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Introduction

Estimating the hydraulic head or concentrations of components in groundwater is necessary for drawing a map, locating "at best" new measurements by minimalizing redundancy [START_REF] Júnez-Ferreira | A geostatistical methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer[END_REF], or solving the inverse problem (Gomez-Hernandez et al., 1997;[START_REF] Angulo | Series Expansion Approach to the Inverse Problem[END_REF][START_REF] De Marsily | Modeling and Field Investigation in hydrogeology : a special volume in honor of Shlomo P. Neuman's 60th Birthday[END_REF]. However the head or concentration data are generally few and the kriging estimate of these variables with a usual variogram model is not necessarily consistent with the flow physics. Various methods have been proposed to constrain estimates by flow physics, a synthesis and non-exhaustive review of which is presented here.

As the head decreases in the flow direction, it is better to carry out the kriging using a non-stationary model [START_REF] Kumar | Optimal contour mapping of groundwater levels using universal kriging-a case study[END_REF]). An anisotropic variogram allows one to particularize the direction of flow at the macroscopic scale. Taking covariates into account allows for improvement of the modelling. Thus, [START_REF] Desbarats | On the kriging of water table elevations using collateral information from a digital elevation model[END_REF] introduce the topography as an external drift of the head, choosing the appropriate support of regularization of the digital elevation model. [START_REF] Varouchakis | Improving Kriging of Groundwater Level Data Using Non-Linear Normalizing Transformations -A field application[END_REF] make a non-linear estimation of the head (using a Gaussian anamorphosis or a modified Box-Cox transformation), with the necessary correction for the back transformation of the estimated values. On a real case, the cross-validation results are improved compared to the usual kriging.

Curvilinear coordinate transformation allows for bringing back the "natural coordinates" of flow, i.e. hydraulic head and stream functions [START_REF] Roth | Contribution de la géostatistique à la résolution du problème inverse en hydrogéologie[END_REF][START_REF] Rivest | Sparse data integration for the interpolation of concentration measurements using kriging in natural coordinates[END_REF]. In order to explicitly introduce flow physics, [START_REF] Brochu | A Simple Approach to Account for Radial Flow and Boundary Conditions When Kriging Hydraulic Head Fields for Confined Aquifers[END_REF] use the formalism of dual kriging to impose to the estimate the form of the analytical solution of a linear or radial flow calculated for a homogeneous medium. In [START_REF] Rivest | Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information[END_REF] the covariate used as external drift is a « smooth » output of a finite element flow model calculated on an uniform transmissivity field, for which boundary conditions must therefore be specified. Tests on synthetic cases show that the accuracy of the estimate and its realism are improved. The method was applied to the real case of a dam.

On a synthetic case in steady state, [START_REF] Yang | Physics-Informed Kriging: A Physics-Informed Gaussian Process Regression Method for Data-Model Convergence[END_REF][START_REF] Yang | Physics-Informed Cokriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence[END_REF] reconstruct a field of concentrations by «physics-informed kriging» or «physics-informed cokriging». The method is based on a regression between observations which are considered as "high fidelity" data, and the average of outputs of flow and transport simulations which are considered as "low fidelity" data. The difference between kriging and cokriging lies in the covariance of the discrepancy between low fidelity data and observations. To improve the modelling, [START_REF] Yang | Physics-Informed Kriging: A Physics-Informed Gaussian Process Regression Method for Data-Model Convergence[END_REF][START_REF] Yang | Physics-Informed Cokriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence[END_REF] suggest a non-stationary model for this discrepancy.

In another approach, covariance models are constructed so as to be approximately or accurately consistent with flow equations. In the case of steady-state linear macroscopic flow and in the absence of recharge, the linearization of the differential equation linking perturbations of head and transmissivity provides an approximated solution. [START_REF] Hoeksema | An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modelling[END_REF] supposed the head to be stationary. [START_REF] Dong | Kriging variables that satisfy the partial differential equation ΔZ=Y[END_REF][START_REF] Dong | Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles (Geostatistical estimation of phenomena governed by partial differential equations[END_REF] gave a general solution within the framework of the intrinsic random function of order-k (IRF-k) theory and applied it to the inverse problem, by cokriging the transmissivity from transmissivity and head data. [START_REF] Hernandez | Conditioning mean steady state flow on hydraulic head and conductivity through geostatistical inversion[END_REF] introduced a source term in the equations for performing geostatistical inversion based on the pilot points method (de [START_REF] De Marsily | De l'identification des systèmes hydrogéologiques[END_REF][START_REF] De Marsily | Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model[END_REF]. Zhang and Neuman (1996) generalized the analytical form of the simple and cross-covariance to velocity by crossing two flows with different main directions, for comparing longitudinal and transverse dispersion.

However the hypothesis of a uniform head gradient is often too strict. [START_REF] Roth | Combining geostatistics and flow simulators to identify transmissivity[END_REF] construct a variogram 𝛾(𝑥, 𝑥 ′) consistent with a steady state flow model with fixed aquifer geometry and boundary conditions. A set of geostatistical non conditional simulations of the conductivity are used as input of a flow simulation. The variogram 𝛾(𝑥, 𝑥 ′ ) is calculated, up to the ½ factor, as the mean square deviation of the head at pairs of points 𝑥 and 𝑥', computed on a set of flow simulation outputs. The numerical version of simple and cross-variograms (or covariances) between head and transmissivity is then used for cokriging these two variables. These experimental non-stationary variograms are used by Schwelle and Cirpka (2010) to estimate the head and the concentration by conditional expectation, calculated by the median (rather than the mean) on a set of simulations constrained by data from different variables. However, the conditional simulations of the transmissivity (or permeability) they use are obtained by an iterative inverse approach. [START_REF] Pannecoucke | Combining geostatistics and simulations of flow and transport to characterize contamination within the unsaturated zone[END_REF] generalize the approach to the vadose zone. Non conditional simulations of saturated hydraulic conductivity are used as input to flow-and-transport simulations of a non reactive contaminant. Boundary conditions can vary between the flow simulations, if these conditions are not precisely known. Applications to a wide variety of problems are presented in [START_REF] Pannecoucke | Combinaison de la géostatistique et des simulations à base physiqueapplication à la caractérisation de panaches de contaminants[END_REF] in two dimensions (2D) or 3D, for spatial or spatio-temporal estimation: delimitation of a contaminated zone at fixed contamination threshold and identification of the associated "uncertainty zone", backtracing of the unknown location of a contaminant source, comparison of the estimation with the results of a (real) 3D tracing experiment, etc. This paper presents original results of kriging with numerical covariance, following the approach of [START_REF] Pannecoucke | Combinaison de la géostatistique et des simulations à base physiqueapplication à la caractérisation de panaches de contaminants[END_REF], in order to take into account the heterogeneity of a contamination plume. However an anamorphosis (variable transformation) step is introduced, so that the contamination estimates are positive. This non-stationary anamorphosis is calculated on the set of the outputs of the flow-and-transport simulations. The 2D application cases refer to the highly non-stationary context of a contamination plume from a radioactive waste deposit located near the Chernobyl power station in Ukraine. A synthetic case is first examined and the estimation using real-world data is then discussed for comparing three estimation methods: usual kriging, external drift kriging with a simplified flow simulation as covariate, and kriging with numerical covariance.

Methods

"Numerical" covariance

In classical kriging approaches, the covariance is inferred from observations of the variable to be estimated. However kriging is more general and can be performed based on non-stationary covariances of type 𝐶(𝑥, 𝑥′). Especially, these covariances can be computed between each pair of grid nodes of the domain from a set of 𝑁 realizations of the variable [START_REF] Pannecoucke | Combining geostatistics and simulations of flow and transport to characterize contamination within the unsaturated zone[END_REF], such as:

𝐶(𝑥, 𝑥′) = 1 𝑁 ∑ [𝑍 𝑛 (𝑥) -𝑍(𝑥) ̅̅̅̅̅̅ ][𝑍 𝑛 (𝑥′) -𝑍(𝑥′) ̅̅̅̅̅̅̅ ] 𝑁 𝑛=1 (1)
where 𝐶(𝑥, 𝑥′) is the "numerical covariance" between grid nodes 𝑥 and 𝑥′ and 𝑍 𝑛 (𝑥) (respectively 𝑍 𝑛 (𝑥′)) is the value of the variable 𝑍 at grid node 𝑥 (respectively 𝑥′) for the 𝑛-th realization. For each grid node 𝑥, the "numerical" covariance at all 2D grid nodes 𝑥 ′ draws a 2D map. Fig. 1 shows the maps of numerical covariances related to two different points 𝑥, for a set of simulated concentration plumes (see further section 3.2.). It can be shown that the numerical covariance 𝐶(𝑥, 𝑥′) (or the numerical variogram 𝛾(𝑥, 𝑥′)) has the required mathematical properties of a (discrete) covariance or variogram function [START_REF] De Fouquet | Exercices corrigés de géostatistiqu[END_REF][START_REF] Pannecoucke | Combinaison de la géostatistique et des simulations à base physiqueapplication à la caractérisation de panaches de contaminants[END_REF].

For the application (Section 3) the realizations of the variable of interest are generated by flow-andtransport simulations of a contaminant plume. First, a set of geostatistical simulations of the hydraulic conductivity is constructed and simulations of the source term of the contamination are taken from a previous work [START_REF] Nguyen | Contribution à la quantification des incertitudes portées par la variabilité spatiale des déchets radioactifs enterrés à Tchernobyl[END_REF]. The flow-and-transport simulations are based on the synthesis of several studies (Le [START_REF] Coz | Do transient hydrological processes explain the variability of strontium-90 activity in groundwater downstream of a radioactive trench near Chernobyl?[END_REF]. Nevertheless, it should be noted that the influence of the range of the hydrogeological parameters was reduced compared with the variability between realizations and with the boundary conditions [START_REF] Pannecoucke | Impact of spatial variability in hydraulic parameters on plume migration within unsaturated surficial formations[END_REF][START_REF] Pannecoucke | Combinaison de la géostatistique et des simulations à base physiqueapplication à la caractérisation de panaches de contaminants[END_REF]).

The kriging with numerical covariance can be seen as a generalization of kriging in natural flow coordinates. Indeed, a stationary covariance 𝐾 applied after a space transformation 𝑓 can be written as 𝐾(𝑓(𝑥) -𝑓(𝑥 ′ )) and therefore is of the form 𝐶(𝑥, 𝑥') when the function 𝑓 is not linear. Conversely, in the case of a complex phenomenon, such as the development and movement of a plume, it is not necessarily the case that a space transformation 𝑓 and a stationary covariance 𝐾 exist such that the non-stationary covariance 𝐶(𝑥, 𝑥') is of the form 𝐾(𝑓(𝑥) -𝑓(𝑥 ′ )). It is thus pragmatic to calculate the empirical non-stationary covariance (the "numerical covariance") on a set of outputs of the numerical flow-and-transport simulations.

Non-stationary Gaussian transformation

In practice, kriging with a numerical covariance does not ensure that the estimated concentration is positive. The non-linear estimation in the well-known anamorphosed Gaussian model [START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF] allows avoiding negative estimates for positive quantities.

Due to the non-stationarity of the local distributions of the simulated contaminant concentrations (especially, inside vs. outside the contaminant plume), a Gaussian transformation of these distributions is performed at each grid node. The non-stationary anamorphosis 𝛷 𝑥 is calculated from the 𝑁 outputs of the flow-and-transport simulation at the grid node 𝑥. Thus:

𝑍 𝑛 (𝑥) = 𝛷 𝑥 [𝑌 𝑛 (𝑥)] (2) and conversely 𝑌 𝑛 (𝑥) = 𝜙 𝑥 -1 [𝑍 𝑛 (𝑥)]
where 𝑌 𝑛 (𝑥) is the Gaussian transform of the contaminant concentration 𝑍 𝑛 (𝑥) of the 𝑛-th flow-andtransport simulation at grid node 𝑥. Here the anamorphosis is calculated using its Hermite polynomial expansion (with 30 polynomials; [START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF].

The numerical covariance is then calculated on the set of the 𝑁 fields of Gaussian transformed variables.

The Gaussian data used for the estimation are deduced from the measurements (or from the reference data in the synthetic case) using the inverse of the anamorphosis (𝜙 𝑥 -1 ). The kriging estimate and the kriging variance are calculated in the Gaussian world.

Finally the conditional expectation of the concentration, its quantiles or any related functions, are calculated through the known relationship with the spatial distribution of a Gaussian random function; for example [START_REF] Matheron | A Simple Substitute for Conditional Expectation: The Disjunctive Kriging[END_REF][START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF]:

𝐸(𝑍(𝑥)|𝑍(𝑥 𝑖 ), 𝑖 = 1, … , 𝑛) = ∫ 𝜙 𝑥 (𝑌 * (𝑥) + 𝜎(𝑥)𝑢) 𝑔(𝑢)𝑑𝑢 (3) 
where 𝐸(𝑍(𝑥)|𝑍(𝑥 𝑖 ), 𝑖 = 1, … , 𝑛) is the conditional expectation of the concentration; 𝑌 * (𝑥) is the kriging with known mean (equal to 0), 𝜎(𝑥) the standard deviation of the kriging error, 𝑔 the density of the reduced normal distribution and u is the variable to be integrated. This expression can be calculated using the formula of the Hermite-polynomial expansion of the Gaussian anamorphosis [START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF]. A known correction is applied on the standard deviation if the kriging with unknown mean (ordinary kriging) is used [START_REF] Emery | Ordinary multigaussian kriging for mapping conditional probabilities of soil properties[END_REF]. Equation (3) ensures that the estimated concentration is positive, because the concentrations outputs of the flow-and-transport simulations used for calculating the anamorphosis are positive.

Estimation workflow with numerical covariances

In summary, the method involves the following steps:

 simulating a set of unconditional hydraulic conductivity fields (geostatistical unconditional simulations by any classical method, e.g. the turning bands as used here; Chilès and Delfiner, 2012);

 simulating initial source term of the contamination (geostatistical conditional simulations in the following example)

 simulating flow-and-transport on each hydraulic conductivity field to obtain a set of concentration fields;

 calculating the non-stationary anamorphosis of the concentrations at each grid node 𝛷 𝑥 from the set of simulated concentration fields;

 calculating the Gaussian variable for each simulated concentration field using 𝛷 𝑥 -1 ;

 calculating the numerical covariances from the set of Gaussian variables;

 calculating Gaussian data as the Gaussian transform of concentrations data using 𝛷 𝑥 -1 at data points;

 kriging of Gaussian variable from Gaussian data and computing associated kriging variance, using the numerical covariances on Gaussian transforms;

 returning to the estimated concentration (or any function of the concentration, e.g. conditional quantiles or conditional distribution) thanks to Eq. ( 3)

Case study

The trench T22 in Chernobyl

The Chernobyl accident of April 1986 released large amounts of radionuclides into the surrounding environment. In 1986 and 1987, emergency clean-up was carried out in the irradiated Red Forest, in the vicinity of the Chernobyl nuclear power plant. About 500×10 3 m 3 of contaminated topsoil, vegetation and other radioactive materials were buried in situ in hundreds of trenches dug within the permeable sandy superficial formation, directly above the water table and without engineered moisture-proof barriers [START_REF] Kashparov | Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone -Part 1: Characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota[END_REF].

In 1998, an experimental research facility was built around the trench T22 in order to investigate radionuclide migration processes. Then, for about 20 years, the trench T22 has been monitored extensively, allowing an advanced characterization of the site geology, the water flow regime in the unsaturated and saturated zones, the radionuclide distribution, and the speciation within and outside the trench (e.g., [START_REF] Bugai | Radionuclide migration at experimental polygon at Red Forest waste site in Chernobyl zone. Part 2: Hydrogeological characterization and groundwater transport modeling[END_REF][START_REF] Kashparov | Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone -Part 1: Characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota[END_REF]. Moreover, acquired data and knowledge were integrated into numerical models that simulate the migration of radionuclides, especially 90 Sr (Strontium-90), from the trench to the underlying aquifer [START_REF] Bugai | Radionuclide migration at experimental polygon at Red Forest waste site in Chernobyl zone. Part 2: Hydrogeological characterization and groundwater transport modeling[END_REF][START_REF] Nguyen | Contribution à la quantification des incertitudes portées par la variabilité spatiale des déchets radioactifs enterrés à Tchernobyl[END_REF]. Le [START_REF] Coz | Do transient hydrological processes explain the variability of strontium-90 activity in groundwater downstream of a radioactive trench near Chernobyl?[END_REF] present a detailed synthesis of previous works used for the flow-and-transport modeling near the trench.

Flow-and-transport simulations

Between 2000 and 2015, groundwater was collected for 90 Sr activity measurements generally once or twice a year at four sampling depths (layers L1 to L4, from top to bottom) in six wells (AP1 to AP6, from upstream to downstream) along a cross-section A-B, approximatively perpendicular to the trench T22 and assumed to be parallel to the groundwater flow lines (Fig. 2 a). A groundwater flow-and-transport model was used for simulating in 2D, i.e. along the vertical cross-section A-B (Fig. 2 b), the development of the 90 Sr plume highlighted by this monitoring (Le [START_REF] Coz | Do transient hydrological processes explain the variability of strontium-90 activity in groundwater downstream of a radioactive trench near Chernobyl?[END_REF]. Model parameters were constant for each geological unit: eolian deposits, alluvial deposits with floodplain or channel facies (Le [START_REF] Coz | Do transient hydrological processes explain the variability of strontium-90 activity in groundwater downstream of a radioactive trench near Chernobyl?[END_REF]. These parameters, as well as the boundary conditions, were set such that the simulated time series of 90 Sr activity were consistent with most of the measurements. This simulation with especially uniform hydraulic conductivity by geological unit is called the calibrated simulation hereafter.

For this study, 400 new flow-and-transport simulations are run by considering the uncertainties on the model parameters (e.g., the parameter that governs radionuclide retention on aquifer material) and boundary conditions (e.g., the percolation rate through the trench T22). In addition, for each run,  the spatial variability of hydraulic conductivity is simulated through a random field for which the properties are determined based on textural analysis of aquifer material samples (eolian and alluvial sand). T

 the initial distribution of 90 Sr activity within the trench T22 is a geostatistical conditional simulation (Fig. 2 b) constructed from both in situ emission profiles and laboratory analysis of waste samples [START_REF] Nguyen | Contribution à la quantification des incertitudes portées par la variabilité spatiale des déchets radioactifs enterrés à Tchernobyl[END_REF].

Spatial estimation

A set of 357 simulated fields (some simulations did not converge) of the 90 Sr activity in the saturated zone along the cross-section A-B is extracted from the flow-and-transport simulations on 1 st October 2006 (01/10/2006). On this date, the 90 Sr activity was measured in groundwater collected at all sampling depths in wells AP1 to AP6 (Fig. 2 b). On the calibrated simulation, the 90 Sr plume extends up to 40 m from the trench with a downward component (Fig 3a). The geometry of the plume in the simulation set is similar, although its extent varies significantly (e.g., Fig 3b). The distribution of the 90 Sr activities computed from the simulation set at the sampling wells shows significant ranges, especially in the core of the plume (highest values) (Fig. 4), yet these ranges generally include the activity of the calibrated simulation and of the measurements.

Three estimation methods of the 90 Sr activity are compared in a cross-validation approach: (i) ordinary kriging (OK); (ii) kriging with an external drift (KED), the drift being the 90 Sr activity field extracted from the calibrated simulation (Fig. 3a); and (iii) kriging with numerical covariances (KNC) using a nonstationary Gaussian transformation, with covariances computed on the Gaussian transforms of the simulated fields of 90 Sr activity (simulations 2 to 357).

First, the simulated field 1 (Fig. 3b) is used as a synthetic case in order to compare the results with a known "reality" (this field is not considered for the covariance computation). Estimations are conditioned (i) at the wells AP1 to AP6 and then (ii) only at the most downstream well (AP6), the 90 Sr activity at the wells AP1 to AP5 being used for the assessment.

Then the actual measurements are considered. As for the synthetic case (ii) the estimations are performed only with the data belonging to the most downstream well (AP6), the 90 Sr activity at the wells AP1 to AP5 being used for the assessment.

Results

Synthetic case

The 90 Sr activities extracted from the simulated field 1 (i.e. the synthetic data) at the sampling locations are relatively high with respect to the activities extracted from the other simulations, included the calibrated one (Fig. 4). At the wells, the relationship between activity "data" and covariate (calibrated simulation) is approximately linear (Fig. 4).

Pragmatically, OK and KED kriging are done using an isotropic linear variogram, for avoiding the variogram fitting phase under unfavorable conditions (few data and high variability). When all data at the wells AP1 to AP6 are used in the estimation, the OK estimation (Fig 5a) is consistent with the simulated field 1 (Fig. 3b) only close to these wells, whereas the KED and the KNC estimations (Fig. 5 b andc) reproduce the geometry (extent and downward component) of the 90 Sr plume on the whole modeling domain. In addition, OK and KED result in negative 90 Sr activity estimated values in the bottom part of the domain, below the 90 Sr plume. KED and KNC are similar according to the root mean square error (RMSE) criterion (Tab. 1).

When only synthetic data at the well AP6 are used, the geometry of the 90 Sr plume is still well reproduced by KED and KNC but not at all by the OK (Fig. 6). KED results in negative concentrations outside the 90 Sr plume. The RMSE criterion calculated on all nodes (Tab. 1), or on the five validation wells only, favors the KNC, and it is nearly the same for the other statistical criteria (Fig. 7 and Tab 2).

A scatter diagram between the estimate and "reality" (Fig. 8) confirms the good accuracy of KED and KNC.

A test with the average of the 356 others simulations (instead of the calibrated simulation) as external drift leads to very similar results, only slightly less precise.

Actual measurements

The actual measured 90 Sr activities at some sampling locations differ significantly from the activities extracted from the calibrated simulation, but are generally (except in one location) included in the range of activities extracted from the 357 additional simulations (Fig. 4). The relationship between the activity at the wells and the covariate is no longer linear.

As for the synthetic case, when the estimations are conditioned by the actual measurements at the well AP6, OK does not reproduce the lateral variability of the 90 Sr activity with depth (Fig. 9a). KED maintains the geometry of the 90 Sr plume of the calibrated simulation, although the simulated activity is about a half order of magnitude lower (Fig. 9b). The geometry of the 90 Sr plume estimated by KNC differs significantly: its extent is reduced but the 90 Sr activity in its core is higher (Fig. 9c). At the five validation wells, all estimates are positive. The relative performances of KED and KNC are here more difficult to decide, because the "best" method varies according to the criterion (Fig. 10 and Tab. 3): the mean error is smaller for KNC, the median error and the RMSE are similar for the two methods, whereas the mean absolute error favors the KED. The scattered points between the estimates and observations are in this case further away from the first bisector (Fig. 11). This confirms the greater inaccuracy than for the synthetic case.

Discussion and conclusion

The main processes that govern the development of a contaminant plume in groundwater can be simulated using a flow-and-transport model. However, due to uncertainties in input data or misrepresentation of some sub-processes, model output cannot be considered as an accurate representation of the spatial distribution of the contaminant in groundwater at a given date. Usual kriging, e.g., ordinary kriging (OK), offers an alternative, but a high density of observations is necessary for providing realistic estimations. When observations are scarce, geostatistical approaches that take account of physically-based information, e.g., kriging with external drift (KED) or kriging with numerical covariance (KNC), are more relevant.

In KED, physically-based information consists of one or several drifts, which governs the geometry of the estimated contaminant plume. Following the literature, the output of a simplified flow model, namely with constant conductivity, is chosen here as external drift. KED requires, therefore, only one flow-and-transport simulation. In the case of actual observations, this drift is not necessarily consistent with those data; then KED could modify the variability of the estimated concentrations (location and level) of the plume.

With KNC, a set of several hundred flow-and-transport simulations are used as physically-based information for computing the numerical covariances (and optionally the non-stationary anamorphosis). On synthetic cases, when the observations are consistent with the simulation set (i.e., when observations are extracted from one reference simulation), the geometry of the contaminant plume of the reference simulation is fairly well reproduced. In the case of actual observations, the geometry of the contaminant plume could significantly differ from that of the simulated plumes. If the numerical covariance does not reflect this discrepancy, then the KNC will lead to inaccurate results.

For the actual measurements of the trench T22, the estimated concentrations seem more contrasted with KNC than with KED (Fig. 9), with larger maximum values. In addition, in all cases, concentration fields estimated by KNC associated with a Gaussian anamorphosis are strictly positive.

These results corroborate the conclusions of the previous work of [START_REF] Pannecoucke | Combining geostatistics and simulations of flow and transport to characterize contamination within the unsaturated zone[END_REF], which focused on a synthetic case that represents the development of a contaminant plume in the unsaturated zone. Indeed, this study, based on a real dataset from the saturated zone, confirms that the non-stationary numerical covariances allow integrating phenomenological knowledge in the kriging estimation. Moreover, it also shows that kriging with numerical covariance could be more accurate than external drift kriging, which does not consider the uncertainties related to this covariate, especially when the geometry of the contaminant plume is complex. The quality of the estimation depends on the ability of the physically-based realizations used for computing the numerical covariances to be consistent with the actual flow-and-transport processes and the corresponding uncertainties.

However, the (unique) simplified flow-and-transport simulation used as drift for the KED requires a much lower calculation time than the set of simulations needed for computing the numerical covariances. One reviewer points out that "the workflow needed for the KNC also requires a consistent number of additional steps as compared with the other alternatives."

Rather than a new "better method", kriging with numerical covariance appears to be an alternative to external drift kriging, which enriches the estimation methods useful to the practitioner. This general method can be applied to diverse issues in hydrogeology, in multivariate or spatio-temporal modeling, when estimating or conditioning simulations of hydraulic head or fluxes, backtracking of a plume to locate the source of a pollution [START_REF] Pannecoucke | Combinaison de la géostatistique et des simulations à base physiqueapplication à la caractérisation de panaches de contaminants[END_REF], and in hydro-geochemical modelling. The method obviously applies to other contexts (e.g. air quality), and provides a very general class of covariances, e.g. on graphs or other non-Euclidean geometry. Figure 7. Synthetic case. Profiles of estimated activity by OK, EDK or KNC at wells AP1 to AP5, conditioned by "data" at well AP6 and "reality". Logarithmic scale.

Figure_8. Synthetic case. Scatter diagram between estimate (abscissa) and reference value (ordinate) for the three estimation methods (OK, KED, KNC) at the five validation wells for the estimation from AP6. 

  Figure captionsFigure 1a,b. Examples of numerical covariance maps, for two different points 𝑥 (red circles).

Figure 2 .

 2 Figure 2. Views of the 3-D model of the 90 Sr inventory in 1987 in the trench T22 (computed from the mean inventory estimated by Nguyen, 2017) and locations of the wells monitored for groundwater activity. (a) Horizontal view with cumulative 90 Sr activity in depth; (b) vertical cross-section A-B .

Figure 3 .

 3 Figure 3. Activity of 90 Sr in the saturated zone downstream of the cross-section A-B of the trench T22 simulated with the flow-and-transport model on 01/10/2006: (a) calibrated simulation used as external drift; and (b) simulation 1 taken as reference for the synthetic case study Figure 4. 90 Sr activity at the sampling locations. Scatter diagram between (a) the synthetic case in abscissa (horizontal axis) and the calibrated simulation in ordinate (vertical axis) and (b) the actual measurements (horizontal axis) and the calibrated simulation in ordinate, . The grey bar represents the range of the set of 357 simulations. The black line corresponds to the first bisector.

Figure 5 .

 5 Figure5. Synthetic case (i.e., flow-and-transport simulation 1). Activity of 90 Sr in the saturated zone downstream of the cross-section A-B of the trench T22 (Fig.2) estimated on 01/10/2006 conditioned at wells AP1 to AP6: (a) ordinary kriging (OK); (b) kriging with external drift (KED); and (c) kriging with numerical covariances using a non-stationary Gaussian transformation (KNC). The non-filled areas (in a and b) correspond to negative estimated activities.

Figure 6 .

 6 Figure 6. Synthetic case. Activity of 90 Sr in the saturated zone downstream of the cross-section A-B of the trench T22 (Fig. 2) estimated on 01/10/2006 conditioned at well AP6 only: (a) ordinary kriging (OK); (b) kriging with external drift (KED); and (c) kriging with numerical covariances using a nonstationary Gaussian transformation (KNC). The non-filled area (in b) corresponds to negative estimated activities.

Figure 9 .

 9 Figure 9. Activity of 90 Sr in the saturated zone downstream of the cross-section A-B of the trench T22 (Fig. 2) estimated on 01/10/2006 conditioned with measurements at well AP6: (a) ordinary kriging (OK); (b) kriging with external drift (KED); and (c) kriging with numerical covariances using a nonstationary Gaussian transformation (KNC). The non-filled area (in b) corresponds to negative estimated activities.

Figure 10 .

 10 Figure 10. Profiles of estimated activity by OK, EDK or KNC at wells AP1 to AP5, conditioned by actual measurements at well AP6, and validation measurements. Logarithmic scale. Figure 11. Actual measurements. Scatter diagram between estimate (abscissa) and exact value (ordinate) for the three estimation methods (OK, KED, KNC) at the five validation wells for the estimation from AP6.
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Table 1 .

 1 RMSE at all 1785 grid nodes, for the two conditioning sets of wells. The very weakly negative values of KED are retained. The numbers have been rounded

	Tables		
	Well set	OK	KED KNC
	6 conditioning wells	363. 102. 106.
	1 conditioning well (AP6) 658. 135. 94.

Table 2 .

 2 Cross-validation statistics at the five validation wells (AP1 to AP5, 20 values) estimated from the data of the AP6 well, for the synthetic case. Negative estimates are zeroed for the statistics of the error, but their number is reported. The error is calculated as estimate -exact data.

	Statistic	OK	KED(0)	KNC
	Mean error	-127.	-103.	3.
	Median error	306.	0.	10.
	Mean absolute error	692.	134.	87.
	RMSE	908.	227.	135.
	Number of negative estimates	0	9	0

Table 3 .

 3 Cross-validation statistics at the five validation wells (AP1 to AP5, 20 values) estimated from the data of the AP6 well, for the actual measurements.

	Statistic	OK	KED	KNC
	Mean error	-199.	-195.	-80.
	Median error	37.	0.	-3.
	Mean absolute error	312.	227.	267.
	RMSE	589.	472.	477.
	Number of negative estimates	0	0	0
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