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The Meridia Smart Energy (MSE) eco-district:
a Smart Energy System demonstrator project

Conclusion and future work: from
simulation to reality

Optimal energy management in Smart
Energy Systems

Simulation results: DRL vs MPC-based

benchmark approach , ,
The Deep Reinforcement Learning (DRL) —

based approach
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1- The Meridia Smart Energy (MSE) eco-district

Key project figures: Consortium members
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2- Optimal energy management in Smart Energy Systems

Load demand
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Operational objectives
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Energy management system framework (adapted from GU, Wei, WU, Zhi, BO, Rui, et al. Modeling,
planning and optimal energy management of combined cooling, heating and power microgrid: A

Weather forecast
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2- Optimal energy management in Smart Energy Systems

Global overview of the
Smart Energy System
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Optimal energy management in the MSE Smart Energy System
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Modeling and optimization
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Weather forecasts
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Open data
PV panels

Connected buildings

(heating, cooling, heated water)

Geothermal energy l
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End-user comfort Occupancy schedule

@ Multi-energy Management System

Microgrid - Local multi-energy loop

A large amount of historical, online and operational
data.

A need for near-real time decision making (load
shedding, frequency control, etc.).

Traditional optimization approaches suffer from costly
procedures: need for model, need to re-compute all
parts of the possible solutions before choosing the
optimal one.

We propose an optimal energy management approach
based on Deep Reinforcement Learning (DRL). A DRL
agent, once it learns an optimal strategy, is capable of
taking decisions within a few milliseconds.
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3- The Deep Reinforcement Learning (DRL) — based approach

Controlled Power Systems
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3- The Deep Reinforcement Learning (DRL) — based approach
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4- Simulation results: DRL vs MPC-based benchmark approach

Architecture of the MPC-based benchmark approach
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4- Simulation results: DRL vs MPC-based benchmark approach
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4- Simulation results: DRL vs MPC-based benchmark approach

500
0
-500
-1000 i
Constraint
Violation
Penality
-1500
-2000
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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4- Simulation results: DRL vs MPC-based benchmark approach
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Conclusions and future works

v Deep Reinforcement Learning (DRL) is a promising approach for optimal energy management of Smart Energy
Systems.

v’ Effective parameter tuning and reward signal engineering are crucial for DRL's success. Notably, several research
work report DRL challenges in managing storage systems. This failure likely stems from sparse reward issues.

v" In this work, we addressed the sparse reward problem by enhancing the reward signal. The DRL agent succeeded in
learning a strategy to proficiently manage electric, heat and cold storage systems.

v’ Simulation results on MSE case-study showcase comparable performance of DRL to Model Predictive Control (MPC)
with perfect forecasts and superior performance to MPC under realistic forecasts.

v" Future works include transitioning the developed DRL framework from simulation to real-world application on the
MSE Smart Energy System, deploying it for the optimal multi-energy management as a decision-support tool
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4- Simulation results: DRL vs MPC-based benchmark approach

Deep Reinforcement Learning framework
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4- Simulation results: DRL vs MPC-based benchmark approach
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Example of MPC strategy over one month (winter)

Elec load
PV
P grid

Heat load
Heat prod
Cool load
Cool prod

HS soc
CS soc

Price

Bat soc

CLUSTER
DENMARK

15



9t International Conference on Smart Energy Systems
((‘ 12-13 September 2023 energySéH-HEEK
H#SESAAU2023

AALBORG UNIVERSITY
DENMARK

4- Simulation results: DRL vs MPC-based benchmark approach
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Example of DRL strategy over one month (winter) 16



