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A Source-to-source NUMA Profiling Approach

The design of HPC processors is driven by the purpose of packaging an increasing number of CPU cores. This trend in the multicore design faces the physical reality of integrating circuits into a single die in addition to the bottleneck of components sharing, thus the advent of Non-Uniform Memory Access (NUMA) with its typical packaging. Cutting-edge supercomputers are made up of such (manycore) compute nodes. In any case, the main issue is scalability. With a NUMA configuration, a memory access can be local (within the same NUMA node) or remote (from a NUMA node to another). The latter is the main concern w.r.t to efficiency because of the associated overhead is much more important. Dealing with this concern explicitly when designing a program is called NUMAaware implementation. With an existing code, the problem can be addressed by starting with an appropriate profiling. This is the focus of the present work, where we suggest a way to instrument the native code in order to get the type (i.e. local or remote) of each memory access and we provide a tool that supports the profiling process. We then propose a metric that takes these statistics about memory accesses and provides a value indicating the potential associated overhead.

I. INTRODUCTION

This study was motivated by the investigation of High Performance Computing (HPC) solutions for efficient geophysical exploration. Seismic imaging applications are considered major enabling technologies to improve the efficiency of the Oil and Gas industry in the coming years [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. For example, the full-waveform inversion (FWI) and the reverse time migration (RTM) are essential applications for the identification and placement of hydrocarbon reservoirs, and also for the characterization of the subsurface material like porosity, viscosity, acoustic velocity, localization, dimensions, and others. Stencil patterns can be fine-grained for point-wise computations like in image processing or coarse-grained for macroscopic schemes like what can be found with simulation codes in experimental physics [START_REF] Tadonki | Scalable numa-aware wilson-dirac on supercomputers[END_REF]. Furthermore, FWI and RTM workflows are known to be computationally heavy. Typically, the execution of an FWI scenario can take several months on a Petaflop/s cluster, with data collected within the range from 2 to 10 Hz. Moreover, the computational cost of FWI will keep increasing significantly in the coming years because of the availability of better quality data (from new acquisition technologies), the need for higher resolution images (i.e., processing higher frequency data), and the need to shorten the "time to first oil" and improve the industry efficiency. Even though the processing power of modern processors is increasing, their memory systems are increasingly complex. At the level of a compute node, the typical parallelization model is the shared-memory one since we are dealing multicore processors, some of them having a NUMA configuration.

Non-Uniform Memory Access (NUMA) configuration stands as the standard approach to build up large multicore processors in a modular way. Modulary here includes the multi-socket characteristic that allows to extend the number of available cores associated to the same processor. Note that the basic idea behind NUMA packaging was to alleviate the pressure on the (unique) shared bus as can be seen with symmetric shared memory multiprocessor (SMP). A NUMA processor is like a shared memory cluster of multicore processors, each of which having its "local" memory while having access to that of the others ("remote" memory). Remote accesses are costly for mainly two reasons: the non-linear path from the core to the remote memory and a potential saturation of the interconnect between the NUMA nodes. The latter is a typical consequence of a NUMA-unaware scheduling, especially when more cores belonging to distinct nodes are involved. This is why we commonly see a clear stagnation of the speedup curve with benchmarks on NUMA processors, thus the need of so-called NUMA-aware designs where the aforementioned aspects are taken into account at the level of memory allocation or at the level of tasks management. An example of NUMA-aware design is provided in the work by Tadonki on Lattice Quantum ChromoDynamics (LQCD) [START_REF] Tadonki | Scalable numa-aware wilson-dirac on supercomputers[END_REF] with an illustration of its impact on the overall parallel efficiency. Many other examples are available in the litterature [START_REF] Haggui | Harris corner detection on a numa manycore[END_REF], [START_REF] Lepers | Thread and memory placement on {NUMA} systems: Asymmetry matters[END_REF], [START_REF] Tadonki | High performance computing as a combination of machines and methods and programming[END_REF], [START_REF] Li | Numaaware algorithms: the case of data shuffling[END_REF], [START_REF] Al-Omairy | Dense matrix computations on numa architectures with distance-aware work stealing[END_REF]. In case NUMAawareness is to be applied in a given ordinary parallel code, a relevant profiling is clearly needed in order to figure out the memory access pattern according to the NUMA configuration. This is the purpose of our work, where we propose a sourceto-source approach and its associated implementation as a profiling tool.

Our idea is to build the NUMA memory access pattern by recording for each access the triplet: (virtual) memory address, NUMA node of its physical location, NUMA node of the thread requester. The code is instrumented through a highlevel transformation where each array access is replaced by a function that returns the expected value while provisioning the aforementioned memory access trace. With this trace that is provided at the end of the profiling execution, the programmer can investigate how to reduce the number of remote accesses. In this work, we have (i) designed a profiling methodology; (ii) built a tool to perform the corresponding high-level transfor-mation from the user source code; (iii) proposed a metric that helps to measure the quality of the memory access pattern w.r.t NUMA-awareness. Some NUMA profiling tools are available in the literature like NUMAGrind [START_REF] Liu | A tool to analyze the performance of multithreaded programs on numa architectures[END_REF] and NUMAPerf [START_REF] Liu | A tool to analyze the performance of multithreaded programs on numa architectures[END_REF], but they do not act at the source code level although considering other runtime aspects.

The rest of the paper is organized as follows. The next section provides the necessary background on NUMA architectures together with the frameworks we have used. Section III fully describes our profiling methodology, followed by our proposed metric for NUMA locality in Section IV. Illustrative and experimental results are presented in Section V. Section VI concludes the paper.

II. BACKGROUND

A. Non-Uniform Memory Access (NUMA) architectures

Considering shared memory parallelization, the case of NUMA processors require special attention because of the particular organization of the memory and the impact on the overall performance. Figure 1 displays some NUMA configurations, illustrating the non-conventional sharing of the overall main memory. The NUMA configuration was Fig. 1. Examples of NUMA configuration with four nodes designed to alleviate the bottleneck scenario where all CPU cores use the same unique bus to access the main shared memory, thereby maintaining a high probability of good scalability over many cores. Unfortunately, perfect scalability can be obtained only if all memory accesses are local. Indeed, remote accesses are more costly because of the additional mechanism that is activated to convey the data in addition to the contention on the affected QPI links (local accesses might be carried on simultaneously on these NUMA nodes). Skillful memory allocation and thread management for better scalability on NUMA processors is a hot topic. Stefan et al. [START_REF] Kaestle | Shoal: smart allocation and replication of memory for parallel programs[END_REF] proposed a library for parallel programs on NUMA processors based on array abstraction and memory allocation routines. Their library allows automatic tuning of data placement and accesses for better scalability. Several specific contributions [START_REF] Dashti | Traffic management: A holistic approach to memory placement on numa systems[END_REF], [START_REF] Lepers | Thread and memory placement on numa systems: asymmetry matters[END_REF], [START_REF] Lachaize | MemProf:A memory Profiler for NUMA Multicore Systems[END_REF], [START_REF] Collins | LIRA: Adaptive Contention-Aware Thread Placement for Parallel Runtime Systems[END_REF], [START_REF] Li | LIRA: Adaptive Contention-Aware Thread Placement for Parallel Runtime Systems[END_REF] investigate optimizing threads and data placement in a NUMA system by combining data locality and thread binding to reduce the occurrences of remote accesses. Lin et al. [START_REF] Lin | Automatically Optimizing Stencil Computations on Many-core NUMA Architectures[END_REF] proposed an efficient deployment of stencil computations on NUMA many-cores, targeting higher performance and portability.

B. Flex: A lexical analyzer generator

To accomplish our objective of analyzing the memory access patterns of a given input program, we need to instrument its source code so as to produce the trace corresponding to its memory access pattern. To perform this source-to-source compilation task, we used Flex [START_REF] Brown | [END_REF], a well-known lexical analyzers (scanners or lexers) generator. To proceed with Flex, the user defines a set of lexical patterns (tokens) and a set of actions to be performed whenever a token is encountered (so-called rules) during the parsing. All these specifications are written into a text file (lex file) that will be processed by Flex to produce the lexical analyzer in the form of a valid C file (called lex.yy.c) containing a function (called yylex()) that corresponds to the active parser itself. The compilation of this C source-code generated by Flex produces the user source-to-source "compiler" [START_REF] Paxson | Lexical analysis with flex[END_REF] that acts on any input text file according to rules specified at the design step. Figure 2 gives an overview of the steps when using Flex. 

C. NUMA-related utilities: numactl and libnuma

As we have previously explained, our approach is to instrument the code so as to collect NUMA-related information about memory accesses. To be able to get this information, we need specific NUMA utilities that can provide them both for running threads and memory addresses. We considered numactl and libnuma.

numactl is a Linux utility that provides control over NUMA policy w.r.t to processes (threads) and memory. Indeed, numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for command and inherited by all of its children. In addition, it can set a persistent policy for shared memory segments or files. Since numactl is aware of the processor topology and how the CPU cores map to CPU sockets, it can also be used to get NUMArelated hardware information.

The libnuma is a library that offers a simple programming interface to the NUMA (Non-Uniform Memory Access) policy supported by the Linux kernel. libnuma allows the programmer, within its program, to get information like the NUMA node location of a given memory address as well as for a given running thread and to dynamically perform specific (memory/thread) binding actions. For our work, we are mainly interested in getting NUMA-related information in order to generate our profile report as we are going to describe.

D. Illustration of the NUMA impact

As previously explained, the impact of NUMA on efficiency mainly comes from remote accesses and bus contention. This impact is either an overhead of the overall execution time or bad scalability across several NUMA nodes. In the following example, we ran a single-threaded program (wave simulation code) on a machine with 8 NUMA nodes, using numactl to bind thread execution and memory allocation on a single specific node for each. Table I displays the matrix of the timings (the value at position ij corresponds to the scenario where the program running on node i and memory is allocated on node j). We can observe that this matrix has the same structure than the one related to the NUMA topology of the processor (obtained with numactl --hardware). A more complex example that illustrates the impact of NUMA effects on parallel scalability is taken from a work by Tadonki [START_REF] Tadonki | Scalable numa-aware wilson-dirac on supercomputers[END_REF], where he proposes a NUMA-aware parallel implementation of Lattice Quantum ChromoDynamics simulation. Figure 3 displays the results of a NUMA-unaware version of the LQCD simulation code on a machine with 4 NUMA nodes. We can see the poor speedup when using several nodes. 

A. Description of our profiling method

Our source code parser is primarily intended to help the programmer to profile his program with respect to memory accesses from the NUMA configuration standpoint. Considering an array, namely A, the idea is to replace each access A[f (I)] by g(cpu_numa_node, A, f (I)), where I is the iteration index and g is a function that returns A[f (I)] while extracting and recording profiling information considering that the access has been requested from NUMA node cpu_numa_node. The generated profiling information will be the triplet (f (I), cpu_numa_node, mem_numa_node), where mem_numa_node is the NUMA node id of the memory address of A[f (I)]. We always profile for one array at a time although our code transformation can simultaneously consider several arrays.

With libnuma library,

• cpu_numa_node is obtained with the instruction numa_node_of_cpu(sched_getcpu())

where sched_getcpu() returns the id of the executing CPU-core and numa_node_of_cpu(cpu_id) returns the NUMA node id of the CPU-core cpu_id. At the end of the execution of the instrumented code, our profiling measurements are written down into a text file that we post-process in order to get a more compact form with associated statistics. Listing 1 provides an example of instruction with an array access and Listing 2 shows the corresponding transformation. Listing 3 describes how we get and save the profiling information. 

B. Illustration of our profiling

To test our methodology and the associated tool, we consider the code for the simulation of seismic wave equation 1 , focusing on NUMA locality. Our application kernel simulates the propagation of acoustic waves using a finite differences method with regular 3D grids. The wave equation uses second order time discretization and a second order spatial discretization, resulting in a 7-point stencil on a 3D domain. A more detailed description of our application and the numerical methods used is provided in [START_REF] Freire De Souza | simwave -A Finite Difference Simulator for Acoustic Waves Propagation[END_REF]. Listing 4 is the code of our simulation kernel and Listing 5 is the corresponding instrumented version as generated by our tool following our instrumentation approach. So, we can see that

• prev_u [START_REF] Lachaize | MemProf:A memory Profiler for NUMA Multicore Systems[END_REF] was accessed from node 0 while being on node 1 (remote access) • prev_u[92] was accessed from node 1 while being on node 1 (local access) • prev_u[80] was accessed from node 0 and also from node 1 while being on node 1 (1 remote access and 1 local access)

From the basic form of the profiling report, we generate different other outputs by: sorting the lines by the offset; aggregating the accesses by the offset and adding the number of accesses, which yields lines of the form offset cpu_node mem_node, nb_accesses The compact form of the profiling report looks like Table II. Note that we handle the profiling information through a global variable that is updated upon each access of the profile array. A mutual exclusion is needed in order to avoid race conditions due to several threads attempting an update at the same time, some profiling lines might be lost (overwritten).

The ultimate form of our profiling report is obtained from that of Table II by aggregating the lines by the pair (cpu_node,mem_node). This gives a table where lines are of the form cpu_node mem_node, total_nb_accesses Table 4 displays an illustrative example from our experimental run.

Table III provides a quantitative overview of memory accesses from the NUMA standpoint. Its 2D matrix form is given by Figure 4 where the values are percentages. It can be used to appreciate the NUMA-awareness of the program under the guidance of a NUMA metric. We now describe a basic one.

IV. A BASIC NUMA METRIC

Having a NUMA accounting in general is a helpful profiling item that the programmer can use to figure out the quality of memory accesses. However, for optimization purposes, having a single-value score (metric) is a goo complement as it can be considered as the objective function to be minimized. We define a basic one.

Consider the matrix corresponding to the profiling report like described in Figure 4, we denote R = (r ij ), 1 ≤ i, j, ≤ N , where N is the number of NUMA nodes. The value of r ij represents the number of memory accesses from NUMA node j to NUMA node i (each of these requests comes from NUMA node i). Consider the NUMA distance matrix (given by the command numactl --hardware), we denote D = (d ij ). We define our NUMA locality metric as follows

δ = 1 T × Q ∑ 1≤i,j≤N r ij d ij , ( 1 
)
where T is the total number of memory accesses (T = ∑ r ij ) and Q = ∑ d ij . One could set the diagonal of D to 0 (i.e. d ii = 0, 1 ≤ i ≤ N ) in accordance with the consideration that there is no overhead with local accesses from the NUMA standpoint. In practice, these values are non-zero, are the same on the whole diagonal, and are lower than any other value. Thus, if these apply, then the aforementioned zeroing of the diagonal could be done by removing that constant to each of the entries of D (i.e. replace d ij by d ij -d 00 ).

Very important points: For future works or how to consider our approach (especially regarding the score), the two following key points are crucial.

• Data locality.

In our approach, we count each memory access regardless of cache line locality. In practice, if the memory access pattern is (highly) regular, then each remote access will lead to local accesses for data within the same cache line (if done while that line is till in cache). Thus, counting each access individually severely evaluate the impact of NUMA effect. One way to do this from our fine grain profiling report is, for instance, to consider the cache line id and count for accesses at that granularity. This can be done by assuming an aligned allocation and considering both the length of the data type and that of the cache line. Some tools like NumaPerf deals with this at the level of memory pages. • Bus contention.

It is common to stress NUMA penalty because of the focus on remote accesses (they are indeed more costly than local ones). However, remote access might alleviate the contention on local memory buses and thereby improve performance and efficiency. Note that this was one of the motivation of the design of NUMA architectures. This is probably the reason why interleaving memory allocations statistically yields a good performance even in the presence of a significant amount of remote accesses. • Tracking all critical variables.

Our method allows to track a specific array. However, a given program might have several arrays that have a strong influence on the memory accesses efficiency. Thus, a more accurate profiling would be track all important arrays. This is a natural extension of our methodology.

V. EXPERIMENTS We consider our wave simulation code (the main loop) with four input parameters dim_X, dim_Y, dim_Z, nb_iterations. We influence memory allocation with either membin (allocate on a specific NUMA node), -localalloc (allocate on the NUMA node where the thread is running), and -interleave=all (allocate in a distributed way across NUMA nodes). Our goal is just to have different memory allocations and check the output of our profiling. We managed to have a balanced binding of the threads to the NUMA nodes.

We first consider the scenario (128, 128, 20) on an AMD EPYC 7402 processor (2 sockets with one NUMA node each, 24 cores per socket). Table IV summarizes our results on this processor. We can see the expected correlation between the execution time (T ) and our metric (δ). 5 and our experimental results in Table V. About the aforementioned correlation between the execution time and our NUMA metric, which also shows up in Table V, the idea is to check that and increase (resp. decrease) in one applies to the other, thereby giving the programmer a quantitative objective that will guide his optimization efforts. We have proposed and implemented a profiling method that allows the programmer to get a trace of the memory accesses from the NUMA standpoint. Based on this profile report together with the NUMA distance matrix, we have built a metric that provides an indication about the quality of the memory access pattern w.r.t the NUMA characteristic. Like with any other kind of program optimization, having relevant profiling information is important and can be used as a key for a systematic approach. Indeed, using our profiling method (through the associated tool we have implemented2 ), the programmer gets an insight of the NUMA locality of his implementation, which he can then try to optimize under the guidance of our metric. This further step is left as future work together with other goals like: extending our lexical analyzer to multidimensional access pattern, tracking multiple variables at once, refining the account of memory accesses considering locality w.r.t cache memory, generating suggestions for better memory allocation. 
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 3 Fig. 3. Weak scalability of a NUMA-unaware parallel code

  • mem_numa_node is obtained with the instruction get_mempolicy(&mem_numa_node, NULL, 0, addr,MPOL_F_NODE | MPOL_F_ADDR) where addr is the memory address of A[f (I)]. Let us illustrate the transformation considering an array A. The instruction below X = 3 + 2 * A[3 * i+j]; will be replaced by X = 3 + 2 * func(numa_node_of_cpu( sched_getcpu()),A,3 * i+j);
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  Core Processor (2 sockets with 4 NUMA nodes each, 16 physical cores per NUMA nodes). The graph of the relative distances between NUMA nodes is displayed in Figure

				TABLE IV		
		EXPERIMENTAL RESULTS ON A 2 NUMA NODES PROCESSOR
	N o	scenario	#threads	mem policy	T	δ
	1	32 3 : 100	2	-localalloc	0.002145	0.010499
	2	32 3 : 100	2	-interleave=all	0.002265	0.25000
	3	64 3 : 100	2	-localalloc	0.008956	0.126012
	4	64 3 : 100	2	-interleave=all	0.009263	0.2500025
	5	128 3 : 20	16	-localalloc	0.014295	0.017853
	6	128 3 : 20	16	-interleave=all	0.014714	0.253441
	Now we consider another processor. An AMD EPYC 7601
	32-					

TABLE V EXPERIMENTAL

 V RESULTS ON A 8 NUMA NODES PROCESSOR

	N o	scenario	#threads	mem policy	T	δ
	1	32 3 : 20	2	all local	0.000951	0
	2	32 3 : 20	2	-localalloc	0.001286	0.072029
	3	32 3 : 20	2	-interleave=all	0.001344	0.168942
	1	64 3 : 20	2	all local	0.011839	0
	2	64 3 : 20	2	-localalloc	0.006324	0.014311
	3	64 3 : 20	2	-interleave=all	0.006534	0.015693
			VI. CONCLUSION		

https://github.com/HPCSys-Lab/NUMA-metric at Mines Paris-PSL and thus initiated this work and the underlying cooperation. H.S. also thanks FAPESP for their support through grants 2019/26702-8 and 2023/00566-6.