to solve (33), where it
is shown that the solvability of (33) in 𝑄𝑛𝑜 and

(
𝐿𝑑,𝑛𝑜 (𝜏) 𝐾𝑛𝑜

)
is equivalent to that

of a reduced LMI involving 𝑄𝑛𝑜 only. Consistently with Theorem 1, Assumption 3

requires the detectability of the pair
(
𝐽𝑛𝑜 (𝜏),

(
𝐻𝑑,𝑛𝑜 (𝜏)
𝐽𝑜𝑛𝑜 (𝜏)

))
for each frozen 𝜏 ∈ I. But

it is actually stronger because it further requires𝑄𝑛𝑜 and𝐾𝑛𝑜 to be independent of 𝜏. It
corresponds to a stronger version of the quadratic detectability of system (32) defined
in [32]. Actually, the detectability of Assumption 3 allows us to build an observer for
any sequence of flow lengths (𝜏𝑘)𝑘∈N ∈ I and thus requires the detectability of the
discrete-time pair for any such sequences, which is still consistent with the result of
Theorem 1. Note that the reason why 𝐾𝑛𝑜 is required to be independent of 𝜏 is that
it is used to carry out another change of variables in the proof of Theorem 3 below,
allowing us to exhibit the fictitious output in the analysis.
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3.1 LMI-based observer design in the 𝒛-coordinates

Because the flow output matrix 𝐻𝑐,𝑜 (·) varies and satisfies the observability con-
dition (27), we design a flow-based Kalman-like observer of 𝑧𝑜 during flows using
𝑦𝑐 [7]. Its advantage over a Kalman observer is that it admits a strict Lyapunov
function, allowing for direct robust Lyapunov analysis. Besides, it provides a direct
relationship between the Lyapunov matrix and the observability Gramian. Then, as
suggested by the detectability analysis, 𝑧𝑛𝑜 should be estimated thanks to both 𝑦𝑑
and its interaction with 𝑧𝑜 at jumps via a fictitious output. The latter is not available
for injection in the observer, but it becomes visible through 𝑧𝑜 after the jump, and
thus through 𝑦𝑐 during flows. This justifies correcting the estimate of 𝑧𝑛𝑜 during
flows with 𝑦𝑐, via the gain 𝐾𝑛𝑜. The dynamics of the observer are then given by

¤̂𝑧𝑜 = 𝐺𝑜 (𝜏)𝑢𝑐 + 𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏) (𝑦𝑐 − 𝐻𝑐,𝑜 (𝜏)𝑧𝑜)

¤̂𝑧𝑛𝑜 = 𝐺𝑛𝑜 (𝜏)𝑢𝑐 + 𝐾𝑛𝑜𝑃
−1𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏) (𝑦𝑐 − 𝐻𝑐,𝑜 (𝜏)𝑧𝑜)
¤𝑃 = − _𝑃 + 𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)
¤𝜏 = 1

𝑧+𝑜 = 𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜 + V𝑜𝑢𝑑
𝑧+𝑛𝑜 = 𝐽𝑛𝑜𝑜 (𝜏)𝑧𝑜 + 𝐽𝑛𝑜 (𝜏)𝑧𝑛𝑜 + V𝑛𝑜𝑢𝑑

+ 𝐿𝑑,𝑛𝑜 (𝜏) (𝑦𝑑 − 𝐻𝑑,𝑜 (𝜏)𝑧𝑜 − 𝐻𝑑,𝑛𝑜 (𝜏)𝑧𝑛𝑜)
𝑃+ = 𝑃0
𝜏+ = 0,

(34)

with jumps triggered at the same time as H in the same way as observer (2),
𝑃0 ∈ S𝑛𝑜

>0 , 𝐾𝑛𝑜 and 𝐿𝑑,𝑛𝑜 given by Assumption 3, and where 𝜏 ↦→ 𝑅(𝜏) ∈ S𝑛𝑦,𝑐

>0 is a
positive definite weighting matrix that is defined and is continuous on [0, 𝜏𝑀 ] to be
chosen arbitrarily. The estimate is then recovered by using (25) on 𝑧 with the global
exponential stability (GES) of the estimation error as stated next.

Theorem 3 Under Assumptions 1, 2, and 3, given any 𝑃0 ∈ S𝑛𝑜
>0 , there exists _★ > 0

such that for any _ > _★, there exist 𝜌1 > 0 and _1 > 0 such that for any solution
𝑥 ∈ SH (X0,U) and any solution (𝑧, 𝑃, 𝜏) to observer (34) with 𝑃(0, 0) = 𝑃0,
𝜏(0, 0) = 0, and jumps triggered at the same time as in 𝑥, (𝑧, 𝑃, 𝜏) is complete and
we have

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | ≤ 𝜌1 |𝑥(0, 0) − 𝑥(0, 0) |𝑒−_1 (𝑡+ 𝑗) , ∀(𝑡, 𝑗) ∈ dom 𝑥, (35)

with 𝑥 obtained by 𝑥 = 𝑒𝐹𝜏D𝑧 with D defined in (25).

Proof Consider a solution 𝑥 ∈ SH (X0,U) and a solution (𝑧, 𝑃, 𝜏) to observer (34)
with 𝑃(0, 0) = 𝑃0 and 𝜏(0, 0) = 0, and jumps triggered at the same time as in 𝑥. By
Assumption 1, it is complete and so is (𝑧, 𝑃, 𝜏). Following (24), define

𝑧(𝑡, 𝑗) := V𝑒−𝐹𝜏 (𝑡 , 𝑗)𝑥(𝑡, 𝑗), ∀(𝑡, 𝑗) ∈ dom 𝑥, (36)
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and consider the error 𝑧 = (𝑧𝑜, 𝑧𝑛𝑜) = (𝑧𝑜 − 𝑧𝑜, 𝑧𝑛𝑜 − 𝑧𝑛𝑜). Because the flow lengths
of 𝑥 are in I by Assumption 2 after the first 𝑗𝑚 jumps only, the proof consists of two
parts: first, we use Lemma 2 to show the exponential convergence of 𝑧 starting at
hybrid time (𝑡 𝑗𝑚 , 𝑗𝑚) by putting the error dynamics into the appropriate form, and
then, we analyze the behavior of the error before (𝑡 𝑗𝑚 , 𝑗𝑚) using Lemma 3. Consider
first the solution (𝑧, 𝑃, 𝜏) starting from (𝑡 𝑗𝑚 , 𝑗𝑚). According to Assumption 2 and
since the observer’s jumps are synchronized with those ofH , (𝑧, 𝑃, 𝜏) is solution to

¤̃𝑧𝑜 = − 𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)𝑧𝑜

¤̃𝑧𝑛𝑜 = − 𝐾𝑛𝑜𝑃
−1𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)𝑧𝑜
¤𝑃 = − _𝑃 + 𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)
¤𝜏 = 1

𝑧+𝑜 = 𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜
𝑧+𝑛𝑜 = (𝐽𝑛𝑜𝑜 (𝜏) − 𝐿𝑑,𝑛𝑜 (𝜏)𝐻𝑑,𝑜 (𝜏))𝑧𝑜 + (𝐽𝑛𝑜 (𝜏) − 𝐿𝑑,𝑛𝑜 (𝜏)𝐻𝑑,𝑛𝑜 (𝜏))𝑧𝑛𝑜
𝑃+ = 𝑃0
𝜏+ = 0,

(37a)
with the flow and jump sets

R𝑛𝑜 × R𝑛𝑛𝑜 × R𝑛𝑜×𝑛𝑜 × [0, 𝜏𝑀 ], R𝑛𝑜 × R𝑛𝑛𝑜 × R𝑛𝑜×𝑛𝑜 × I. (37b)

We next perform the change of variables

[̃ = 𝑧𝑛𝑜 − 𝐾𝑛𝑜𝑧𝑜, (38)

which transforms the error system (37) into

¤̃𝑧𝑜 = − 𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)𝑧𝑜

¤̃[ = 0
¤𝑃 = − _𝑃 + 𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)
¤𝜏 = 1

𝑧+𝑜 = 𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)[̃
[̃+ = (𝐽𝑛𝑜𝑜 (𝜏) − 𝐿𝑑,𝑛𝑜 (𝜏)𝐻𝑑,𝑜 (𝜏))𝑧𝑜 + 𝐽[ (𝜏)[̃
𝑃+ = 0
𝜏+ = 0,

(39)

with the same flow and jump sets where 𝐽𝑜 (𝜏) = 𝐽𝑜 (𝜏) + 𝐽𝑜𝑛𝑜 (𝜏)𝐾𝑛𝑜, 𝐽𝑛𝑜𝑜 (𝜏) =
𝐽𝑛𝑜𝑜 (𝜏)+𝐽𝑛𝑜 (𝜏)𝐾𝑛𝑜−𝐾𝑛𝑜𝐽𝑜 (𝜏)−𝐾𝑛𝑜𝐽𝑜𝑛𝑜 (𝜏)𝐾𝑛𝑜,𝐻𝑑,𝑜 (𝜏) = 𝐻𝑑,𝑜 (𝜏)+𝐻𝑑,𝑛𝑜 (𝜏)𝐾𝑛𝑜,
and 𝐽[ (𝜏) = 𝐽𝑛𝑜 (𝜏)−𝐿𝑑,𝑛𝑜 (𝜏)𝐻𝑑,𝑛𝑜 (𝜏)−𝐾𝑛𝑜𝐽𝑜𝑛𝑜 (𝜏), with the flow setR𝑛𝑜×R𝑛𝑛𝑜×
[0, 𝜏𝑀 ] and the jump set R𝑛𝑜 × R𝑛𝑛𝑜 × I. From Assumption 3, 𝐽[ (𝜏) is Schur for
all 𝜏 ∈ I, and more precisely, there exists 𝑄[ ∈ S𝑛𝑛𝑜

>0 such that

𝐽⊤[ (𝜏)𝑄[𝐽[ (𝜏) −𝑄[ < 0, ∀𝜏 ∈ I. (40)
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Using Lemma 2, we proceed to prove the GES of the error (𝑧𝑜, [̃) with respect to the
value (𝑧𝑜, [̃) (𝑡 𝑗𝑚 , 𝑗𝑚). Then the GES with respect to (𝑧𝑜, [̃) (0, 0) is proven using
Lemma 3. Last, because the transformations (24) and (38) are linear with 𝜏 ↦→ 𝑒𝐹𝜏

bounded with a strictly positive lower bound on the compact set [0, 𝜏𝑀 ], we obtain

(35) observing that (𝑧𝑜, [̃) =
(

V𝑜

V𝑛𝑜 − 𝐾𝑛𝑜V𝑜

)
𝑒−𝐹𝜏 (𝑥 − 𝑥). □

Remark 5 Applying Schur’s lemma and then the elimination lemma [8] to (33), we
see that 𝑄𝑛𝑜 ∈ S𝑛𝑛𝑜

>0 exists if and only if there exists a solution to the LMI

©«
(
𝐻𝑑,𝑛𝑜 (𝜏)
𝐽𝑜𝑛𝑜 (𝜏)

)⊥⊤
𝑄𝑛𝑜

(
𝐻𝑑,𝑛𝑜 (𝜏)
𝐽𝑜𝑛𝑜 (𝜏)

)⊥
★

𝑄𝑛𝑜𝐽𝑛𝑜 (𝜏)
(
𝐻𝑑,𝑛𝑜 (𝜏)
𝐽𝑜𝑛𝑜 (𝜏)

)⊥
𝑄𝑛𝑜

ª®®®¬ > 0, ∀𝜏 ∈ I. (41)

If such a 𝑄𝑛𝑜 is obtained, the gains 𝐿𝑑,𝑛𝑜 (·) and 𝐾𝑛𝑜 are then found by using
(33) with 𝑄𝑛𝑜 known. If I is infinite, then there is an infinite number of LMIs to
solve. Actually, it is worth noting that the exponential term 𝑒𝐹𝜏 contained in all the
𝜏-dependent matrices in (41) can be expanded using residue matrices [12], as

𝑒𝐹𝜏 =

𝜎𝑟∑︁
𝑖=1

𝑚𝑟
𝑖∑︁

𝑗=1
𝑅𝑖 𝑗𝑒

_𝑖 𝜏
𝜏 𝑗−1

( 𝑗 − 1)!

+
𝜎𝑐∑︁
𝑖=1

𝑚𝑐
𝑖∑︁

𝑗=1
2𝑒ℜ(_𝑖)𝜏 (ℜ(𝑅𝑖 𝑗 ) cos(ℑ(_𝑖)𝜏) − ℑ(𝑅𝑖 𝑗 ) sin(ℑ(_𝑖)𝜏))

𝜏 𝑗−1

( 𝑗 − 1)! ,

(42)

where 𝜎𝑟 and 𝜎𝑐 are the numbers of distinct real eigenvalues and complex conjugate
eigenvalue pairs; 𝑚𝑟

𝑖
and 𝑚𝑐

𝑖
are the multiplicity of the real eigenvalue _𝑖 and

of the complex conjugate eigenvalue pair _𝑖 , _∗𝑖 in the minimal polynomial of 𝐹;
𝑅𝑖 𝑗 ∈ R𝑛𝑥×𝑛𝑥 are matrices corresponding to the residues associated to the partial
fraction expansion of (𝑠𝐼−𝐹)−1. This in turn allows 𝑒𝐹𝜏 to bewritten as a finite sumof
matrices affine in 𝑁 scalar functions 𝛽𝑖 𝑗 = 𝑒_𝑖 𝜏𝜏 𝑗−1, 𝛾𝑖 𝑗 = 𝑒ℜ(_𝑖)𝜏 cos(ℑ(_𝑖)𝜏)𝜏 𝑗−1,
and 𝛾∗

𝑖 𝑗
= 𝑒ℜ(_𝑖)𝜏 sin(ℑ(_𝑖)𝜏)𝜏 𝑗−1. It then implies that (41) can be solved in a

polytopic approach, i.e., the LMIs are satisfied for all 𝜏 ∈ I compact if they are
satisfied at the finite number 2𝑁 of vertices of the polytope formed by these scalar
functions when 𝜏 varies in I. Alternatively, the LMIs can be solved in a grid-based
approach followed by post-analysis of the solution’s stability as in [32], possibly with
a theoretical proof extended from [24].
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3.2 LMI-based observer design in the 𝒙-coordinates

In this section, we show that the observer can equivalently be implemented directly
in the original 𝑥-coordinates, with dynamics given by

¤̂𝑥 = 𝐹𝑥 + 𝑢𝑐 + P𝐻⊤
𝑐 𝑅

−1 (𝜏) (𝑦𝑐 − 𝐻𝑐𝑥)
¤P = _P + 𝐹P + P𝐹⊤ − P𝐻⊤

𝑐 𝑅
−1 (𝜏)𝐻𝑐P

¤𝜏 = 1

𝑥+ = 𝐽𝑥 + 𝑢𝑑 + D𝑛𝑜𝐿𝑑,𝑛𝑜 (𝜏) (𝑦𝑑 − 𝐻𝑑𝑥)
P+ = (D𝑜 + D𝑛𝑜𝐾𝑛𝑜)𝑃−1

0 (D𝑜 + D𝑛𝑜𝐾𝑛𝑜)⊤
𝜏+ = 0,

(43)

with jumps still triggered at the same time as H . The GES of the error is proven in
Theorem 4.

Theorem 4 Under Assumptions 1, 2, and 3, given any 𝑃0 ∈ S𝑛𝑜
>0 , there exists _★ > 0

such that for any _ > _★, there exist 𝜌1 > 0 and _1 > 0 such that for any solution
𝑥 ∈ SH (X0,U) and for any solution (𝑥,P, 𝜏) to observer (43) with P(0, 0) =

(D𝑜 +D𝑛𝑜𝐾𝑛𝑜)𝑃−1
0 (D𝑜 +D𝑛𝑜𝐾𝑛𝑜)⊤, 𝜏(0, 0) = 0, and jumps triggered at the same

time as in 𝑥, (𝑥,P, 𝜏) is complete and we have

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | ≤ 𝜌1 |𝑥(0, 0) − 𝑥(0, 0) |𝑒−_1 (𝑡+ 𝑗) , ∀(𝑡, 𝑗) ∈ dom 𝑥. (44)

Proof Pick a solution 𝑥 ∈ SH (X0,U) and a solution ( Ẑ ,P, 𝜏) to observer (43)
with P(0, 0) = (D𝑜 + D𝑛𝑜𝐾𝑛𝑜)𝑃−1

0 (D𝑜 + D𝑛𝑜𝐾𝑛𝑜)⊤, and 𝜏(0, 0) = 0, with jumps
triggered at the same time as in 𝑥. Consider (𝑧, 𝑃, 𝜏) solution to observer (34), with
𝑧(0, 0) = V𝑥(0, 0), 𝑃(0, 0) = 𝑃0, and 𝜏(0, 0) = 0, with jumps triggered at the same
time as in 𝑥. First, notice from its dynamics that 𝜏 = 𝜏. Then, applying Theorem 3,
we get

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | ≤ 𝜌1 |𝑥(0, 0) − 𝑥(0, 0) |𝑒−_1 (𝑡+ 𝑗) , ∀(𝑡, 𝑗) ∈ dom 𝑥,

where 𝑥 = 𝑒𝐹𝜏D𝑧. The proof consists in showing that 𝑥 = 𝑥, thus obtaining (44).
Observe that

¤̂𝑥 = 𝐹𝑥 + 𝑢𝑐 + 𝐿𝑐 (𝑃, 𝜏) (𝑦𝑐 − 𝐻𝑐𝑥), (45a)

during flows and
𝑥+ = 𝐽𝑥 + 𝑢𝑑 + 𝐿𝑑 (𝜏) (𝑦𝑑 − 𝐻𝑑𝑥), (45b)

at jumps where

𝐿𝑐 (𝑃, 𝜏) = 𝑒𝐹𝜏D
(
𝑃−1𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)
𝐾𝑛𝑜𝑃

−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)

)
= 𝑒𝐹𝜏 (D𝑜 + D𝑛𝑜𝐾𝑛𝑜)𝑃−1D⊤

𝑜 𝑒
𝐹⊤𝜏𝐻⊤

𝑐 𝑅
−1 (𝜏), (46a)

and
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𝐿𝑑 (𝜏) = D
(

0
𝐿𝑑,𝑛𝑜 (𝜏)

)
= D𝑛𝑜𝐿𝑑,𝑛𝑜 (𝜏). (46b)

From (23), 𝐿𝑐 (𝑃, 𝜏) can be re-written as 𝐿𝑐 (𝑃, 𝜏) = P𝐻⊤
𝑐 𝑅

−1 (𝜏) where

P = 𝑒𝐹𝜏 (D𝑜 + D𝑛𝑜𝐾𝑛𝑜)𝑃−1 (D𝑜 + D𝑛𝑜𝐾𝑛𝑜)⊤𝑒𝐹
⊤𝜏 . (47)

Calculating ¤P while noting that the time derivative of 𝑃−1 is −𝑃−1 ¤𝑃𝑃−1, we obtain
the same flow/jump dynamics as P in observer (43). Besides, P(0, 0) = P(0, 0), so
P = P thanks to the uniqueness of solutions. We deduce that 𝑥 follows the same
dynamics as 𝑥, and since

𝑥(0, 0) = D ′𝑧(0, 0) = 𝑥(0, 0),

we have 𝑥 = 𝑥, which concludes the proof. □

It is interesting to see that the observability provided at jumps by the fictitious
output in the non-observable subspaceD𝑛𝑜 is stored into P at jumps. This allows the
use of 𝑦𝑐 to correct the estimate in the non-observable subspace during flows, while
the Riccati dynamics of P instead excites only the observable directions provided by
(27). In terms of implementation, observer (43) is of a larger dimension than that in
observer (34) but it allows us to avoid the online inversion of the change of variables.
Actually, observer (43) has the same dimension and the same flow dynamics as the
Kalman-like observer proposed in [28]. The difference lies in (i) the jump dynamics,
which here contains a priori gains𝐾𝑛𝑜 and 𝐿𝑑,𝑛𝑜 instead of dynamic gains computed
online via P, and (ii) the quadratic detectability assumption (3) which replaces the
UCO in [28].

Remark 6 Denote 𝐿𝑑 (𝜏) = D𝑛𝑜𝐿𝑑,𝑛𝑜 (𝜏) and observe that 𝐿𝑑,𝑛𝑜 (𝜏) = V𝑛𝑜𝐿𝑑 (𝜏).
Similarly, denote 𝐾 ′

𝑛𝑜 = D𝑛𝑜𝐾𝑛𝑜 and observe that 𝐾𝑛𝑜 = V𝑛𝑜𝐾
′
𝑛𝑜. The conditions

in Assumption 3 for the design of 𝐿𝑑,𝑛𝑜 (·) and 𝐾𝑛𝑜 are equivalent to solving for
𝐿𝑑 (·) and 𝐾 ′

𝑛𝑜 directly in the 𝑥-coordinates and for all 𝜏 ∈ I,

★⊤𝑄𝑛𝑜V𝑛𝑜 (𝐽 − 𝐿𝑑 (𝜏)𝐻𝑑 − 𝐾 ′
𝑛𝑜V𝑜𝐽)𝑒𝐹𝜏D𝑛𝑜 −𝑄𝑛𝑜 < 0, (48a)

V𝑜𝐿𝑑 (𝜏) = 0, (48b)
V𝑜𝐾

′
𝑛𝑜 = 0. (48c)

Actually, these are projections of more conservative LMIs (where variables have the
full dimensions corresponding to the plant) onto the observable subspaces.

Example 4 The spiking behavior of a cortical neuron may be modeled with state
[ = ([1, [2) ∈ R2 as

¤[ =

(
0.04[2

1 + 5[1 + 140 − [2 + 𝐼ext
𝑎(𝑏[1 − [2)

)
when [1 ≤ 𝑣𝑚

[+ =

(
𝑐

[2 + 𝑑

)
when [1 = 𝑣𝑚

(49)
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where [1 is themembrane potential, [2 is the recovery variable, and 𝐼ext represents the
(constant) synaptic current or injected DC current [14]. We pick here the parameters
as 𝐼ext = 10, 𝑎 = 0.02, 𝑏 = 0.2, 𝑐 = −55, 𝑑 = 4, and 𝑣𝑚 = 30 (all in appropriate
units), thus characterizing the neuron type and its firing pattern [14]. The solutions
of this system are known to have a dwell time with flow lengths remaining in a
compact set I = [𝜏𝑚, 𝜏𝑀 ] where 𝜏𝑚 > 0, and the jump times can be detected from
the discontinuities of the measured output 𝑦𝑐 = [1. Since 𝑦𝑐 = [1 is known during
flows, we treat 0.04[2

1 + 140 + 𝐼ext as a known term that can be compensated using
output injectionwith 𝑢𝑐 = (0.04𝑦2

𝑐+140+𝐼ext, 0). On the other hand, in the jumpmap
of (49), we assume 𝑐 and 𝑑 are unknown and include them in the state to be estimated
along with ([1, [2). We show here that, using the decomposition in this paper, we
can design a flow-based observer using the knowledge of 𝑦𝑐 = [1 during flows only,
although the flow dynamics are not observable. In other words, we take 𝑦𝑑 = 0, which
comes back to not using any output injection at jumps. We re-model system (49)
extended with (𝑐, 𝑑) into the form (1) with 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = ([1, [2, 𝑐, 𝑑) ∈ R4

and the matrices

𝐹 =

©«
5 −1 0 0
𝑎𝑏 −𝑎 0 0
0 0 0 0
0 0 0 0

ª®®®¬ , 𝐻𝑐 =
(
1 0 0 0

)
, 𝐽 =

©«
0 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

ª®®®¬ , 𝐻𝑑 =
(
0 0 0 0

)
. (50)

We see that 𝑥1 and 𝑥2 are instantaneously observable from 𝑦𝑐 and following (24),

we get 𝑧𝑜 =

(
`1 (𝜏) `2 (𝜏) 0 0
`3 (𝜏) `4 (𝜏) 0 0

)
𝑥 ∈ R2, 𝑧𝑛𝑜 =

(
0 0 1 0
0 0 0 1

)
𝑥 = (𝑥3, 𝑥4) ∈ R2, and the

form (26) with matrices 𝐽𝑜 (𝜏) =
(

0 0
`5 (𝜏) `6 (𝜏)

)
, 𝐽𝑜𝑛𝑜 (𝜏) =

(
1 0
0 1

)
, 𝐽𝑛𝑜𝑜 (𝜏) =

(
0 0
0 0

)
,

𝐽𝑛𝑜 (𝜏) =
(
1 0
0 1

)
, 𝐻𝑐,𝑜 (𝜏) =

(
`7 (𝜏) `8 (𝜏)

)
, 𝐻𝑑,𝑜 (𝜏) =

(
0 0

)
, and 𝐻𝑑,𝑛𝑜 (𝜏) =

(
0 0

)
,

where `𝑖 , 𝑖 = 1, 2, . . . , 8 are known exponential functions of 𝜏. We see that for any
𝜏 ∈ I, 𝑧𝑛𝑜 cannot be seen from 𝑦𝑑 because 𝐻𝑑,𝑛𝑜 (𝜏) = 0, but it can be accessed

through 𝑧𝑜 via 𝐽𝑜𝑛𝑜 (𝜏) (hidden dynamics). Solving (33), we obtain 𝐾𝑛𝑜 =

(
1 0
0 1

)
with any𝑄𝑛𝑜 ∈ S1

>0 and any 𝐿𝑑,𝑛𝑜 (·). Let us then take 𝐿𝑑,𝑛𝑜 = 0. In this application,
we see that (𝑥3, 𝑥4) is estimated thanks to its interaction with 𝑧𝑜 at jumps, the latter
being estimated during flows, namely we exploit the hidden observability analyzed
in Theorem 1. Then, an LMI-based observer as in observer (34) or (43), with the
mentioned gains 𝐾𝑛𝑜 and 𝐿𝑑,𝑛𝑜, a weighting matrix taken as 𝑅 = Id, and a large
enough _, can be designed for this system.
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4 KKL-based observer design from discrete uniform backward
distinguishability in observability decomposition

The idea of this section is to replace the LMI-based design of the observer for
the 𝑧𝑛𝑜 part with a systematic KKL-based one. To do that, following [27], we
exploit a discrete-timeKKL observer design for the discrete-time linear time-varying
system (32), for which observability is assumed as suggested by Theorem 2. The
main reasons for relying on this discrete-time design, as opposed to a discrete-time
Kalman(-like) design, for instance, are two-fold:

• Compared to a Kalman design [11], it admits a strict Input-to-State Stable (ISS)
Lyapunov function, allowing for an interconnection with the high-gain flow-based
observer of 𝑧𝑜;

• Compared to a Kalman-like design [34], its gain with respect to the fictitious
output in system (32) is constant, allowing us to re-produce in the analysis a
similar change of variables as (38) in the LMI-based design of Theorem 3.

For this method, we make the following assumption.

Assumption 4 Given a subsetI ⊂ [0, +∞), thematrix 𝐽𝑛𝑜 (𝜏) is uniformly invertible
for all 𝜏 ∈ I, i.e., there exists 𝑠𝐽 > 0 such that ∥𝐽−1

𝑛𝑜 (𝜏)∥ ≤ 𝑠𝐽 for all 𝜏 ∈ I.

Remark 7 Contrary to discrete-time systems, the jump map of a hybrid system has
little chance of being invertible since it is not a discretization of some continuous-
time dynamics. However, here thanks to the transformation (24), the flow dynamics
are somehow merged with the jumps and thus it is reasonable to expect 𝐽𝑛𝑜 (𝜏) to be
invertible for all 𝜏 ∈ I. On the other hand, the ability to deal with the non-invertibility
of the dynamics has been studied in [19] (in the linear context). With hybrid systems,
it can even be coped with using the non-uniqueness of system representation (see for
instance [28, Example 2]). Note that while simulations suggest that the invertibility
of the jump dynamics is typically not necessary in the Kalman-like design of [28],
and may only be for theoretical analysis, it is needed here to implement observer
(60) below, namely to compute 𝑇+ correctly.

4.1 Discrete-time KKL observer design for system (32)

Consider the discrete-time system (32) with 𝜏𝑘 ∈ I for all 𝑘 ∈ N. Following the
KKL spirit, we look for a transformation (𝑇𝑘)𝑘∈N such that in the new coordinates
[𝑘 := 𝑇𝑘𝑧𝑛𝑜,𝑘 , system (32) follows the dynamics

[𝑘+1 = 𝛾𝐴[𝑘 + 𝐵𝑦𝑘 , (51)

where 𝐴 ∈ R𝑛[×𝑛[ is Schur, 𝐵 ∈ R𝑛[×𝑛𝑑,ext where 𝑛𝑑,ext := 𝑛𝑦,𝑑 + 𝑛𝑜 such that the
discrete-time pair (𝐴, 𝐵) is controllable, and 𝛾 ∈ (0, 1] is a design parameter. It then
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follows that the transformation (𝑇𝑘)𝑘∈N must be such that for every (𝜏𝑘)𝑘∈N with
𝜏𝑘 ∈ I for all 𝑘 ∈ N,

𝑇𝑘+1𝐽𝑛𝑜 (𝜏𝑘) = 𝛾𝐴𝑇𝑘 + 𝐵𝐻𝑑,ext (𝜏𝑘), (52)

with 𝐻𝑑,ext (·) defined in system (32) in Theorem 1. The interest of this form is that
an observer for system (32) in the [-coordinates is a simple filter of the output

[̂𝑘+1 = 𝛾𝐴[̂𝑘 + 𝐵𝑦𝑘 , (53)

making the error [̃𝑘 = [𝑘 − [̂𝑘 verify

[̃𝑘+1 = 𝛾𝐴[̃𝑘 , (54)

and thus is exponentially stable. Then, if (𝑇𝑘)𝑘∈N is uniformly left-invertible, the
estimate defined by 𝑧𝑛𝑜,𝑘 = 𝑇∗

𝑘
[̂, where (𝑇∗

𝑘
)𝑘∈N is a bounded sequence of left

inverses of (𝑇𝑘)𝑘∈N verifying 𝑇∗
𝑘
𝑇𝑘 = Id for all 𝑘 ≥ 𝑘★ for some 𝑘★ ∈ N, is such that

for any (𝜏𝑘)𝑘∈N with 𝜏𝑘 ∈ I for all 𝑘 ∈ N, there exist 𝑐1 > 0 and 𝑐2 ∈ (0, 1) such
that for any initial conditions 𝑧𝑛𝑜,0 and 𝑧𝑛𝑜,0 and for all 𝑘 ∈ N,

|𝑧𝑛𝑜,𝑘 − 𝑧𝑛𝑜,𝑘 | ≤ 𝑐1𝑐
𝑘
2 |𝑧𝑛𝑜,0 − 𝑧𝑛𝑜,0 |. (55)

From [27, Corollary 1], we know that this is possible under the uniform backward
distinguishability of system (32) as defined next.

Definition 5 (Uniform backward distinguishability of system (32))
Given (𝜏𝑘)𝑘∈N with 𝜏𝑘 ∈ I for all 𝑘 ∈ N, system (32) is uniformly backward

distinguishable if for each 𝑖 ∈ {1, 2, . . . , 𝑛𝑑,ext} its output dimension, there exists
𝑚𝑖 ∈ N>0 such that there exists 𝛼𝑚 > 0 such that for all 𝑘 ≥ max𝑖 𝑚𝑖 , the backward
distinguishability matrix sequence (O𝑏𝑤

𝑘
)𝑘∈N defined as

O𝑏𝑤
𝑘 = (O𝑏𝑤

1,𝑘 ,O
𝑏𝑤
2,𝑘 , . . . ,O

𝑏𝑤
𝑛𝑑,ext ,𝑘

) ∈ R(∑𝑛𝑑,ext
𝑖=1 𝑚𝑖)×𝑛𝑛𝑜 , (56a)

where

O𝑏𝑤
𝑖,𝑘 :=

©«
𝐻𝑑,ext,𝑖 (𝜏𝑘−1)𝐽−1

𝑛𝑜 (𝜏𝑘−1)
𝐻𝑑,ext,𝑖 (𝜏𝑘−2)𝐽−1

𝑛𝑜 (𝜏𝑘−2)𝐽−1
𝑛𝑜 (𝜏𝑘−1)

. . .

𝐻𝑑,ext,𝑖 (𝜏𝑘−(𝑚𝑖−1) )𝐽−1
𝑛𝑜 (𝜏𝑘−(𝑚𝑖−1) ) . . . 𝐽−1

𝑛𝑜 (𝜏𝑘−1)
𝐻𝑑,ext,𝑖 (𝜏𝑘−𝑚𝑖

)𝐽−1
𝑛𝑜 (𝜏𝑘−𝑚𝑖

)𝐽−1
𝑛𝑜 (𝜏𝑘−(𝑚𝑖−1) ) . . . 𝐽−1

𝑛𝑜 (𝜏𝑘−1)

ª®®®®®¬
, (56b)

where𝐻𝑑,ext,𝑖 (·) denotes the 𝑖th row of the extended output matrix𝐻𝑑,ext (·) of system
(32), has full rank and satisfies O𝑏𝑤⊤

𝑘
O𝑏𝑤

𝑘
≥ 𝛼𝑚 Id > 0.

Note that the forward version (O 𝑓 𝑤

𝑘
)𝑘∈N of (O𝑏𝑤

𝑘
)𝑘∈N, which is much easier to

compute, can be considered as in [27, Remark 3], under the additional assumptions
that the 𝑚𝑖 are the same for 𝑖 ∈ {1, 2, . . . , 𝑛𝑑,ext} and 𝐽𝑛𝑜 is uniformly invertible,
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namely there exists 𝑐𝐽 > 0 such that (𝐽−1
𝑛𝑜 (𝜏𝑘))⊤𝐽−1

𝑛𝑜 (𝜏𝑘) ≥ 𝑐𝐽 Id for all 𝑘 ∈ N.
Theorem 5, which is a particular case of [27, Theorems 2 and 3], states the existence
and uniform left-invertibility of (𝑇𝑘)𝑘∈N solving (52).
Theorem 5 Consider 𝑛[ ∈ N>0, 𝛾 > 0, and a pair (𝐴, 𝐵) ∈ R𝑛[×𝑛[ × R𝑛[×𝑛𝑑,ext .
Under Assumption 4, for any (𝜏𝑘)𝑘∈N with 𝜏𝑘 ∈ I for all 𝑘 ∈ N and any𝑇0 ∈ R𝑛[×𝑛𝑛𝑜 ,
the transformation (𝑇𝑘)𝑘∈N initialized as𝑇0 and satisfying (52) uniquely exists under
the following closed form

𝑇𝑘 = (𝛾𝐴)𝑘𝑇0

𝑘−1∏
𝑝=0

𝐽−1
𝑛𝑜 (𝜏𝑝) +

𝑘−1∑︁
𝑝=0

(𝛾𝐴)𝑘−𝑝−1𝐵𝐻𝑑,ext (𝜏𝑝)
𝑘−1∏
𝑟=𝑝

𝐽−1
𝑛𝑜 (𝜏𝑟 ). (57)

Moreover, for any (𝜏𝑘)𝑘∈N with 𝜏𝑘 ∈ I for all 𝑘 ∈ N such that system (32) is
uniformly backward distinguishable for some 𝑚𝑖 ∈ N>0, 𝑖 ∈ {1, 2, . . . , 𝑛𝑑,ext} and
any controllable pairs ( �̃�𝑖 , �̃�𝑖) ∈ R𝑚𝑖×𝑚𝑖 ×R𝑚𝑖 with �̃�𝑖 Schur, 𝑖 ∈ {1, 2, . . . , 𝑛𝑑,ext},
there exists 0 < 𝛾★ ≤ 1 such that for any 0 < 𝛾 < 𝛾★, there exist 𝑘★ ∈ N>0, 𝑐

𝑇
> 0,

and 𝑐𝑇 > 0 such that (𝑇𝑘)𝑘∈N in (57) with

𝐴 = diag( �̃�1, �̃�2, . . . , �̃�𝑛𝑑,ext ) ∈ R𝑛[×𝑛[ , (58a)
𝐵 = diag(�̃�1, �̃�2, . . . , �̃�𝑛𝑑,ext) ∈R𝑛[×𝑛𝑑,ext , (58b)

where 𝑛[ :=
∑𝑛𝑑,ext

𝑖=1 𝑚𝑖 , verifies 𝑇⊤
𝑘
𝑇𝑘 ≥ 𝑐

𝑇
Id for all 𝑘 ≥ 𝑘★ and ∥𝑇𝑘 ∥ ≤ 𝑐𝑇 for all

𝑘 ∈ N.

In other words, for 𝛾 sufficiently small, (𝑇𝑘)𝑘∈N is uniformly left-invertible and
upper-bounded after 𝑘★. Note that the dependence of 𝛾★, 𝑐

𝑇
, 𝑐𝑇 , and 𝑘★ on (𝜏𝑘)𝑘∈N

and 𝑇0 is only through 𝛼𝑚 and the 𝑚𝑖 coming from the uniform backward distin-
guishability and the upper bounds of 𝑇0 and 𝐽−1

𝑛𝑜 (·). Note also that the (non-uniform)
injectivity of 𝑇 can be obtained from non-uniform distinguishability conditions, as
seen in [27, Example 1], which may suffice in some cases to ensure the convergence
of the KKL observer.
Proof These results are the particular case of [27, Theorems 2 and 3]. Note that
by continuity, 𝜏 ↦→ 𝐽𝑛𝑜 (𝜏) is uniformly invertible on I because I is compact, and
𝜏 ↦→ 𝐻𝑑,𝑛𝑜 (𝜏) is uniformly bounded on the compact set [0, 𝜏𝑀 ]. □

Remark 8 Interestingly, Definition 5, whose nonlinear version is defined in [27,
Definition 1], coincides with the uniform complete observability (UCO) condition
required by the discrete-time Kalman(-like) filter (see [11, Condition (13)], [34,

Assumption 3], or [33, Definition 3]), on the pair
(
𝐽𝑛𝑜 (𝜏),

(
𝐻𝑑,𝑛𝑜 (𝜏)
𝐽𝑜𝑛𝑜 (𝜏)

))
, which is

the discrete-time version of that in Definition 4 above, i.e., there exist 𝑚𝑖 ∈ N>0
and 𝑐𝑜 > 0 such that for all (𝜏𝑘)𝑘∈N with 𝜏𝑘 ∈ I for all 𝑘 ∈ N, we have for all
𝑘 ≥ max𝑖 𝑚𝑖 ,

𝑛𝑑,ext∑︁
𝑖=1

𝑘−1∑︁
𝑝=𝑘−𝑚𝑖

★⊤𝐻𝑑,ext,𝑖 (𝜏𝑝)𝐽−1
𝑛𝑜 (𝜏𝑝) . . . 𝐽−1

𝑛𝑜 (𝜏𝑘−2)𝐽−1
𝑛𝑜 (𝜏𝑘−1) ≥ 𝑐𝑜 Id > 0. (59)
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It is thus interesting to compare these two discrete-time observers. In terms of
dimensions, the complexity of the Kalman filter is 𝑛𝑛𝑜 (𝑛𝑛𝑜+1)

2 + 𝑛𝑛𝑜, while that of
the KKL observer is

(∑𝑛𝑑,ext
𝑖=1 𝑚𝑖

)
𝑛𝑛𝑜 + ∑𝑛𝑑,ext

𝑖=1 𝑚𝑖 . Therefore, the Kalman filter is
advantageous in dimension compared to the KKL observer. However, the advantage
of the latter (besides being applicable in the nonlinear context) is that there exists a
strict ISS Lyapunov function of quadratic form that allows us to prove exponential
ISS, unlike the discrete-time Kalman filter [11] whose Lyapunov function is not
strict. This advantage is then exploited in the next part, where we design a KKL-
based observer to estimate the 𝑧𝑛𝑜 part in the hybrid system (26) while the error
in 𝑧𝑜 is seen as a disturbance. Note that a discrete-time Kalman-like observer [34]
could seem like a possible alternative to the KKL-based one since it also exhibits
a strict Lyapunov function. However, the gain multiplied with the fictitious output
in the observer must be constant during flows for us to perform the analysis (see
𝐾𝑛𝑜 in (33)), which is not the case in a Kalman-like observer (unless the pair
(𝐽𝑛𝑜 (𝜏), 𝐻𝑑,𝑛𝑜 (𝜏)) at the jump times is UCO, so without the need for the fictitious
output). This is ensured in KKL design since it relies on a transformation into a
linear time-invariant form (see below in the proof of Theorem 6).

Next, in Section 4.2, we exploit this section’s results for the hybrid system (26).

4.2 KKL-based observer design for system (26)

The KKL-based observer we propose for system (26) has the form

¤̂𝑧𝑜 = 𝐺𝑜 (𝜏)𝑢𝑐 + 𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏) (𝑦𝑐 − 𝐻𝑐,𝑜 (𝜏)𝑧𝑜)

¤̂[ = (𝑇𝐺𝑛𝑜 (𝜏) − 𝐵𝑜𝑛𝑜𝐺𝑜 (𝜏))𝑢𝑐
¤𝑃 = − _𝑃 + 𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)
¤𝑇 = 0
¤𝜏 = 1

𝑧+𝑜 = 𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜 + V𝑜𝑢𝑑
[̂+ = (𝑇+𝐽𝑛𝑜𝑜 (𝜏) + 𝛾𝐴𝐵𝑜𝑛𝑜 − 𝐵𝑜𝑛𝑜𝐽𝑜 (𝜏))𝑧𝑜

+ 𝛾𝐴[̂ + (𝑇+V𝑛𝑜 − 𝐵𝑜𝑛𝑜V𝑜)𝑢𝑑 + 𝐵𝑑,𝑛𝑜 (𝑦𝑑 − 𝐻𝑑,𝑜 (𝜏)𝑧𝑜)
𝑃+ = 𝑃0
𝑇+ = (𝛾𝐴𝑇 + 𝐵𝑑,𝑛𝑜𝐻𝑑,𝑛𝑜 (𝜏) + 𝐵𝑜𝑛𝑜𝐽𝑜𝑛𝑜 (𝜏)) sat𝑠𝐽 (𝐽

†
𝑛𝑜 (𝜏))

𝜏+ = 0,

(60a)

with
𝑧𝑛𝑜 = sat𝑠𝑇 (𝑇†) ([̂ + 𝐵𝑜𝑛𝑜𝑧𝑜), (60b)

with jumps triggered at the same time as H in the same way as observer (2),
𝑃0 ∈ S𝑛𝑜

>0 , 𝜏 ↦→ 𝑅(𝜏) ∈ S𝑛𝑦,𝑐

>0 is a positive definite weighting matrix that is defined
and is continuous on [0, 𝜏𝑀 ] to be chosen only for design purpose, 𝛾 ∈ (0, 1], and
(𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜) are design parameters to be chosen. Following similar reasoning
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as in Section 3.1, those dynamics are picked so that 𝑇 coincides with the (𝑇𝑘)𝑘∈N in
Section 4.1 at jumps and so that the corresponding discrete-timeKKL error dynamics
(54) appear after a certain change of coordinates, modulo some errors on 𝑧𝑜 (see
(66) below). The difficulty comes here from the fact that the discrete-time output
𝑦𝑘 in the discrete-time KKL dynamics (51) is not fully available at jumps since it
contains the fictitious output.

Assumption 5 Given 𝑗𝑚 defined in Assumption 2, there exist 𝑚𝑖 ∈ N>0 for each
𝑖 = 1, 2, . . . , 𝑛𝑑,ext and𝛼𝑚 > 0 such that for every complete solution 𝑥 ∈ SH (X0,U),
the sequence of flow lengths (𝜏𝑗 ) 𝑗∈N, 𝑗≥ 𝑗𝑚 where 𝜏𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗 is such that system
(32), scheduled with that (𝜏𝑗 ) 𝑗∈N, 𝑗≥ 𝑗𝑚 , is uniformly backward distinguishable with
the parameters 𝑚𝑖 and 𝛼𝑚 following Definition 5.

Theorem 6 Suppose Assumptions 1, 2, 4, and 5 hold. Define 𝑛[ :=
∑𝑛𝑑,ext

𝑖=1 𝑚𝑖 and
consider for each 𝑖 ∈ {1, 2, . . . , 𝑛𝑑,ext} a controllable pair ( �̃�𝑖 , �̃�𝑖) ∈ R𝑚𝑖×𝑚𝑖 × R𝑚𝑖

with �̃�𝑖 Schur. Define then

𝐴 = diag( �̃�1, �̃�2, . . . , �̃�𝑛𝑑,ext ) ∈ R𝑛[×𝑛[ , (61a)
𝐵𝑑,𝑛𝑜 = diag(�̃�1, �̃�2, . . . , �̃�𝑛𝑦,𝑑

) ∈ R𝑛[×𝑛𝑦,𝑑 , (61b)
𝐵𝑜𝑛𝑜 = diag(�̃�𝑛𝑦,𝑑+1, �̃�𝑛𝑦,𝑑+2, . . . , �̃�𝑛𝑑,ext ) ∈ R𝑛[×𝑛𝑜 . (61c)

Given any _1 > 0, any 𝑃0 ∈ S𝑛𝑜
>0 , and any 𝑇0 ∈ R𝑛[×𝑛𝑛𝑜 , there exists 0 < 𝛾★ ≤ 1

such that there exists _★ > 0 such that for any 0 < 𝛾 < 𝛾★ and any _ > _★, there
exist 𝑗 ∈ N>0, saturation levels 𝑠𝑇 > 0, 𝑠𝐽 > 0, and scalar 𝜌1 > 0 such that for
any solution 𝑥 ∈ SH (X0,U) and any solution (𝑧𝑜, [̂, 𝑃, 𝑇, 𝜏) to observer (60) with
𝑃(0, 0) = 𝑃0, 𝑇 (0, 0) = 𝑇0, 𝜏(0, 0) = 0, the chosen (𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜), sat𝑠𝑇 at level
𝑠𝑇 , sat𝑠𝐽 at level 𝑠𝐽 , and jumps triggered at the same time as in 𝑥, (𝑧𝑜, [̂, 𝑃, 𝑇, 𝜏) is
complete and we have

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | ≤ 𝜌1 |𝑥(𝑡 𝑗 , 𝑗) − 𝑥(𝑡 𝑗 , 𝑗) |𝑒−_1 (𝑡+ 𝑗) , ∀(𝑡, 𝑗) ∈ dom 𝑥, 𝑗 ≥ 𝑗 ,

(62)
with 𝑥 obtained by 𝑥 = 𝑒𝐹𝜏D𝑧 with D defined in (25).

The parameter 𝑗 is related to 𝑗𝑚 in Assumption 4 and to the number of jumps
needed to get the uniform left-injectivity of (𝑇𝑘)𝑘∈N in Theorem 5.

Proof First, according to Assumption 2, the flow lengths of solutions in SH (X0,U)
are in the compact set [0, 𝜏𝑀 ], so there exists 𝑐𝑇,𝑚 > 0 such that for every solution
𝑥 ∈ SH (X0,U) and any solution (𝑧𝑜, [̂, 𝑃, 𝑇, 𝜏) to observer (60) with 𝑃(0, 0) = 𝑃0,
𝑇 (0, 0) = 𝑇0, 𝜏(0, 0) = 0, and any 𝛾 ∈ (0, 1], with jumps triggered at the same time
as in 𝑥, we have ∥𝑇 (𝑡, 𝑗)∥ ≤ 𝑐𝑇,𝑚 for all (𝑡, 𝑗) ∈ dom 𝑥 such that 𝑗 ≤ 𝑗𝑚. Then, from
Assumptions 2, 4, and 5, and according to Theorem 5 starting from jump 𝑗𝑚, there
exists 0 < 𝛾★0 ≤ 1 such that for all 0 < 𝛾 < 𝛾★0 , there exist 𝑗

★ ∈ N>0, 𝑐𝑇 > 0, and
𝑐𝑇 > 0 such that for every solution 𝑥 ∈ SH (X0,U), the solution (𝑇𝑗 ) 𝑗∈N, 𝑗≥ 𝑗𝑚 to
(52) with 𝜏𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗 , initialized at any 𝑇𝑗𝑚 verifying ∥𝑇𝑗𝑚 ∥ ≤ 𝑐𝑇,𝑚, is uniformly
left-invertible for all 𝑗 ≥ 𝑗𝑚 + 𝑗★ and uniformly bounded for all 𝑗 ≥ 𝑗𝑚, i.e.,
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𝑇⊤
𝑗 𝑇𝑗 ≥ 𝑐𝑇 Id, ∀ 𝑗 ≥ 𝑗𝑚 + 𝑗★, ∥𝑇𝑗 ∥ ≤ 𝑐𝑇 , ∀ 𝑗 ≥ 𝑗𝑚.

It follows that (𝑇†
𝑗
)⊤𝑇†

𝑗
≤ 1

𝑐𝑇
Id, for all 𝑗 ≥ 𝑗𝑚 + 𝑗★, and there exists a saturation

level 𝑠𝑇 > 0 such that sat𝑠𝑇 (𝑇
†
𝑗
) = 𝑇

†
𝑗
for all 𝑗 ≥ 𝑗𝑚 + 𝑗★. Pick 0 < 𝛾 < 𝛾★0

and consider a solution 𝑥 ∈ SH (X0,U) and a solution (𝑧𝑜, [̂, 𝑃, 𝑇, 𝜏) to observer
(60) with 𝑃(0, 0) = 𝑃0, 𝑇 (0, 0) = 𝑇0, 𝜏(0, 0) = 0, the chosen (𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜), the
saturation level 𝑠𝑇 , and jumps triggered at the same time as in 𝑥. Following (24),
define

𝑧(𝑡, 𝑗) := V𝑒−𝐹𝜏 (𝑡 , 𝑗)𝑥(𝑡, 𝑗), ∀(𝑡, 𝑗) ∈ dom 𝑥,

and consider the error 𝑧 = (𝑧𝑜, 𝑧𝑛𝑜) = (𝑧𝑜 − 𝑧𝑜, 𝑧𝑛𝑜 − 𝑧𝑛𝑜). As justified above,
∥𝑇 (𝑡 𝑗𝑚 , 𝑗𝑚)∥ ≤ 𝑐𝑇,𝑚. Since ¤𝑇 = 0 during flows, the sequence (𝑇 (𝑡 𝑗 , 𝑗)) 𝑗∈N, 𝑗≥ 𝑗𝑚

coincides with the sequence (𝑇𝑗 ) 𝑗∈N, 𝑗≥ 𝑗𝑚 solution to (52) with 𝜏𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗 for all
𝑗 ∈ N with 𝑗 ≥ 𝑗𝑚. Therefore,

𝑇⊤ (𝑡, 𝑗)𝑇 (𝑡, 𝑗) ≥ 𝑐
𝑇

Id, ∀(𝑡, 𝑗) ∈ dom 𝑥, 𝑗 ≥ 𝑗𝑚 + 𝑗★. (63)

We now use Corollary 1 to show exponential convergence of 𝑧 starting at hybrid time
(𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★) by putting the error dynamics into the appropriate form. In order
to exploit the KKL design, we define

[(𝑡, 𝑗) = 𝑇 (𝑡, 𝑗)𝑧𝑛𝑜 (𝑡, 𝑗) − 𝐵𝑜𝑛𝑜𝑧𝑜 (𝑡, 𝑗), ∀(𝑡, 𝑗) ∈ dom 𝑥. (64)

Notice that [ verifies ¤[ = (𝑇𝐺𝑛𝑜 (𝜏) − 𝐵𝑜𝑛𝑜𝐺𝑜 (𝜏))𝑢𝑐 during flows. From As-
sumptions 2 and 4, after hybrid time (𝑡 𝑗𝑚 , 𝑗𝑚) we get sat𝑠𝐽 (𝐽

†
𝑛𝑜 (𝜏)) = 𝐽

†
𝑛𝑜 (𝜏) and

𝐽
†
𝑛𝑜 (𝜏)𝐽𝑛𝑜 (𝜏) = Id so that at jumps,

[+ = (𝑇+𝐽𝑛𝑜𝑜 (𝜏) + 𝛾𝐴𝐵𝑜𝑛𝑜 − 𝐵𝑜𝑛𝑜𝐽𝑜 (𝜏))𝑧𝑜
+ 𝛾𝐴[ + (𝑇+V𝑛𝑜 − 𝐵𝑜𝑛𝑜V𝑜)𝑢𝑑 + 𝐵𝑑,𝑛𝑜𝐻𝑑,𝑛𝑜 (𝜏)𝑧𝑛𝑜 . (65)

Given the dynamics of [̂ in observer (60), the error [̃ := [ − [̂ verifies ¤̃[ = 0 during
flows and at jumps (after hybrid time (𝑡 𝑗𝑚 , 𝑗𝑚)),

[̃+ = (𝑇+𝐽𝑛𝑜𝑜 (𝜏) + 𝛾𝐴𝐵𝑜𝑛𝑜 − 𝐵𝑜𝑛𝑜𝐽𝑜 (𝜏) − 𝐵𝑑,𝑛𝑜𝐻𝑑,𝑛𝑜 (𝜏))𝑧𝑜 + 𝛾𝐴[̃, (66)

which is a contracting dynamics in [̃. After (𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★), we have (i) 𝑇†𝑇 = Id
so that 𝑧𝑛𝑜 = 𝑇†[+𝑇†𝐵𝑜𝑛𝑜𝑧𝑜, and (ii) sat𝑠𝑇 (𝑇†) = 𝑇† so that 𝑧𝑛𝑜 = 𝑇†[̂+𝑇†𝐵𝑜𝑛𝑜𝑧𝑜.
Therefore, after (𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★), (𝑧𝑜, [̃, 𝑃, 𝜏) is solution to
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¤̃𝑧𝑜 = − 𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)𝑧𝑜

¤̃[ = 0
¤𝑃 = − _𝑃 + 𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)
¤𝜏 = 1

𝑧+𝑜 = 𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑇†[̃
[̃+ = (𝑇+𝐽𝑛𝑜𝑜 (𝜏) + 𝛾𝐴𝐵𝑜𝑛𝑜 − 𝐵𝑜𝑛𝑜𝐽𝑜 (𝜏) − 𝐵𝑑,𝑛𝑜𝐻𝑑,𝑛𝑜 (𝜏))𝑧𝑜 + 𝛾𝐴[̃
𝑃+ = 𝑃0
𝜏+ = 0,

(67a)

where 𝐽𝑜 (𝜏) = 𝐽𝑜 (𝜏) + 𝐽𝑜𝑛𝑜𝑇†𝐵𝑜𝑛𝑜, with 𝑇+ seen as a uniformly bounded input,
and with the flow and jump sets

R𝑛𝑜 × R𝑛[ × R𝑛𝑜×𝑛𝑜 × [0, 𝜏𝑀 ], R𝑛𝑜 × R𝑛[ × R𝑛𝑜×𝑛𝑜 × I. (67b)

Since 𝐴 is Schur, let 𝑄[ ∈ S𝑛[

>0 be a solution to the inequality 𝐴
⊤𝑄[𝐴 − 𝑄[ <

0. Using Corollary 1, we prove that there exist _★ > 0 and 0 < 𝛾★ ≤ 1 such
that we have the arbitrarily fast GES of the error (𝑧𝑜, [̃) with respect to the value
(𝑧𝑜, [̃) (𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★) when _ > _★ and 0 < 𝛾 < 𝛾★. Then the GES in the
𝑧-coordinates with respect to (𝑧𝑜, 𝑧𝑛𝑜) (𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★) is obtained thanks to the
uniform left-invertibility of 𝑇 . Last, the arbitrarily fast GES is recovered in the 𝑥-
coordinates after hybrid time (𝑡 𝑗 , 𝑗) where 𝑗 = 𝑗𝑚 + 𝑗★ by seeing that 𝑧 = V𝑒−𝐹𝜏𝑥

with 𝜏 ∈ [0, 𝜏𝑀 ]. □

Remark 9 Note that it is the rate of convergence that can be arbitrarily fast and not
the convergence time since we must anyway wait for 𝑗𝑚 jumps for the flow lengths
to be in I and, more importantly, for themax𝑖 𝑚𝑖 jumps giving us uniform backward
distinguishability (see Definition 5). Furthermore, speeding up the rate may make 𝑇
poorer conditioned, thus increasing the bound 𝜌1, which is the well-known peaking
phenomenon. This type of result is typical in high-gain KKL designs (see [27]).
Note though that this arbitrarily fast convergence rate is an advantage compared to
the LMI-based design in Section 3 where the rate is fixed once the LMI is solved:
Corollary 1 does not apply in that case because the parameters 𝑎 and 𝑄[ in (84) are
not independent, i.e., 𝑄[ is not such that (84) holds for any 𝑎 > 0.

4.3 KKL-based observer design in the (𝒛𝒐 , 𝒛𝒏𝒐)-coordinates

The rectangular shape of𝑇 in observer (60) makes the dimension of [ larger than that
of 𝑧𝑛𝑜, preventing us from easily writing the observer in the 𝑧-coordinates, unlike in
Section 3. Following the spirit of [4], consider a map Γ : R𝑛[×𝑛𝑛𝑜 → R𝑛[×(𝑛[−𝑛𝑛𝑜)

such that for any 𝑇 ∈ R𝑛[×𝑛𝑛𝑜 , Γ(𝑇) is a full-rank matrix such that its columns are
orthogonal to those of𝑇 and Γ⊤ (𝑇)Γ(𝑇) ≥ Id. Such amap always exists (see Remark
10 for an explicit construction method). Then, define 𝑇𝑒 : R𝑛[×𝑛𝑛𝑜 → R𝑛[×𝑛[ such
that
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𝑇𝑒 (𝑇) =
(
𝑇 Γ(𝑇)

)
, (68)

which is a square matrix extension of 𝑇 , that is invertible whenever 𝑇 is full-rank.

Remark 10 One possible way to construct Γ(𝑇) is to exploit a singular value de-
composition of 𝑇 . Indeed, given 𝑇 ∈ R𝑛[×𝑛𝑛𝑜 with 𝑛[ ≥ 𝑛𝑛𝑜, consider or-
thonormal matrices 𝑈 (𝑇) ∈ R𝑛[×𝑛[ and 𝑉 (𝑇) ∈ R𝑛𝑛𝑜×𝑛𝑛𝑜 , as well as a matrix
Σ(𝑇) =

(
Σ′(𝑇)

0

)
∈ R𝑛[×𝑛𝑛𝑜 , with Σ′(𝑇) diagonal, such that 𝑇 = 𝑈 (𝑇)Σ(𝑇)𝑉⊤ (𝑇).

Let us split 𝑈 (𝑇) as 𝑈 (𝑇) =
(
𝑈1 (𝑇) 𝑈2 (𝑇)

)
where 𝑈1 (𝑇) ∈ R𝑛[×𝑛𝑛𝑜 and

𝑈2 (𝑇) ∈ R𝑛[×(𝑛[−𝑛𝑛𝑜) . By taking Γ(𝑇) = 𝑈2 (𝑇), we see that Γ(𝑇) is orthogo-
nal to 𝑇 and verifies Γ⊤ (𝑇)Γ(𝑇) = Id.

An alternative KKL-based observer to observer (60) can then be implemented in
the (𝑧𝑜, 𝑧𝑛𝑜)-coordinates, as

¤̂𝑧𝑜 = 𝐺𝑜 (𝜏)𝑢𝑐 + 𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏) (𝑦𝑐 − 𝐻𝑐,𝑜 (𝜏)𝑧𝑜)

( ¤̂𝑧𝑛𝑜, ¤̂𝜔) = (𝐺𝑛𝑜 (𝜏)𝑢𝑐, 0)
+ sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇))†)𝐵𝑜𝑛𝑜𝑃

−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏) (𝑦𝑐 − 𝐻𝑐,𝑜 (𝜏)𝑧𝑜)

¤𝑃 = − _𝑃 + 𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)

¤𝑇 = 0
¤𝜏 = 1

𝑧+𝑜 = 𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜 + V𝑜𝑢𝑑
(𝑧+𝑛𝑜, �̂�+) = (𝐽𝑛𝑜𝑜 (𝜏)𝑧𝑜 + 𝐽𝑛𝑜 (𝜏)𝑧𝑛𝑜 + V𝑛𝑜𝑢𝑑 , 0) + sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇+))†)

× (𝛾𝐴Γ(𝑇)�̂� + 𝐵𝑑,𝑛𝑜 (𝑦𝑑 − 𝐻𝑑,𝑜 (𝜏)𝑧𝑜 − 𝐻𝑑,𝑛𝑜 (𝜏)𝑧𝑛𝑜))
𝑃+ = 𝑃0
𝑇+ = (𝛾𝐴𝑇 + 𝐵𝑑,𝑛𝑜𝐻𝑑,𝑛𝑜 (𝜏) + 𝐵𝑜𝑛𝑜𝐽𝑜𝑛𝑜 (𝜏)) sat𝑠𝐽 (𝐽

†
𝑛𝑜 (𝜏))

𝜏+ = 0,

(69)

with jumps still triggered at the same time as H and initialized as in Theorem 6
with any �̂�(0, 0) ∈ R𝑛[−𝑛𝑛𝑜 . Still in the spirit of [4], �̂� ∈ R𝑛[−𝑛𝑛𝑜 is an estimate of
some fictitious extra state 𝜔 ∈ R𝑛[−𝑛𝑛𝑜 defined on dom 𝑥 such that 𝜔(𝑡, 𝑗) = 0 for all
(𝑡, 𝑗) ∈ dom 𝑥, serving to equalize the dimension in the 𝑧𝑛𝑜 and [ coordinates. Note
that along the solutions to observer (69), since 𝑇 is constant during flows, 𝑇𝑒 (𝑇) is
also constant during flows and needs to be re-computed only at jumps.

Theorem 7 Suppose Assumptions 1, 2, 4, and 5 hold. Define 𝑛[ and (𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜)
as in Theorem 6. Given any _1 > 0, any 𝑃0 ∈ S𝑛𝑜

>0 , and any 𝑇0 ∈ R𝑛[×𝑛𝑛𝑜 , there
exists 0 < 𝛾★ ≤ 1 such that there exists _★ > 0 such that for any 0 < 𝛾 < 𝛾★ and
any _ > _★, there exist 𝑗 ∈ N>0, saturation levels 𝑠𝑇𝑒 > 0, 𝑠𝐽 > 0, and scalar
𝜌1 > 0 such that for any solution 𝑥 ∈ SH (X0,U) and any solution (𝑧, �̂�, 𝑃, 𝑇, 𝜏) to
observer (69) with �̂�(0, 0) ∈ R𝑛[−𝑛𝑛𝑜 , 𝑃(0, 0) = 𝑃0, 𝑇 (0, 0) = 𝑇0, 𝜏(0, 0) = 0, the
chosen (𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜), sat𝑠𝑇𝑒 at level 𝑠𝑇𝑒 , sat𝑠𝐽 at level 𝑠𝐽 , and jumps triggered at
the same time as in 𝑥, (𝑧, �̂�, 𝑃, 𝑇, 𝜏) is complete and we have

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | ≤ 𝜌1 |𝑥(𝑡 𝑗 , 𝑗) − 𝑥(𝑡 𝑗 , 𝑗) |𝑒−_1 (𝑡+ 𝑗) , ∀(𝑡, 𝑗) ∈ dom 𝑥, 𝑗 ≥ 𝑗 ,

(70)
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with 𝑥 obtained by 𝑥 = 𝑒𝐹𝜏D𝑧 with D defined in (25).

Proof First, because 𝑇 in observer (69) verifies the same dynamics as in observer
(60), for the same constant 𝑐𝑇,𝑚 as in the proof of Theorem 6, for every solution
𝑥 ∈ SH (X0,U) and any solution (𝑧, �̂�, 𝑃, 𝑇, 𝜏) to observer (69) with 𝑃(0, 0) = 𝑃0,
𝑇 (0, 0) = 𝑇0, 𝜏(0, 0) = 0, and any 𝛾 ∈ (0, 1], with jumps triggered at the same time
as in 𝑥, we have ∥𝑇 (𝑡, 𝑗)∥ ≤ 𝑐𝑇,𝑚 for all (𝑡, 𝑗) ∈ dom 𝑥 such that 𝑗 ≤ 𝑗𝑚. Moreover,
considering the same 𝛾★, 𝑗★, 𝑐

𝑇
as in the proof of Theorem 6, 𝑇 becomes uniformly

left-invertible after hybrid time (𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★), i.e.,

𝑇⊤ (𝑡, 𝑗)𝑇 (𝑡, 𝑗) ≥ 𝑐
𝑇

Id, ∀(𝑡, 𝑗) ∈ dom 𝑥, 𝑗 ≥ 𝑗𝑚 + 𝑗★.

It follows that 𝑇𝑒 (𝑇) also becomes uniformly invertible, since

𝑇⊤
𝑒 (𝑇)𝑇𝑒 (𝑇) =

(
𝑇⊤𝑇 0

0 Γ⊤ (𝑇)Γ(𝑇)

)
≥ min{𝑐

𝑇
, 1} Id, ∀(𝑡, 𝑗) ∈ dom 𝑥, 𝑗 ≥ 𝑗𝑚+ 𝑗★.

After hybrid time (𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★), we thus have

((𝑇𝑒 (𝑇 (𝑡, 𝑗)))†)⊤ (𝑇𝑒 (𝑇 (𝑡, 𝑗)))† ≤ max
{

1
𝑐
𝑇

, 1
}

Id, (71)

so that there exists a saturation level 𝑠𝑇𝑒 > 0 such that sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇 (𝑡, 𝑗)))†) =

(𝑇𝑒 (𝑇 (𝑡, 𝑗)))† = (𝑇𝑒 (𝑇 (𝑡, 𝑗)))−1 for all (𝑡, 𝑗) ∈ dom 𝑥 such that 𝑗 ≥ 𝑗𝑚 + 𝑗★.
Pick 0 < 𝛾 < 𝛾★ and consider a solution 𝑥 ∈ SH (X0,U) and a solution
(𝑧, �̂�, 𝑃, 𝑇, 𝜏) to observer (69) with 𝑃(0, 0) = 𝑃0, 𝑇 (0, 0) = 𝑇0, 𝜏(0, 0) = 0, the
chosen (𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜), the saturation level 𝑠𝑇𝑒 , and jumps triggered at the same
time as in 𝑥. Define for all (𝑡, 𝑗) ∈ dom 𝑥 the change of variables

[(𝑡, 𝑗) = 𝑇𝑒 (𝑇 (𝑡, 𝑗))
(
𝑧𝑛𝑜 (𝑡, 𝑗)

0

)
− 𝐵𝑜𝑛𝑜𝑧𝑜 (𝑡, 𝑗). (72)

We see that for all (𝑡, 𝑗) ∈ dom 𝑥,

[(𝑡, 𝑗) = 𝑇 (𝑡, 𝑗)𝑧𝑛𝑜 (𝑡, 𝑗) − 𝐵𝑜𝑛𝑜𝑧𝑜 (𝑡, 𝑗), (73)

and hence it verifies the dynamics of [ in the proof of Theorem 6. Let us study the
dynamics of the image of (𝑧𝑜, 𝑧𝑛𝑜, �̂�) in observer (69) defined as

[̂(𝑡, 𝑗) = 𝑇𝑒 (𝑇 (𝑡, 𝑗))
(
𝑧𝑛𝑜 (𝑡, 𝑗)
�̂�(𝑡, 𝑗)

)
− 𝐵𝑜𝑛𝑜𝑧𝑜 (𝑡, 𝑗). (74)

We see that after hybrid time (𝑡 𝑗𝑚+ 𝑗★ , 𝑗𝑚 + 𝑗★), ¤̂[ = (𝑇𝐺𝑛𝑜 (𝜏) − 𝐵𝑜𝑛𝑜𝐺𝑜 (𝜏))𝑢𝑐
during flows and at jumps,
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[̂+ = 𝑇𝑒 (𝑇+)
(
𝑧+𝑛𝑜
�̂�+

)
− 𝐵𝑜𝑛𝑜𝑧

+
𝑜

=
(
𝑇+ Γ+) (𝐽𝑛𝑜𝑜 (𝜏)𝑧𝑜 + 𝐽𝑛𝑜 (𝜏)𝑧𝑛𝑜, 0) + sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇

+))†) (𝛾𝐴Γ(𝑇)�̂�
+ 𝐵𝑑,𝑛𝑜 (𝑦𝑑 − 𝐻𝑑,𝑜 (𝜏)𝑧𝑜 − 𝐻𝑑,𝑛𝑜 (𝜏)𝑧𝑛𝑜)) − 𝐵𝑜𝑛𝑜 (𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜)

= 𝑇+𝐽𝑛𝑜𝑜 (𝜏)𝑧𝑜 + (𝛾𝐴𝑇 + 𝐵𝑑,𝑛𝑜𝐻𝑑,𝑛𝑜 (𝜏) + 𝐵𝑜𝑛𝑜𝐽𝑜𝑛𝑜 (𝜏))𝑧𝑛𝑜 + 𝛾𝐴Γ(𝑇)�̂�
+ 𝐵𝑑,𝑛𝑜 (𝑦𝑑 − 𝐻𝑑,𝑜 (𝜏)𝑧𝑜 − 𝐻𝑑,𝑛𝑜 (𝜏)𝑧𝑛𝑜) − 𝐵𝑜𝑛𝑜 (𝐽𝑜 (𝜏)𝑧𝑜 + 𝐽𝑜𝑛𝑜 (𝜏)𝑧𝑛𝑜)

= (𝑇+𝐽𝑛𝑜𝑜 (𝜏) − 𝐵𝑜𝑛𝑜𝐽𝑜 (𝜏))𝑧𝑜 + 𝛾𝐴(𝑇𝑧𝑛𝑜 + Γ(𝑇)�̂�) + 𝐵𝑑,𝑛𝑜 (𝑦𝑑 − 𝐻𝑑,𝑜 (𝜏)𝑧𝑜)
= (𝑇+𝐽𝑛𝑜𝑜 (𝜏) + 𝛾𝐴𝐵𝑜𝑛𝑜 − 𝐵𝑜𝑛𝑜𝐽𝑜 (𝜏))𝑧𝑜 + 𝛾𝐴[̂ + 𝐵𝑑,𝑛𝑜 (𝑦𝑑 − 𝐻𝑑,𝑜 (𝜏)𝑧𝑜).

(75)

Therefore, [̂ has the same dynamics as in the proof of Theorem6 and so by proceeding
similarly, we get the results in the (𝑧𝑜, 𝑧𝑛𝑜, 𝜔)-coordinates thanks to the uniform
invertibility of the transformation. □

4.4 KKL-based observer design in the 𝒙-coordinates

In a similar manner as in Section 3.2, the KKL-based observer can equivalently be
implemented directly in the original 𝑥-coordinates. Based on the proof of Theorem
4 by noting that ¤𝑇 = 0 during flows, we can derive the dynamics of the observer in
the 𝑥-coordinates as

¤̂Z = 𝐹 ′Ẑ + (𝑢𝑐, 0) + P𝐻 ′⊤
𝑐 𝑅

−1 (𝜏) (𝑦𝑐 − 𝐻 ′
𝑐 Ẑ)

¤P = _P + 𝐹 ′P + P𝐹 ′⊤ − P𝐻 ′⊤
𝑐 𝑅

−1 (𝜏)𝐻 ′
𝑐P

¤𝑇 = 0
¤𝜏 = 1

Ẑ+ = 𝐽 ′Ẑ + (𝑢𝑑 , 0) + D ′
𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇+))†) (𝐵𝑑,𝑛𝑜 (𝑦𝑑 − 𝐻𝑑𝑥) + 𝛾𝐴Γ(𝑇)�̂�)

P+ = ★⊤𝑃−1
0 (D ′

𝑜 + D ′
𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇))†)𝐵𝑜𝑛𝑜)⊤

𝑇+ = (𝛾𝐴𝑇 + 𝐵𝑑,𝑛𝑜𝐻𝑑𝑒
𝐹𝜏D𝑛𝑜 + 𝐵𝑜𝑛𝑜V𝑜𝐽𝑒

𝐹𝜏D𝑛𝑜) sat𝑠𝐽 ((V𝑛𝑜𝐽𝑒
𝐹𝜏D𝑛𝑜)†)

𝜏+ = 0,
(76)

where Ẑ = (𝑥, �̂�), with jumps still triggered at the same time asH , where

𝐹 ′ =

(
𝐹 0
0 0

)
, 𝐻 ′

𝑐 =
(
𝐻𝑐 0

)
, 𝐽 ′ =

(
𝐽 0
0 0

)
, D ′

𝑜 =

(
D𝑜

0

)
, D ′

𝑛𝑜 =

(
D𝑛𝑜 0

0 Id

)
.

The fact that observability is pumped from discrete time to continuous time via the
interaction of P and 𝑇 at the jump is recovered, while here it is interesting to see that
instead of being reset to a constant as in Section 3.2, here P+ depends on 𝑇 , which
adapts to the successive flow lengths.

Theorem 8 Suppose Assumptions 1, 2, 4, and 5 hold. Define 𝑛[ and (𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜)
as in Theorem 6. Given any _1 > 0, any 𝑃0 ∈ S𝑛𝑜

>0 , and any 𝑇0 ∈ R𝑛[×𝑛𝑛𝑜 , there
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exists 0 < 𝛾★ ≤ 1 such that there exists _★ > 0 such that for any 0 < 𝛾 < 𝛾★ and any
_ > _★, there exist 𝑗 ∈ N>0, saturation levels 𝑠𝑇𝑒 > 0, 𝑠𝐽 > 0, and scalar 𝜌1 > 0 such
that for any solution 𝑥 ∈ SH (X0,U) and any solution ( Ẑ ,P, 𝑇, 𝜏) to observer (76)
with P(0, 0) = ★⊤𝑃−1

0 (D ′
𝑜 +D ′

𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇0)†)𝐵𝑜𝑛𝑜)⊤,𝑇 (0, 0) = 𝑇0, 𝜏(0, 0) = 0,
the chosen (𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜), sat𝑠𝑇𝑒 at level 𝑠𝑇𝑒 , sat𝑠𝐽 at level 𝑠𝐽 , and jumps triggered
at the same time as in 𝑥, ( Ẑ ,P, 𝑇, 𝜏) is complete and we have

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | ≤ 𝜌1 |𝑥(𝑡 𝑗 , 𝑗) − 𝑥(𝑡 𝑗 , 𝑗) |𝑒−_1 (𝑡+ 𝑗) , ∀(𝑡, 𝑗) ∈ dom 𝑥, 𝑗 ≥ 𝑗 .

(77)

Proof Define D ′ =
(
D ′

𝑜 D ′
𝑛𝑜

)
and its inverseV ′. Consider _★, 𝛾★, 𝑗★, 𝑐

𝑇
, and 𝑠𝑇𝑒

given by Theorem 7. Pick a solution 𝑥 ∈ SH (X0,U) and a solution ( Ẑ ,P, 𝑇, 𝜏) to
observer (76) with P(0, 0) = ★⊤𝑃−1

0 (D ′
𝑜 + D ′

𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇0)†)𝐵𝑜𝑛𝑜)⊤, 𝑇 (0, 0) =
𝑇0, 𝜏(0, 0) = 0, 0 < 𝛾 < 𝛾★, and _ > _★, with jumps triggered at the same time
as in 𝑥. Consider (𝑧, �̂�, 𝑃, 𝑇, 𝜏) solution to observer (69), with (𝑧(0, 0), �̂�(0, 0)) =
V ′Ẑ (0, 0), 𝑃(0, 0) = 𝑃0, 𝑇 (0, 0) = 𝑇 (0, 0), 𝜏(0, 0) = 0, and the same parameters,
with jumps triggered at the same time as in 𝑥. First, notice from their dynamics that
𝑇 = 𝑇 and 𝜏 = 𝜏. Then, applying Theorem 7, we get

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) | ≤ 𝜌1 |𝑥(𝑡 𝑗 , 𝑗) − 𝑥(𝑡 𝑗 , 𝑗) |𝑒−_1 (𝑡+ 𝑗) , ∀(𝑡, 𝑗) ∈ dom 𝑥, 𝑗 ≥ 𝑗 ,

where 𝑥 = 𝑒𝐹𝜏D𝑧. The proof consists in showing that 𝑥 = 𝑥 where Ẑ = (𝑥, �̂�), thus
obtaining (77). Denote Ẑ = (𝑥, �̂�). We start by observing that Ẑ = 𝑒𝐹

′𝜏D ′(𝑧, �̂�), so
that

¤̂Z = 𝐹 ′Ẑ + (𝑢𝑐, 0) + 𝐿 ′
𝑐 (𝑃,𝑇, 𝜏) (𝑦𝑐 − 𝐻 ′

𝑐 Ẑ), (78a)

during flows and

Ẑ
+
= 𝐽 ′Ẑ + (𝑢𝑑 , 0) + 𝐿 ′

𝑑,𝑥 (𝑇) (𝑦𝑑 − 𝐻𝑑𝑥) + 𝐿 ′
𝑑,𝜔 (𝑇)�̂�, (78b)

at jumps where

𝐿 ′
𝑐 (𝑃,𝑇, 𝜏) = 𝑒𝐹

′𝜏D ′
(

𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)

sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇))†)𝐵𝑜𝑛𝑜𝑃
−1𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)

)
= 𝑒𝐹

′𝜏 (D ′
𝑜 + D ′

𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇))
†)𝐵𝑜𝑛𝑜)𝑃−1𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏), (79a)

and

𝐿 ′
𝑑,𝑥 (𝑇) = D ′

(
0

sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇+))†)𝐵𝑑,𝑛𝑜

)
= D ′

𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇
+))†)𝐵𝑑,𝑛𝑜, (79b)

𝐿 ′
𝑑,𝜔 (𝑇) = D ′

(
0

𝛾 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇+))†)𝐴Γ(𝑇)

)
= 𝛾D ′

𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇
+))†)𝐴Γ(𝑇).

(79c)

From (23),we actually have𝐻 ′
𝑐𝑒

𝐹′𝜏D ′
𝑛𝑜 = 0, so𝐻 ′

𝑐𝑒
𝐹′𝜏D ′

𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇))†)𝐵𝑜𝑛𝑜 =

0 and we have 𝐿 ′
𝑐 (𝑃,𝑇, 𝜏) = P𝐻 ′⊤

𝑐 𝑅
−1 (𝜏) where



36 G. Q. B. Tran, P. Bernard, L. Marconi

P = ★⊤𝑃−1 (D ′
𝑜 + D ′

𝑛𝑜 sat𝑠𝑇𝑒 ((𝑇𝑒 (𝑇))
†)𝐵𝑜𝑛𝑜)⊤𝑒𝐹

′⊤𝜏 . (80)

Calculating ¤P, we obtain the same flow/jump dynamics as P in observer (76).
Besides, P(0, 0) = P(0, 0), so P = P thanks to the uniqueness of solutions. We
deduce that Ẑ follows the same dynamics as Ẑ , and since

Ẑ (0, 0) = D ′(𝑧, �̂�) (0, 0) = Ẑ (0, 0),

we have Ẑ = Ẑ , which implies 𝑥 = 𝑥 and concludes the proof. □

Example 5 Consider the same system as in Example 4. First, with 𝐽𝑛𝑜 (𝜏) =
(
1 0
0 1

)
for all 𝜏 ∈ I, Assumption 4 is satisfied. Since 𝐻𝑑,𝑛𝑜 (𝜏) = 0 for all 𝜏 ∈ I, we discard
the jump output and only consider the fictitious one described by the matrix 𝐽𝑜𝑛𝑜 (𝜏).
We then see that with 𝑚1 = 𝑚2 = 1, for all sequences of flow lengths (𝜏𝑗 ) 𝑗∈N,

O𝑏𝑤
𝑗 = 𝐽𝑜𝑛𝑜 (𝜏𝑗 )𝐽−1

𝑛𝑜 (𝜏𝑗 ) =
(
1 0
0 1

)
satisfies O𝑏𝑤⊤

𝑗
O𝑏𝑤

𝑗
=

(
1 0
0 1

)
> 0 for all 𝑗 ≥ max{𝑚1, 𝑚2} = 1. Therefore, Assump-

tion 5 is satisfied and we can thus design a KKL-based observer where 𝑇 is of

dimension 2× 2. Let us take 𝐴 = diag(0.1, 0.2), an empty 𝐵𝑑,𝑛𝑜, and 𝐵𝑜𝑛𝑜 =

(
1 0
0 1

)
.

Then, a KKL-based observer as in observer (60), (69), or (76), with the mentioned
(𝐴, 𝐵𝑑,𝑛𝑜, 𝐵𝑜𝑛𝑜), a weighting matrix taken as 𝑅 = Id, a large enough _, and a small
enough 𝛾, can be designed for this system.

5 Conclusion

This chapter presents and discusses new results on observer design for general hybrid
systems with linear maps and known jump times. After defining and discussing the
hybrid (pre-)asymptotic detectability and uniform complete observability conditions,
we briefly presented again the Kalman-like observer in [28]. We then propose a
decomposition of the state of a hybrid system with linear maps and known jump
times into a part that is instantaneously observable during flows and a part that is not.
A thorough analysis of the asymptotic detectability of the second part is performed,
where we show that this part can actually be detectable from an extended output
made of the jump output and a fictitious one thanks to the flow-jump combination.
A high-gain Kalman-like observer with resets at jumps is proposed to estimate the
first part, while two different jump-based algorithms are proposed for the second
one. Several examples are provided to illustrate the methods.
A comparison among the mentioned designs, namely the Kalman-like observer

[28] and the two designs depending on observability decomposition, is presented
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in Table 1 at the end. While the KKL-based design requires stronger conditions
and has a larger dimension than the LMI-based one, it can provide an arbitrarily
fast convergence rate of the estimate (achieved after a certain time). Compared to
the Kalman-like design in [28], the LMI-based observer has a smaller dimension,
whereas the KKL-based one can be bigger or smaller depending on 𝑛𝑜 versus 𝑛𝑛𝑜.
Therefore, for a particular application, if 𝑛𝑜 is large compared to 𝑛𝑛𝑜, going through
a decomposition is advantageous dimension-wise. Note also that while the Kalman-
like observer can easily deal with time-varying matrices in the system dynamics and
output, the decomposition method must additionally assume the (uniform) existence
of the transformation into system (26), for example, to solve the LMI (33) for the
gains 𝐿𝑑,𝑛𝑜 (·) and 𝐾𝑛𝑜. Furthermore, even though the invertibility of 𝐽𝑛𝑜 (𝜏) for all
𝜏 ∈ I assumed for the KKL-based method may seem lighter than the invertibility
of 𝐽 at the jump times assumed in the Kalman-like approach [28, Assumption 2], it
may turn out stronger since 𝐽†𝑛𝑜 (𝜏) is used in the KKL implementation (see observer
(60)), while 𝐽−1 is used only for analysis in the Kalman-like design, not in the
implementation (see observer (16)).
Future work is to study hybrid systems with nonlinear maps (and known jump

times) by finding transformations into coordinates of possibly higher dimensions
and Lyapunov-based sufficient conditions to couple different observers [30], as well
as those with unknown jump times.

Acknowledgements We thank Florent Di Meglio and Ricardo Sanfelice for their helpful feedback.

6 Appendix: Technical lemmas

6.1 Exponential stability of the error dynamics

Consider a hybrid system of the form

¤̃𝑧𝑜 = − 𝑃−1𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)𝑧𝑜

¤̃[ = 0
¤𝑃 = − _𝑃 + 𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)
¤𝜏 = 1

𝑧+𝑜 = 𝑀𝑜 (𝑢, 𝜏)𝑧𝑜 + 𝑀𝑜[ (𝑢, 𝜏)[̃
[̃+ = 𝑀[𝑜 (𝑢, 𝜏)𝑧𝑜 + 𝑀[ (𝜏)[̃
𝑃+ = 𝑃0
𝜏+ = 0,

(81a)

where 𝑢 ∈ U is the input, with the flow and jump sets

R𝑛𝑜 × R𝑛[ × R𝑛𝑜×𝑛𝑜 × [0, 𝜏𝑀 ], R𝑛𝑜 × R𝑛[ × R𝑛𝑜×𝑛𝑜 × I, (81b)
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where I is a compact subset of [𝜏𝑚, 𝜏𝑀 ] for some positive 𝜏𝑚 and 𝜏𝑀 .

Lemma 2 Assume that:

1. 𝐻𝑐,𝑜 is continuous on [0, 𝜏𝑀 ] and such that the pair (0, 𝐻𝑐,𝑜 (𝜏)) satisfies (27);
2. 𝑅 is continuous on [0, 𝜏𝑀 ] and 𝑅(𝜏) > 0 for all 𝜏 ∈ [0, 𝜏𝑀 ];
3. 𝑀𝑜, 𝑀𝑜[ , and 𝑀[𝑜 are bounded on U × I;
4. 𝑀[ is continuous on I and there exists 𝑄[ ∈ S𝑛[

>0 such that

𝑀⊤
[ (𝜏)𝑄[𝑀[ (𝜏) −𝑄[ < 0, ∀𝜏 ∈ I. (82)

Then for any 𝑃0 ∈ S𝑛𝑜
>0 , there exists _★ > 0 such that for all _ > _★, there exist 𝜌1 > 0

and _1 > 0 such that any solution (𝑧𝑜, [̃, 𝑃, 𝜏) to system (81) with 𝑃(0, 0) = 𝑃0,
𝜏(0, 0) = 0, and 𝑢 ∈ U, is complete and verifies

| (𝑧𝑜, [̃) (𝑡, 𝑗) | ≤ 𝜌1𝑒
−_1 (𝑡+ 𝑗) | (𝑧𝑜, [̃) (0, 0) |, ∀(𝑡, 𝑗) ∈ dom(𝑧𝑜, [̃, 𝑃, 𝜏). (83)

Proof First, due to the compactness of I and Item 4 in Lemma 2, there exists 𝑎 > 0
such that for all 𝜏 ∈ I, (82) is strengthened into

𝑀⊤
[ (𝜏)𝑄[𝑀[ (𝜏) −𝑄[ ≤ −𝑎𝑄[ , ∀𝜏 ∈ I. (84)

Since 𝑃(0, 0) = 𝑃0, 𝑃+ = 𝑃0, and 𝜏(0, 0) = 0, the component (𝑡, 𝑗) ↦→ 𝑃(𝑡, 𝑗) of the
solution to system (81) can actually be written as a closed form of the component
(𝑡, 𝑗) ↦→ 𝜏(𝑡, 𝑗) by defining

P(𝜏) = 𝑒−_𝜏𝑃0 +
∫ 𝜏

0
𝑒−_(𝜏−𝑠)𝐻⊤

𝑐,𝑜 (𝑠)𝑅−1 (𝑠)𝐻𝑐,𝑜 (𝑠)𝑑𝑠, (85)

namely 𝑃(𝑡, 𝑗) = P(𝜏(𝑡, 𝑗)) for all (𝑡, 𝑗) ∈ dom 𝑥. Note that since 𝑃0 > 0, P(𝜏) is
invertible for all 𝜏 ∈ [0, 𝜏𝑀 ]. It follows that the solution is complete and (𝑧𝑜, [̃, 𝜏)
is solution to 

¤̃𝑧𝑜 = − P−1 (𝜏)𝐻⊤
𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)𝑧𝑜

¤̃[ = 0
¤𝜏 = 1

𝑧+𝑜 = 𝑀𝑜 (𝑢, 𝜏)𝑧𝑜 + 𝑀𝑜[ (𝑢, 𝜏)[̃
[̃+ = 𝑀[𝑜 (𝑢, 𝜏)𝑧𝑜 + 𝑀[ (𝜏)[̃
𝜏+ = 0,

(86)

with the flow set R𝑛𝑜 ×R𝑛[ × [0, 𝜏𝑀 ] and the jump set R𝑛𝑜 ×R𝑛[ ×I. Consider the
Lyapunov function

𝑉 (𝑧𝑜, [̃, 𝜏) = 𝑒
_
2 𝜏𝑧⊤𝑜P(𝜏)𝑧𝑜 + 𝑘𝑒−𝜖 𝜏 [̃⊤𝑄[ [̃, (87)

where 𝑘 > 0 and 𝜖 > 0. We have for all 𝜏 ∈ [𝜏𝑚, 𝜏𝑀 ] ⊇ I,
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𝑒
_
2 𝜏P(𝜏) ≥ 𝑒 _

2 𝜏

∫ 𝜏

3
4 𝜏
𝑒−_(𝜏−𝑠)𝐻⊤

𝑐,𝑜 (𝑠)𝑅−1 (𝑠)𝐻𝑐,𝑜 (𝑠)𝑑𝑠

≥ 𝑟𝑚𝑒
_
4 𝜏

∫ 𝜏

3
4 𝜏

D⊤
𝑜 𝑒

𝐹⊤𝑠𝐻⊤
𝑐 𝐻𝑐𝑒

𝐹𝑠D𝑜𝑑𝑠

≥ 𝑟𝑚𝑒
_
4 𝜏𝑚

∫ 3
4 𝜏+

1
4 𝜏𝑚

3
4 𝜏

D⊤
𝑜 𝑒

𝐹⊤𝑠𝐻⊤
𝑐 𝐻𝑐𝑒

𝐹𝑠D𝑜𝑑𝑠

≥ 𝑒
_
4 𝜏𝑚𝑟𝑚𝛼 Id

:= 𝑒
_
4 𝜏𝑚_𝑚 Id, (88)

where 𝑟𝑚 > 0 is a lower bound of the continuous map 𝑅 on the compact set [0, 𝜏𝑀 ]
(thanks to Item 2 in Lemma 2), 𝛼 > 0 (independent of _) is obtained by applying
(27) with 𝛿 = 𝜏𝑚

4 , and _𝑚 := 𝑟𝑚𝛼. On the other hand, from (85), for all 𝜏 ∈ [0, 𝜏𝑚],
P(𝜏) ≥ 𝑒−_𝜏𝑚𝑃0, so 𝑒

_
2 𝜏P(𝜏) ≥ 𝑒−_𝜏𝑚𝑃0. Besides, asP is continuous on the compact

set [0, 𝜏𝑀 ], there exists 𝑝𝑀 > 0 such that P(𝜏) ≤ 𝑝𝑀 Id for all 𝜏 ∈ [0, 𝜏𝑀 ]. It then
follows that there exist 𝜌 > 0 and 𝜌 > 0 defined as

𝜌 = min
{
eig

(
𝑒−_𝜏𝑚𝑃0

)
, 𝑒

_
4 𝜏𝑚_𝑚, eig

(
𝑘𝑒−𝜖 𝜏𝑀𝑄[

)}
, (89a)

𝜌 = max
{
𝑒

_
2 𝜏𝑀 𝑝𝑀 , eig

(
𝑘𝑒−𝜖 𝜏𝑚𝑄[

)}
, (89b)

such that

𝜌 | (𝑧𝑜, [̃) |2 ≤ 𝑉 (𝑧𝑜, [̃, 𝜏) ≤ 𝜌 | (𝑧𝑜, [̃) |2, ∀(𝑧𝑜, [̃) ∈ R𝑛,∀𝜏 ∈ [0, 𝜏𝑀 ] . (90)

During flows, for all (𝑧𝑜, [̃) ∈ R𝑛 and 𝜏 ∈ [0, 𝜏𝑀 ],

¤𝑉 = 𝑒
_
2 𝜏𝑧⊤𝑜

(
_

2
P(𝜏) − 2𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏) + ¤P(𝜏)
)
𝑧𝑜 − 𝜖 𝑘𝑒−𝜖 𝜏 [̃⊤𝑄[ [̃

= 𝑒
_
2 𝜏𝑧⊤𝑜

(
−_

2
P(𝜏) − 𝐻⊤

𝑐,𝑜 (𝜏)𝑅−1 (𝜏)𝐻𝑐,𝑜 (𝜏)
)
𝑧𝑜 − 𝜖 𝑘𝑒−𝜖 𝜏 [̃⊤𝑄[ [̃

≤ −_
2
𝑒

_
2 𝜏𝑧⊤𝑜P(𝜏)𝑧𝑜 − 𝜖 𝑘𝑒−𝜖 𝜏 [̃⊤𝑄[ [̃

≤ −min
{
_

2
, 𝜖

}
𝑉. (91)

At jumps, for all (𝑧𝑜, [̃) ∈ R𝑛, 𝑢 ∈ U, and 𝜏 ∈ I,

𝑉+ −𝑉 = ★⊤𝑃0 (𝑀𝑜 (𝑢, 𝜏)𝑧𝑜 + 𝑀𝑜[ (𝑢, 𝜏)[̃) − 𝑒
_
2 𝜏𝑧⊤𝑜P(𝜏)𝑧𝑜

+ 𝑘 ★⊤ 𝑄[ (𝑀[𝑜 (𝑢, 𝜏)𝑧𝑜 + 𝑀[ (𝜏)[̃) − 𝑘𝑒−𝜖 𝜏 [̃⊤𝑄[ [̃. (92)

From Young’s inequality, (88), (84), and Items 3 and 4 in Lemma 2, there exist
non-negative constants 𝑐𝑖 , 𝑖 = 1, 2, . . . , 5 independent of (_, 𝑘, 𝜖) such that for any
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^ > 0, for all (𝑧𝑜, [̃) ∈ R𝑛, 𝑢 ∈ U, and 𝜏 ∈ I,

𝑉+ −𝑉 ≤
(
𝑐1 + 𝑘𝑐2 + ^𝑐3 − 𝑒

_
4 𝜏𝑚_𝑚

)
𝑧⊤𝑜 𝑧𝑜

−
(
𝑘 (𝑎 − (1 − 𝑒−𝜖 𝜏𝑀 )) − 𝑐4 −

𝑘2𝑐5
^

)
[̃⊤𝑄[ [̃. (93)

We now show that this quantity can be made negative definite by successively
picking the degrees of freedom. For the [̃ part, ∃𝜖★ > 0 such that 0 < 𝜖 < 𝜖★ =⇒
𝑎− (1 − 𝑒−𝜖 𝜏𝑀 ) > 0, ∃𝑘★ > 0 such that 𝑘 > 𝑘★ =⇒ 𝑘 (𝑎 − (1 − 𝑒−𝜖 𝜏𝑀 )) −𝑐4 > 0,
and ∃^★ such that ^ > ^★ =⇒ 𝑘 (𝑎 − (1 − 𝑒−𝜖 𝜏𝑀 )) − 𝑐4 − 𝑘2𝑐5

^
> 0. Then, for the

𝑧𝑜 part, ∃_★ > 0 such that _ > _★ =⇒ 𝑐1 + 𝑘𝑐2 + ^𝑐3 − 𝑒
_
4 𝜏𝑚_𝑚 < 0. We deduce

that for any _ > _★, there exist 𝑎𝑐 > 0 and 𝑎𝑑 > 0 such that for all (𝑧𝑜, [̃) ∈ R𝑛,

¤𝑉 ≤ −𝑎𝑐𝑉, ∀𝜏 ∈ [0, 𝜏𝑀 ], (94a)
𝑉+ −𝑉 ≤ −𝑎𝑑𝑉, ∀𝑢 ∈ U,∀𝜏 ∈ I. (94b)

From (90) and (94), we conclude according to [13, Definition 7.29 and Theorem
7.30] that the set A = {(𝑧𝑜, [̃, 𝜏) ∈ R𝑛𝑜 × R𝑛𝑛𝑜 × [0, 𝜏𝑀 ] : 𝑧𝑜 = 0, [̃ = 0} is GES
for system (86). □

Corollary 1 Let us now consider system (81) with 𝑀[ (𝜏) replaced by 𝛾𝑀[ (𝜏) for
𝛾 ∈ (0, 𝛾★0 ]. Under the same assumptions as in Lemma 2, for any _𝑐 > 0 and any
𝑃0 ∈ S𝑛𝑜

>0 , there exists 𝛾★ > 0 such that there exists _★ > 0 such that for any
0 < 𝛾 < 𝛾★ and any _ > _★, there exists 𝜌𝑐 > 0 such that any solution (𝑧𝑜, [̃, 𝑃, 𝜏)
to the new system (81), with 𝑃(0, 0) = 𝑃0, 𝜏(0, 0) = 0, and 𝑢 ∈ U, is complete and
verifies

| (𝑧𝑜, [̃) (𝑡, 𝑗) | ≤ 𝜌𝑐𝑒
−_𝑐 (𝑡+ 𝑗) | (𝑧𝑜, [̃) (0, 0) |, ∀(𝑡, 𝑗) ∈ dom(𝑧𝑜, [̃, 𝑃, 𝜏). (95)

Proof This is a modification of the proof of Lemma 2. Consider the Lyapunov
function in (87). First, let us showwith an appropriate choice of 𝜖 that for_ sufficiently
large and 𝛾 sufficiently small, we have for some 𝑎𝑑 > 0,

¤𝑉 ≤ −2_𝑐
(

1
𝜏𝑚

+ 1
)
𝑉, 𝑉+ < 𝑉. (96)

Following the same analysis as in the proof of Lemma 2, we obtain that during flows,
¤𝑉 ≤ −min

{
_
2 , 𝜖

}
𝑉 for all 𝜏 ∈ [0, 𝜏𝑀 ], and at jumps thanks to (82), for all 𝑢 ∈ U

and 𝜏 ∈ I,

𝑉+ −𝑉 ≤
(
𝑐1 + 𝑘𝑐2 + ^𝑐3 − 𝑒

_
4 𝜏𝑚_𝑚

)
𝑧⊤𝑜 𝑧𝑜

−
(
𝑘

(
𝑒−𝜖 𝜏𝑀 − 𝛾2

)
− 𝑐4 −

𝑘2𝑐5
^

)
[̃⊤𝑄[ [̃. (97)
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Let us pick 𝜖 = 2_𝑐
(

1
𝜏𝑚

+ 1
)
and define _★0 := 4_𝑐

(
1
𝜏𝑚

+ 1
)
. Then, the first item

in (96) holds as soon as _ ≥ _★0 . Now define 𝛾
★ := min

{
𝛾★0 ,

√
𝑒−𝜖 𝜏𝑀

}
. For any

0 < 𝛾 < 𝛾★, we have 𝑒−𝜖 𝜏𝑀 − 𝛾2 > 𝑒−𝜖 𝜏𝑀 − (𝛾★)2 > 0, then 𝑘 , ^, and _ are
successively picked (based on 𝛾★) as in the proof of Lemma 2. The final _★ is the
larger one between this and _★0 . For any _ > _★ and 0 < 𝛾 < 𝛾★, we obtain (96).
Second, we deduce (95) from (96) and the dwell time condition. From (96), we get

𝑉 (𝑡, 𝑗) ≤ 𝑒−2_𝑐

(
1

𝜏𝑚
+1

)
𝑡
𝑉 (0, 0) for all (𝑡, 𝑗) ∈ dom(𝑧𝑜, [̃, 𝑃, 𝜏). Since the flow lengths

of system (81) are at least 𝜏𝑚 > 0 for all 𝑗 ≥ 1, we have 𝑗 ≤ 𝑡
𝜏𝑚

+1 so that 𝑡 ≥ 𝑡+ 𝑗−1
1

𝜏𝑚
+1 ,

for all (𝑡, 𝑗) ∈ dom(𝑧𝑜, [̃, 𝑃, 𝜏). Therefore, 𝑉 (𝑡, 𝑗) ≤ 𝑒2_𝑐𝑒−2_𝑐 (𝑡+ 𝑗)𝑉 (0, 0), for all
(𝑡, 𝑗) ∈ dom(𝑧𝑜, [̃, 𝑃, 𝜏), implying (95). □

6.2 Boundedness in finite time

Lemma 3 Consider a hybrid system with state [ ∈ R𝑛[ and input 𝑢 ∈ U ⊂ R𝑛𝑢 :{
¤[ = 𝑀𝑐 (𝑢)[ ([, 𝑢) ∈ 𝐶
[+ = 𝑀𝑑 (𝑢)[ ([, 𝑢) ∈ 𝐷 (98)

with 𝑀𝑐, 𝑀𝑑 : R𝑛𝑢 → R𝑛[×𝑛[ . Consider positive scalars 𝑚𝑐, 𝜌𝑑 , and 𝜏𝑀 , as well as
𝑗𝑚 ∈ N. Then, there exists 𝜌 > 0 such that for any solution ([, 𝑢) to system (98) with
flow lengths in [0, 𝜏𝑀 ] and such that ∥𝑀𝑐 (𝑢(𝑡, 𝑗))∥ ≤ 𝑚𝑐 and ∥𝑀𝑑 (𝑢(𝑡, 𝑗))∥ ≤ 𝜌𝑑
for all 𝑢 ∈ U and (𝑡, 𝑗) ∈ dom 𝑥, we have 𝑗𝑚 ∈ dom 𝑗 [ and

|[(𝑡 𝑗𝑚 , 𝑗𝑚) | ≤ 𝜌 |[(0, 0) |. (99)

Proof First, the flow lengths of system (98) are in [0, 𝜏𝑚] and solutions are both 𝑡-
and 𝑗-complete. During flows, the evolution of [ is characterized by the transition
matrix Ψ𝑀𝑐 (𝑢) as

[(𝑡, 𝑗) = Ψ𝑀𝑐 (𝑢) ,𝑢∈U (𝑡, 𝑡 𝑗−1)[(𝑡 𝑗−1, 𝑗 − 1). (100)

If 𝑀𝑐 is uniformly bounded for 𝑢 ∈ U, there exists 𝜌𝑐 > 0 such that for all
(𝑡, 𝑗) ∈ dom [ and all 𝑢 ∈ U, |[(𝑡, 𝑗) | ≤ 𝜌𝑐 |[(𝑡 𝑗−1, 𝑗 − 1) |. Next, we have for all
𝑗 ∈ dom 𝑗 [, |[(𝑡 𝑗 , 𝑗) | ≤ 𝜌𝑑 |[(𝑡 𝑗 , 𝑗 − 1) |. Therefore, for any 𝑗𝑚 ∈ N>0, we have
|[(𝑡 𝑗𝑚 , 𝑗𝑚) | ≤ 𝜌

𝑗𝑚
𝑐 𝜌

𝑗𝑚−1
𝑑

|[(0, 0) |, which is (99) by seeing that 𝜌 = 𝜌
𝑗𝑚
𝑐 𝜌

𝑗𝑚−1
𝑑
. □
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