
HAL Id: hal-04296682
https://minesparis-psl.hal.science/hal-04296682v1

Submitted on 20 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Making kriging consistent with flow equations:
application of Kriging with Numerical Covariances for

estimating a contamination plume
Chantal de Fouquet, Mathieu Le Coz, Xavier Freulon, Lea Pannecoucke

To cite this version:
Chantal de Fouquet, Mathieu Le Coz, Xavier Freulon, Lea Pannecoucke. Making kriging consistent
with flow equations: application of Kriging with Numerical Covariances for estimating a contam-
ination plume. Hydrogeology Journal, 2023, 31 (6), pp.1491-1503. �10.1007/s10040-023-02695-6�.
�hal-04296682�

https://minesparis-psl.hal.science/hal-04296682v1
https://hal.archives-ouvertes.fr


Hydrogeology Journal
 

Making kriging consistent with flow equations: application of Kriging with Numerical
Covariances for estimating a contamination plume

--Manuscript Draft--
 

Manuscript Number: HYJO-D-22-00436R3

Full Title: Making kriging consistent with flow equations: application of Kriging with Numerical
Covariances for estimating a contamination plume

Article Type: Paper

Funding Information: ANDRA Not applicable

Programme d'investissements d'avenir Not applicable

Abstract: When the data are few, kriging hydraulic head or concentration with usual variogram
models can lead to physically inconsistent results, because the non-stationarity
induced by the flow or transport equations is not taken into account properly. Several
methods have been proposed to account for these equations in the geostatistical
estimation. A recent and general approach consists in incorporating them through
specific covariance models. A set of random fields sampling uncertain parameters (e.g.
conductivity) is first used as input of a flow simulator. Empirical “numerical” spatial
covariances are then calculated between pairs of points  and  for the variable of
interest (e.g. hydraulic head, concentration) on the corresponding set of flow simulator
outputs. These non-stationary “numerical” covariances are consistent with the specific
spatial variability of hydraulic head or concentrations. They are used in the estimation.
In this paper, flow-and-transport simulations are thus combined with kriging to estimate
contaminant concentrations in groundwater. A non-stationary Gaussian anamorphosis
in introduced for non-linear estimation so that the estimate of the concentration is
positive.
The method is first validated on synthetic data and then on real data from a two-
dimensional cross-section of an aquifer downstream of a trench containing radioactive
waste in the Chernobyl area. Kriging with the output of a simplified flow model as
external drift and kriging with numerical covariances reproduce the spatial variability of
the contaminant plume much better than usual (ordinary) kriging based on
observations only. The comparison between the two best estimators is discussed

Corresponding Author: Chantal de FOUQUET
Mines Paris - PSL
Fontainebleau, FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Mines Paris - PSL

Corresponding Author's Secondary
Institution:

First Author: Chantal de FOUQUET

First Author Secondary Information:

Order of Authors: Chantal de FOUQUET

Mathieu Le Coz

Xavier Freulon

Léa Pannecoucke

Order of Authors Secondary Information:

Author Comments: Fig 4 has been changed

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



1 
 

Making kriging consistent with flow equations: application of kriging with numerical 1 

covariances for estimating a contamination plume 2 

 3 

Chantal de Fouquet1*, Mathieu Le Coz2, Xavier Freulon1, Léa Pannecoucke1,2 4 

1. Mines Paris, PSL University, Centre for geosciences and geoengineering, 77300 5 

Fontainebleau, France 6 

2. Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 92260 7 

Fontenay-aux-Roses, France 8 

* Corresponding author: chantal.de_fouquet@minesparis.psl.eu 9 

 10 

ABSTRACT 11 

When the data are few, kriging hydraulic head or concentration with usual variogram models 12 

can lead to physically inconsistent results, because the non-stationarity induced by the flow or 13 

transport equations is not taken into account properly. Several methods have been proposed to 14 

account for these equations in the geostatistical estimation. A recent and general approach 15 

consists of incorporating them through specific covariance models. A set of random fields 16 

sampling uncertain parameters (e.g. hydraulic conductivity) is first used as the input of a flow 17 

simulator. Empirical “numerical” spatial covariances are then calculated between pairs of 18 

points 𝑥 and 𝑥’ for the variable of interest (e.g. hydraulic head, concentration) on the 19 

corresponding set of flow simulator outputs. These non-stationary “numerical” covariances 20 

are consistent with the specific spatial variability of hydraulic head or concentrations, and 21 

they are used in the estimation. In this paper, flow-and-transport simulations are thus 22 

combined with kriging to estimate contaminant concentrations in groundwater. A non-23 

stationary Gaussian anamorphosis in introduced for non-linear estimation so that the estimate 24 

of the concentration is positive. The method is first validated on synthetic data and then on 25 

real data from a two-dimensional cross-section of an aquifer downstream of a trench 26 

containing radioactive waste in the Chernobyl area, Ukraine. Kriging with the output of a 27 

simplified flow model as external drift and kriging with numerical covariances reproduce the 28 

spatial variability of the contaminant plume much better than usual (ordinary) kriging based 29 

on observations only. The comparison between the two best estimators is discussed. 30 

 31 

 32 

Keywords: Groundwater modelling, Geostatistics, Radionuclide migration, Contamination   33 

  34 

Manuscript text sd7Aug Click here to access/download;Manuscript;22-00436 text caps
sd1July_CF sd7Augi.docx

Click here to view linked References

mailto:chantal.de_fouquet@minesparis.psl.eu
https://www.editorialmanager.com/hyjo/download.aspx?id=59632&guid=0a94be8e-68f3-4014-b80b-fcb2c5dd319b&scheme=1
https://www.editorialmanager.com/hyjo/download.aspx?id=59632&guid=0a94be8e-68f3-4014-b80b-fcb2c5dd319b&scheme=1
https://www.editorialmanager.com/hyjo/viewRCResults.aspx?pdf=1&docID=1588&rev=3&fileID=59632&msid=212ac485-60a6-44d3-a8f2-d615b8762b0d


2 
 

NOTE TO COPYEDITOR – PLEASE INSERT THE FOLLOWING AS A FIRST-PAGE FOOTNOTE 35 

Published in the special issue “Geostatistics and hydrogeology”  36 

 37 

 38 

1. Introduction 39 

Estimating the hydraulic head or concentrations of components in groundwater is necessary for 40 

drawing a map, locating "at best" new measurements by minimalizing redundancy (Júnez-Ferreira et 41 

al., 2013), or solving the inverse problem (Gomez-Hernandez et al., 1997; Angulo et al., 1998; de 42 

Marsily et al., 2000). However the head or concentration data are generally few and the kriging 43 

estimate of these variables with a usual variogram model is not necessarily consistent with the flow 44 

physics. Various methods have been proposed to constrain estimates by flow physics, a synthesis and 45 

non-exhaustive review of which is presented here.  46 

As the head decreases in the flow direction, it is better to carry out the kriging using a non-stationary 47 

model (Kumar, 2007). An anisotropic variogram allows one to particularize the direction of flow at the 48 

macroscopic scale. Taking covariates into account allows for improvement of the modelling. Thus, 49 

Desbarats et al. (2002) introduce the topography as an external drift of the head, choosing the 50 

appropriate support of regularization of the digital elevation model. Varouchakis et al. (2012) make a 51 

non-linear estimation of the head (using a Gaussian anamorphosis or a modified Box-Cox 52 

transformation), with the necessary correction for the back transformation of the estimated values. 53 

On a real case, the cross-validation results are improved compared to the usual kriging. 54 

Curvilinear coordinate transformation allows for bringing back the “natural coordinates” of flow, i.e. 55 

hydraulic head and stream functions (Roth, 1995; Rivest at al., 2012). In order to explicitly introduce 56 

flow physics, Brochu et al. (2003) use the formalism of dual kriging to impose to the estimate the form 57 

of the analytical solution of a linear or radial flow calculated for a homogeneous medium. In Rivest et 58 

al. (2008) the covariate used as external drift is a « smooth »  output of a finite element flow model 59 

calculated on an uniform transmissivity field, for which boundary conditions must therefore be 60 

specified. Tests on synthetic cases show that the accuracy of the estimate and its realism are improved. 61 

The method was applied to the real case of a dam.  62 

On a synthetic case in steady state, Yang et al. (2018, 2019) reconstruct a field of concentrations by 63 

«physics-informed kriging» or «physics-informed cokriging». The method is based on a regression 64 

between observations which are considered as ”high fidelity“ data, and the average of outputs of flow 65 

and transport simulations which are considered as ”low fidelity” data. The difference between kriging 66 

and cokriging lies in the covariance of the discrepancy between low fidelity data and observations. To 67 

improve the modelling, Yang et al. (2018, 2019) suggest a non-stationary model for this discrepancy. 68 

In another approach, covariance models are constructed so as to be approximately or accurately 69 

consistent with flow equations. In the case of steady-state linear macroscopic flow and in the absence 70 

of recharge, the linearization of the differential equation linking perturbations of head and 71 

transmissivity provides an approximated solution. Hoeksema and Kitanidis (1984) supposed the head 72 

to be stationary. Dong (1989, 1990) gave a general solution within the framework of the intrinsic 73 
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random function of order-k (IRF-k) theory and applied it to the inverse problem, by cokriging the 74 

transmissivity from transmissivity and head data. Hernandez et al. (2003) introduced a source term in 75 

the equations for performing geostatistical inversion based on the pilot points method (de Marsily, 76 

1978; de Marsily et al., 1984). Zhang and Neuman (1996) generalized the analytical form of the simple 77 

and cross-covariance to velocity by crossing two flows with different main directions, for comparing 78 

longitudinal and transverse dispersion. 79 

However the hypothesis of a uniform head gradient is often too strict. Roth et al. (1998) construct a 80 

variogram 𝛾(𝑥, 𝑥 ′) consistent with a steady state flow model with fixed aquifer geometry and 81 

boundary conditions. A set of geostatistical non conditional simulations of the conductivity are used 82 

as input of a flow simulation. The variogram 𝛾(𝑥, 𝑥 ′ ) is calculated, up to the ½ factor, as the mean 83 

square deviation of the head at pairs of points 𝑥 and 𝑥’, computed on a set of flow simulation outputs. 84 

The numerical version of simple and cross-variograms (or covariances) between head and 85 

transmissivity is then used for cokriging these two variables. These experimental non-stationary 86 

variograms are used by Schwelle and Cirpka (2010) to estimate the head and the concentration by 87 

conditional expectation, calculated by the median (rather than the mean) on a set of simulations 88 

constrained by data from different variables. However, the conditional simulations of the 89 

transmissivity (or permeability) they use are obtained by an iterative inverse approach. 90 

Pannecoucke et al. (2020) generalize the approach to the vadose zone. Non conditional simulations of 91 

saturated hydraulic conductivity are used as input to flow-and-transport simulations of a non reactive 92 

contaminant. Boundary conditions can vary between the flow simulations, if these conditions are not 93 

precisely known. Applications to a wide variety of problems are presented in Pannecoucke (2020) in 94 

two dimensions (2D) or 3D, for spatial or spatio-temporal estimation: delimitation of a contaminated 95 

zone at fixed contamination threshold and identification of the associated “uncertainty zone”, back-96 

tracing of the unknown location of a contaminant source, comparison of the estimation with the 97 

results of a (real) 3D tracing experiment, etc.   98 

This paper presents original results of kriging with numerical covariance, following the approach of 99 

Pannecoucke (2020), in order to take into account the heterogeneity of a contamination plume. 100 

However an anamorphosis (variable transformation) step is introduced, so that the contamination 101 

estimates are positive. This non-stationary anamorphosis is calculated on the set of the outputs of the 102 

flow-and-transport simulations. The 2D application cases refer to the highly non-stationary context of 103 

a contamination plume from a radioactive waste deposit located near the Chernobyl power station in 104 

Ukraine. A synthetic case is first examined and the estimation using real-world data is then discussed 105 

for comparing three estimation methods: usual kriging, external drift kriging with a simplified flow 106 

simulation as covariate, and kriging with numerical covariance. 107 

2. Methods 108 

2.1. ”Numerical” covariance  109 

In classical kriging approaches, the covariance is inferred from observations of the variable to be 110 

estimated. However kriging is more general and can be performed based on non-stationary 111 

covariances of type 𝐶(𝑥, 𝑥′). Especially, these covariances can be computed between each pair of grid 112 

nodes of the domain from a set of 𝑁 realizations of the variable (Pannecoucke et al., 2020), such as: 113 
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𝐶(𝑥, 𝑥′) =
1

𝑁
∑ [𝑍𝑛(𝑥) − 𝑍(𝑥)̅̅ ̅̅ ̅̅ ][𝑍𝑛(𝑥′) − 𝑍(𝑥′)̅̅ ̅̅ ̅̅ ̅]𝑁

𝑛=1   (1) 114 

where 𝐶(𝑥, 𝑥′) is the “numerical covariance” between grid nodes 𝑥 and 𝑥′ and 𝑍𝑛(𝑥) (respectively 115 

𝑍𝑛(𝑥′)) is the value of the variable 𝑍 at grid node 𝑥 (respectively 𝑥′) for the 𝑛-th realization. For each 116 

grid node 𝑥, the “numerical” covariance at all 2D grid nodes 𝑥′ draws a 2D map. Fig. 1 shows the maps 117 

of numerical covariances related to two different points 𝑥, for a set of simulated concentration plumes 118 

(see further section 3.2.). It can be shown that the numerical covariance 𝐶(𝑥, 𝑥′) (or the numerical 119 

variogram 𝛾(𝑥, 𝑥′)) has the required mathematical properties of a (discrete) covariance or variogram 120 

function (de Fouquet, 2019; Pannecoucke, 2020). 121 

For the application (Section 3) the realizations of the variable of interest are generated by flow-and-122 

transport simulations of a contaminant plume. First, a set of geostatistical simulations of the hydraulic 123 

conductivity is constructed and simulations of the source term of the contamination are taken from a 124 

previous work (Nguyen, 2017). The flow-and-transport simulations are based on the synthesis of 125 

several studies (Le Coz et al., 2023). Nevertheless, it should be noted that the influence of the range of 126 

the hydrogeological parameters was reduced compared with the variability between realizations and 127 

with the boundary conditions (Pannecoucke et al., 2019; Pannecoucke, 2020). 128 

The kriging with numerical covariance can be seen as a generalization of kriging in natural flow 129 

coordinates. Indeed, a stationary covariance 𝐾 applied after a space transformation 𝑓 can be written 130 

as 𝐾(𝑓(𝑥) − 𝑓(𝑥′)) and therefore is of the form 𝐶(𝑥, 𝑥’) when the function 𝑓  is not linear. Conversely, 131 

in the case of a complex phenomenon, such as the development and movement of a plume, it is not 132 

necessarily the case that a space transformation 𝑓 and a stationary covariance 𝐾 exist such that the 133 

non-stationary covariance 𝐶(𝑥, 𝑥’) is of the form 𝐾(𝑓(𝑥) − 𝑓(𝑥′)). It is thus pragmatic to calculate the 134 

empirical non-stationary covariance (the “numerical covariance”) on a set of outputs of the numerical 135 

flow-and-transport simulations.   136 

2.2. Non-stationary Gaussian transformation 137 

In practice, kriging with a numerical covariance does not ensure that the estimated concentration is 138 

positive. The non-linear estimation in the well-known anamorphosed Gaussian model (Chilès and 139 

Delfiner, 2012) allows avoiding negative estimates for positive quantities.  140 

Due to the non-stationarity of the local distributions of the simulated contaminant concentrations 141 

(especially, inside vs. outside the contaminant plume), a Gaussian transformation of these distributions 142 

is performed at each grid node. The non-stationary anamorphosis 𝛷𝑥 is calculated from the 𝑁 outputs 143 

of the flow-and-transport simulation at the grid node 𝑥. Thus: 144 

𝑍𝑛(𝑥) =   𝛷𝑥[𝑌𝑛(𝑥)]  (2) 145 

and conversely 𝑌𝑛(𝑥) =  𝜙𝑥
−1[𝑍𝑛(𝑥)]  146 

where 𝑌𝑛(𝑥) is the Gaussian transform of the contaminant concentration 𝑍𝑛(𝑥) of the 𝑛-th flow-and-147 

transport simulation at grid node 𝑥. Here the anamorphosis is calculated using its Hermite polynomial 148 

expansion (with 30 polynomials; Chilès and Delfiner, 2012).   149 

The numerical covariance is then calculated on the set of the 𝑁 fields of Gaussian transformed 150 

variables.  151 
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The Gaussian data used for the estimation are deduced from the measurements (or from the reference 152 

data in the synthetic case) using the inverse of the anamorphosis (𝜙𝑥
−1). The kriging estimate and the 153 

kriging variance are calculated in the Gaussian world.   154 

Finally the conditional expectation of the concentration, its quantiles or any related functions, are 155 

calculated through the known relationship with the spatial distribution of a Gaussian random function; 156 

for example (Matheron, 1976; Chilès and Delfiner, 2012): 157 

 𝐸(𝑍(𝑥)|𝑍(𝑥𝑖), 𝑖 = 1, … , 𝑛) = ∫ 𝜙𝑥(𝑌∗(𝑥) +  𝜎(𝑥)𝑢) 𝑔(𝑢)𝑑𝑢  (3) 158 

where 𝐸(𝑍(𝑥)|𝑍(𝑥𝑖), 𝑖 = 1, … , 𝑛) is the conditional expectation of the concentration; 𝑌∗(𝑥) is the 159 

kriging with known mean (equal to 0), 𝜎(𝑥) the standard deviation of the kriging error, 𝑔 the density 160 

of the reduced normal distribution and u is the variable to be integrated. This expression can be 161 

calculated using the formula of the Hermite-polynomial expansion of the Gaussian anamorphosis 162 

(Chilès and Delfiner, 2012). A known correction is applied on the standard deviation if the kriging with 163 

unknown mean (ordinary kriging) is used (Emery, 2006). Equation (3) ensures that the estimated 164 

concentration is positive, because the concentrations outputs of the flow-and-transport simulations 165 

used for calculating the anamorphosis are positive. 166 

2.3. Estimation workflow with numerical covariances 167 

In summary, the method involves the following steps:  168 

 simulating a set of unconditional hydraulic conductivity fields (geostatistical unconditional 169 

simulations by any classical method, e.g. the turning bands as used here; Chilès and Delfiner, 2012);  170 

 simulating initial source term of the contamination (geostatistical conditional simulations in the 171 

following example) 172 

 simulating  flow-and-transport on each hydraulic conductivity field to obtain a set of concentration 173 

fields; 174 

  calculating the non-stationary anamorphosis of the concentrations at each grid node 𝛷𝑥 from the 175 

set of simulated concentration fields; 176 

 calculating the Gaussian variable for each simulated concentration field using 𝛷𝑥
−1 ; 177 

 calculating the numerical covariances from the set of Gaussian variables; 178 

 calculating Gaussian data as the Gaussian transform of concentrations data using 𝛷𝑥
−1 at data 179 

points; 180 

 kriging of Gaussian variable from Gaussian data and computing associated kriging variance, using 181 

the numerical covariances on Gaussian transforms; 182 
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 returning to the estimated concentration (or any function of the concentration, e.g. conditional 183 

quantiles or conditional distribution) thanks to Eq. (3) 184 

3. Case study 185 

3.1. The trench T22 in Chernobyl 186 

The Chernobyl accident of April 1986 released large amounts of radionuclides into the surrounding 187 

environment. In 1986 and 1987, emergency clean-up was carried out in the irradiated Red Forest, in 188 

the vicinity of the Chernobyl nuclear power plant. About 500×103 m3 of contaminated topsoil, 189 

vegetation and other radioactive materials were buried in situ in hundreds of trenches dug within the 190 

permeable sandy superficial formation, directly above the water table and without engineered 191 

moisture-proof barriers (Kashparov et al., 2012). 192 

In 1998, an experimental research facility was built around the trench T22 in order to investigate 193 

radionuclide migration processes. Then, for about 20 years, the trench T22 has been monitored 194 

extensively, allowing an advanced characterization of the site geology, the water flow regime in the 195 

unsaturated and saturated zones, the radionuclide distribution, and the speciation within and outside 196 

the trench (e.g., Bugai et al., 2012; Kashparov et al., 2012). Moreover, acquired data and knowledge 197 

were integrated into numerical models that simulate the migration of radionuclides, especially 90Sr 198 

(Strontium-90), from the trench to the underlying aquifer (Bugai et al., 2012; Nguyen, 2017). Le Coz et 199 

al. (2023) present a detailed synthesis of previous works used for the flow-and-transport modeling 200 

near the trench.  201 

3.2. Flow-and-transport simulations 202 

Between 2000 and 2015, groundwater was collected for 90Sr activity measurements generally once or 203 

twice a year at four sampling depths (layers L1 to L4, from top to bottom) in six wells (AP1 to AP6, from 204 

upstream to downstream) along a cross-section A-B, approximatively perpendicular to the trench T22 205 

and assumed to be parallel to the groundwater flow lines (Fig. 2 a). A groundwater flow-and-transport 206 

model was used for simulating in 2D, i.e. along the vertical cross-section A-B (Fig. 2 b), the development 207 

of the 90Sr plume highlighted by this monitoring (Le Coz et al., 2023). Model parameters were constant 208 

for each geological unit: eolian deposits, alluvial deposits with floodplain or channel facies (Le Coz et 209 

al., 2023). These parameters, as well as the boundary conditions, were set such that the simulated 210 

time series of 90Sr activity were consistent with most of the measurements. This simulation with 211 

especially uniform hydraulic conductivity by geological unit is called the calibrated simulation 212 

hereafter. 213 

For this study, 400 new flow-and-transport simulations are run by considering the uncertainties on the 214 

model parameters (e.g., the parameter that governs radionuclide retention on aquifer material) and 215 

boundary conditions (e.g., the percolation rate through the trench T22). In addition, for each run, 216 
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 the spatial variability of hydraulic conductivity is simulated through a random field for which 217 

the properties are determined based on textural analysis of aquifer material samples (eolian 218 

and alluvial sand). T 219 

 the initial distribution of 90Sr activity within the trench T22 is a geostatistical conditional 220 

simulation (Fig. 2 b) constructed from both in situ emission profiles and laboratory analysis of 221 

waste samples (Nguyen, 2017).  222 

3.3. Spatial estimation 223 

A set of 357 simulated fields (some simulations did not converge) of the 90Sr activity in the saturated 224 

zone along the cross-section A-B is extracted from the flow-and-transport simulations on 1st October 225 

2006 (01/10/2006). On this date, the 90Sr activity was measured in groundwater collected at all 226 

sampling depths in wells AP1 to AP6 (Fig. 2 b). On the calibrated simulation, the 90Sr plume extends up 227 

to 40 m from the trench with a downward component (Fig 3a). The geometry of the plume in the 228 

simulation set is similar, although its extent varies significantly (e.g., Fig 3b). The distribution of the 90Sr 229 

activities computed from the simulation set at the sampling wells shows significant ranges, especially 230 

in the core of the plume (highest values) (Fig. 4), yet these ranges generally include the activity of the 231 

calibrated simulation and of the measurements. 232 

Three estimation methods of the 90Sr activity are compared in a cross-validation approach: (i) ordinary 233 

kriging (OK); (ii) kriging with an external drift (KED), the drift being the 90Sr activity field extracted from 234 

the calibrated simulation (Fig. 3a); and (iii) kriging with numerical covariances (KNC) using a non-235 

stationary Gaussian transformation, with covariances computed on the Gaussian transforms of the 236 

simulated fields of 90Sr activity (simulations 2 to 357).  237 

First, the simulated field 1 (Fig. 3b) is used as a synthetic case in order to compare the results with a 238 

known “reality” (this field is not considered for the covariance computation). Estimations are 239 

conditioned (i) at the wells AP1 to AP6 and then (ii) only at the most downstream well (AP6), the 90Sr 240 

activity at the wells AP1 to AP5 being used for the assessment. 241 

Then the actual measurements are considered. As for the synthetic case (ii) the estimations are 242 

performed only with the data belonging to the most downstream well (AP6), the 90Sr activity at the 243 

wells AP1 to AP5 being used for the assessment. 244 

4. Results 245 

4.1. Synthetic case 246 

The 90Sr activities extracted from the simulated field 1 (i.e. the synthetic data) at the sampling locations 247 

are relatively high with respect to the activities extracted from the other simulations, included the 248 
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calibrated one (Fig. 4). At the wells, the relationship between activity "data" and covariate (calibrated 249 

simulation) is approximately linear (Fig. 4). 250 

Pragmatically, OK and KED kriging are done using an isotropic linear variogram, for avoiding the 251 

variogram fitting phase under unfavorable conditions (few data and high variability). When all data at 252 

the wells AP1 to AP6 are used in the estimation, the OK estimation (Fig 5a) is consistent with the 253 

simulated field 1 (Fig. 3b) only close to these wells, whereas the KED and the KNC estimations (Fig. 5 b 254 

and c) reproduce the geometry (extent and downward component) of the 90Sr plume on the whole 255 

modeling domain. In addition, OK and KED result in negative 90Sr activity estimated values in the 256 

bottom part of the domain, below the 90Sr plume. KED and KNC are similar according to the root mean 257 

square error (RMSE) criterion (Tab. 1).    258 

When only synthetic data at the well AP6 are used, the geometry of the 90Sr plume is still well 259 

reproduced by KED and KNC but not at all by the OK (Fig. 6). KED results in negative concentrations 260 

outside the 90Sr plume. The RMSE criterion calculated on all nodes (Tab. 1), or on the five validation 261 

wells only,  favors the KNC, and it is nearly the same for the other statistical criteria (Fig. 7 and Tab 2). 262 

A scatter diagram between the estimate and “reality” (Fig. 8) confirms the good accuracy of KED and 263 

KNC.  264 

A test with the average of the 356 others simulations (instead of the calibrated simulation) as external 265 

drift leads to very similar results, only slightly less precise.    266 

4.2. Actual measurements 267 

The actual measured 90Sr activities at some sampling locations differ significantly from the activities 268 

extracted from the calibrated simulation, but are generally (except in one location) included in the 269 

range of activities extracted from the 357 additional simulations (Fig. 4). The relationship between the 270 

activity at the wells and the covariate is no longer linear. 271 

As for the synthetic case, when the estimations are conditioned by the actual measurements at the 272 

well AP6, OK does not reproduce the lateral variability of the 90Sr activity with depth (Fig. 9a). KED 273 

maintains the geometry of the 90Sr plume of the calibrated simulation, although the simulated activity 274 

is about a half order of magnitude lower (Fig. 9b). The geometry of the 90Sr plume estimated by KNC 275 

differs significantly: its extent is reduced but the 90Sr activity in its core is higher (Fig. 9c). At the five 276 

validation wells, all estimates are positive. The relative performances of KED and KNC are here more 277 

difficult to decide, because the “best” method varies according to the criterion (Fig. 10 and Tab. 3): the 278 

mean error is smaller for KNC, the median error and the RMSE are similar for the two methods, 279 

whereas the mean absolute error favors the KED. The scattered points between the estimates and 280 

observations are in this case further away from the first bisector (Fig. 11). This confirms the greater 281 

inaccuracy than for the synthetic case. 282 

5. Discussion and conclusion 283 

The main processes that govern the development of a contaminant plume in groundwater can be 284 

simulated using a flow-and-transport model. However, due to uncertainties in input data or 285 

misrepresentation of some sub-processes, model output cannot be considered as an accurate 286 
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representation of the spatial distribution of the contaminant in groundwater at a given date. Usual 287 

kriging, e.g., ordinary kriging (OK), offers an alternative, but a high density of observations is necessary 288 

for providing realistic estimations. When observations are scarce, geostatistical approaches that take 289 

account of physically-based information, e.g., kriging with external drift (KED) or kriging with numerical 290 

covariance (KNC), are more relevant. 291 

In KED, physically-based information consists of one or several drifts, which governs the geometry of 292 

the estimated contaminant plume. Following the literature, the output of a simplified flow model, 293 

namely with constant conductivity, is chosen here as external drift. KED requires, therefore, only one 294 

flow-and-transport simulation. In the case of actual observations, this drift is not necessarily consistent 295 

with those data; then KED could modify the variability of the estimated concentrations (location and 296 

level) of the plume. 297 

With KNC, a set of several hundred flow-and-transport simulations are used as physically-based 298 

information for computing the numerical covariances (and optionally the non-stationary 299 

anamorphosis). On synthetic cases, when the observations are consistent with the simulation set (i.e., 300 

when observations are extracted from one reference simulation), the geometry of the contaminant 301 

plume of the reference simulation is fairly well reproduced. In the case of actual observations, the 302 

geometry of the contaminant plume could significantly differ from that of the simulated plumes. If the 303 

numerical covariance does not reflect this discrepancy, then the KNC will lead to inaccurate results. 304 

For the actual measurements of the trench T22, the estimated concentrations seem more contrasted 305 

with KNC than with KED (Fig. 9), with larger maximum values. In addition, in all cases, concentration 306 

fields estimated by KNC associated with a Gaussian anamorphosis are strictly positive.  307 

These results corroborate the conclusions of the previous work of Pannecoucke et al. (2020), which 308 

focused on a synthetic case that represents the development of a contaminant plume in the 309 

unsaturated zone. Indeed, this study, based on a real dataset from the saturated zone, confirms that 310 

the non-stationary numerical covariances allow integrating phenomenological knowledge in the 311 

kriging estimation. Moreover, it also shows that kriging with numerical covariance could be more 312 

accurate than external drift kriging, which does not consider the uncertainties related to this covariate, 313 

especially when the geometry of the contaminant plume is complex. The quality of the estimation 314 

depends on the ability of the physically-based realizations used for computing the numerical 315 

covariances to be consistent with the actual flow-and-transport processes and the corresponding 316 

uncertainties. 317 

However, the (unique) simplified flow-and-transport simulation used as drift for the KED requires a 318 

much lower calculation time than the set of simulations needed for computing the numerical 319 

covariances. One reviewer points out that “the workflow needed for the KNC also requires a consistent 320 

number of additional steps as compared with the other alternatives.”   321 

Rather than a new "better method", kriging with numerical covariance appears to be an alternative to 322 

external drift kriging, which enriches the estimation methods useful to the practitioner. This general 323 

method can be applied to diverse issues in hydrogeology, in multivariate or spatio-temporal modeling, 324 

when estimating or conditioning simulations of hydraulic head or fluxes, backtracking of a plume to 325 

locate the source of a pollution (Pannecoucke, 2020), and in hydro-geochemical modelling. The 326 

method obviously applies to other contexts (e.g. air quality), and provides a very general class of 327 

covariances, e.g. on graphs or other non-Euclidean geometry.  328 
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Figure captions 439 

Figure 1a,b. Examples of numerical covariance maps, for two different points 𝑥 (red circles).  440 

Figure 2. Views of the 3-D model of the 90Sr inventory in 1987 in the trench T22 (computed from the 441 

mean inventory estimated by Nguyen, 2017) and locations of the wells monitored for groundwater 442 

activity. (a) Horizontal view with cumulative 90Sr activity in depth; (b) vertical cross-section A-B . 443 

Figure 3. Activity of 90Sr in the saturated zone downstream of the cross-section A-B of the trench T22  444 

simulated with the flow-and-transport model on 01/10/2006: (a) calibrated simulation used as 445 

external drift; and (b) simulation 1 taken as reference for the synthetic case study  446 

Figure 4. 90Sr activity at the sampling locations. Scatter diagram between (a) the synthetic case in 447 

abscissa (horizontal axis) and the calibrated simulation in ordinate (vertical axis) and (b) the actual 448 

measurements (horizontal axis) and the calibrated simulation in ordinate, . The grey bar represents 449 

the range of the set of 357 simulations. The black line corresponds to the first bisector.  450 

Figure 5. Synthetic case (i.e., flow-and-transport simulation 1). Activity of 90Sr in the saturated zone 451 

downstream of the cross-section A-B of the trench T22 (Fig. 2) estimated on 01/10/2006 conditioned 452 

at wells AP1 to AP6: (a) ordinary kriging (OK); (b) kriging with external drift (KED); and (c) kriging with 453 

numerical covariances using a non-stationary Gaussian transformation (KNC). The non-filled areas (in 454 

a and b) correspond to negative estimated activities. 455 

Figure 6. Synthetic case. Activity of 90Sr in the saturated zone downstream of the cross-section A-B of 456 

the trench T22 (Fig. 2) estimated on 01/10/2006 conditioned  at well AP6 only: (a) ordinary kriging 457 

(OK); (b) kriging with external drift (KED); and (c) kriging with numerical covariances using a non-458 

stationary Gaussian transformation (KNC). The non-filled area (in b) corresponds to negative estimated 459 

activities. 460 

Figure 7. Synthetic case. Profiles of estimated activity by OK, EDK or KNC at wells AP1 to AP5, 461 

conditioned by “data” at well AP6 and “reality”. Logarithmic scale. 462 

Figure_8. Synthetic case. Scatter diagram between estimate (abscissa) and reference value (ordinate) 463 

for the three estimation methods (OK, KED, KNC) at the five validation wells for the estimation from 464 

AP6.  465 

Figure 9. Activity of 90Sr in the saturated zone downstream of the cross-section A-B of the trench T22 466 

(Fig. 2) estimated on 01/10/2006 conditioned with measurements at well AP6: (a) ordinary kriging 467 

(OK); (b) kriging with external drift (KED); and (c) kriging with numerical covariances using a non-468 

stationary Gaussian transformation (KNC). The non-filled area (in b) corresponds to negative estimated 469 

activities. 470 

Figure 10. Profiles of estimated activity by OK, EDK or KNC at wells AP1 to AP5, conditioned by actual 471 

measurements at well AP6, and validation measurements. Logarithmic scale. 472 

Figure 11. Actual measurements. Scatter diagram between estimate (abscissa) and exact value 473 

(ordinate) for the three estimation methods (OK, KED, KNC) at the five validation wells for the 474 

estimation from AP6.  475 
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Tables 476 

Table 1. RMSE at all 1785 grid nodes, for the two conditioning sets of wells. The very weakly negative 477 

values of KED are retained. The numbers have been rounded 478 

Well set OK KED KNC 

6 conditioning wells 363. 102. 106. 

1 conditioning well (AP6) 658. 135. 94. 

 479 

 480 

Table 2. Cross-validation statistics at the five validation wells (AP1 to AP5, 20 values) estimated from 481 

the data of the AP6 well, for the synthetic case. Negative estimates are zeroed for the statistics of the 482 

error, but their number is reported. The error is calculated as estimate – exact data. 483 

Statistic OK KED(0) KNC 

Mean error -127.    -103.   3.   

Median error 306. 0. 10. 

Mean absolute error 692. 134. 87. 

RMSE 908. 227. 135. 

Number of negative estimates 0 9 0 

 484 

 485 

Table 3. Cross-validation statistics at the five validation wells (AP1 to AP5, 20 values) estimated from 486 

the data of the AP6 well, for the actual measurements.  487 

Statistic OK KED KNC 

Mean error -199.    -195.    -80.   

Median error 37. 0. -3. 

Mean absolute error 312. 227. 267. 

RMSE 589. 472. 477. 

Number of negative estimates 0 0 0 

 488 

 489 
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