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In this short communication, the residence time distribution of molten polymer in a liquefier of a material extrusion process is numerically investigated. The Laplace transform is used to easily fit the residence time distribution. As a result, the liquefier can be decomposed into a plug flow and a continuous stirred tank reactor in series. The local mean residence time is also studied numerically to provide information about the flow structure.

Introduction

Additive manufacturing is becoming an alternative process for either prototyping or innovative manufacturing. The material extrusion process is one of the most commonly used techniques for polymer materials. The printed object is built layer by layer by depositing thin threads of molten polymer extruded through a liquefier, which is the milestone part of a 3D printer [START_REF] Gibson | Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing[END_REF]. The polymer enters the liquefier at room temperature, melts due to heat transfer with the heat block [START_REF] Jones | RepRap -the replicating rapid prototyper[END_REF].

The residence time of the polymer in the liquefier is an important piece of information for a better understanding of the overall dynamics in the liquefier. According to Bellini et al. [START_REF] Bellini | Liquefier dynamics in fused deposition[END_REF], the residence time distribution can be used to determine the transfer function. From the numerical results provided in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF] for the bisphenol A polycarbonate, the residence time distribution can be easily determined using an unsteady scalar advection equation. The residence time distribution is then used to determine the simplified representation that provides access to the transfer function.

The fluid mechanics coupled to the heat transfer has been solved in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF]. Recall that a continuous Galerkin method with a Taylor-Hood element [5] P 2 -P 1 is used for the Navier-Stokes equations. A discontinuous Galerkin finite element method at the second order is used to determine the temperature field. The Rheolef C++ library [START_REF] Saramito | Efficient C++ finite element computing with Rheolef[END_REF] used in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF] has been evaluated in various cases. The numerical implementation is optimal order in error bounds, see [START_REF] Ta | An implicit high order discontinuous galerkin level set method for two-phase flow problems[END_REF][START_REF] Pigeonneau | Discontinuous galerkin finite element method applied to the coupled Stokes/Cahn-Hilliard equations[END_REF]. The melting of the polymer is very close to the so-called Graetz problem, which has been studied for several decades [START_REF] Shah | Laminar flow forced convection in ducts. A Source book for compact heat exchanger analytical data[END_REF]. As shown in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF], the heat and mass problem can be written in dimensionless form, where the characteristic variables are the diameter D of the inlet channel of the extruder, see Figure 1, the outlet (extrusion) velocity U . The dimensionless time is normalized by D/U . The main dimensionless number is the Péclet number defined as follows

Pe = U D κ , (1) 
with κ the thermal diffusivity equal to λ/(ρC p ) and λ the thermal conductivity, ρ the density and C p the specific heat at constant pressure.

To study the influence of the amplitude of the extrusion velocity of the polymer, three values of U have been numerically studied in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF]. In agreement with [START_REF] Bejan | Convection heat transfer[END_REF], Pigeonneau et al. [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF] pinpoint that the distance over which the polymer is fully melted is strictly proportional to the Péclet number. Due to the non-Newtonian behavior of the polymer, the fluid motion is close to a plug flow close to the inlet of the liquefier as already experimentally shown by Peng et al. [START_REF] Peng | Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing[END_REF].

The purpose of this short communication is to address the residence time distribution in material extrusion process, which has not been studied much. It is also to get an idea of how the liquefier can be seen in terms of ideal reactors.

Residence time distribution

To obtain the residence time distribution, the method developed by Taylor [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF] and Danckwerts [START_REF] Danckwerts | Continuous flow systems. Distribution of residence times[END_REF] is used. The time-dependent solution of a passive scalar is numerically solved. Since the flow regime is laminar, the dispersion is neglected. Let C(x, t) a concentration solution of the following equation

∂C ∂t + u • ∇C = 0, (2) 
in which u is the solution of Navier-Stokes-Fourier problem described in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF]. Initially, C is set equal to zero in the computational domain shown in Figure 1.

For t > 0, the boundary conditions are C = 1 in the inlet, ∂Ω in while on the rest of frontiers nothing is specified. To compute the residence time distribution, the mass weighed flux of C is determined at the outlet of the domain as a function of time [START_REF] Danckwerts | Continuous flow systems. Distribution of residence times[END_REF]: Finally, the residence time distribution is simply defined as the temporal derivative of F (t) [START_REF] Danckwerts | Continuous flow systems. Distribution of residence times[END_REF]:

F (t) = ∂Ωout Cu • ndS ∂Ωout u • ndS . ( 3 
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E(t) = dF (t) dt . (4) 
Equation ( 2) is solved numerically with the Rheolef C++ library [START_REF] Saramito | Efficient C++ finite element computing with Rheolef[END_REF] with a discontinuous Galerkin method and a BDF-2 scheme for the time integration. To have a total variation diminishing (TVD) property, P 0d finite elements are chosen [START_REF] Saramito | Efficient C++ finite element computing with Rheolef[END_REF]. The concentration fields at different dimensionless times are shown in Figure 2 for the smallest extrusion velocity, i.e. for Pe = 562.5. The red color corresponds to C ≤ 0.5 while the blue color to C > 0.5. A plug flow signature close to inlet is clearly seen at short times, Figure 2-(a-b). At larger times, the front of C becomes more and more curved. As expected in this case of flow, a time delay is required before to observe a concentration not equal to zero at the outlet. In consequent, the piston time should be not negligible in a such device.

Same snapshots have been also provided in Figure 3 when the Péclet number is equal to 1687.5. Since at this value, the cold core is much pronounced, the plug flow is more spread in the cylinder part. The plug flow signature is yet strongly seen for t = 100, Figure 3-(c).

The residence time distributions are plotted in Figure 4-(a) for the three Péclet numbers in semilog scale and for dimensionless time. Clearly, the piston time is observed which increases a little with the Péclet number. Finally, an exponential decrease is observed for both Péclet numbers at large times.

At this stage, the goal is to find the simplest representation of the extruder using the residence time distributions. Today, Artificial Intelligence provides methods like Symbolic Regression, Genetic Programming [START_REF] Duffy | Using Symbolic Regression to Infer Strategies from Experimental Data[END_REF]. For instance, a genetic programming has been applied to the prediction of surface tension in hydrocarbon/water system [START_REF] Rostami | Toward genetic programming (GP) approach for estimation of hydrocarbon/water interfacial tension[END_REF]. To have the physical meaning, the extruder is seen as a combination of "ideal" mixers as already experimented in [START_REF] Ponsich | A systemic approach for glass manufacturing process modelling[END_REF].

Usually in chemical engineering, the two main ideal mixers are the plug flow reactor (PFR) characterized by a residence time distribution equal to a Dirac function, δ(t-τ PFR ) for which τ PFR is the piston time corresponding to the ratio of the mass of the reactor divided by the mass flow rate [START_REF] Levenspiel | Chemical reaction engineering[END_REF]. The second ideal mixer is the continuous stirred-tank reactor (CSTR) for which the residence time distribution is simply

E CSTR (t) = 1 τ CSTR exp - t τ CSTR , (5) 
in which τ CSTR has the same definition of the τ PFR .

To determine the simplest configuration, the Laplace transform is applied to the residence time distributions for the three Péclet numbers. The results are plotted in Figure 4-(b) in which the Laplace transform is defined by

G(p) = ∞ 0 E(t)e -pt dt. (6) 
The behaviors of the Laplace transform for the three residence time distributions are quite similar. An exponential decrease with p is seen with a slope more and more pronounced when the Péclet number increases. To go further, a non-linear fit with a function

G(p) = exp(-τ 1 p) 1 + τ 2 p (7) 
has been done. The two parameters τ 1 , τ 2 are obtained by the non-linear fitting method. The start points in Figure 4-(b) represented the solution given by [START_REF] Ta | An implicit high order discontinuous galerkin level set method for two-phase flow problems[END_REF] showing the good agreement between the Laplace transform of the residence time distribution and the function [START_REF] Ta | An implicit high order discontinuous galerkin level set method for two-phase flow problems[END_REF].

The function G(p) which can be interpreted also as a transfer function in the signal processing [START_REF] Smith | The Scientist and Engineer's Guide to Digital Signal Processing[END_REF] has been determined by Bellini et al. [START_REF] Bellini | Liquefier dynamics in fused deposition[END_REF]. Apart from a constant multiplying G(p) interpreted as a gain in [START_REF] Bellini | Liquefier dynamics in fused deposition[END_REF], our function is similar to the one proposed by Bellini et al. [START_REF] Bellini | Liquefier dynamics in fused deposition[END_REF]. The function G(p) can be also used to determine the constitution of ideal mixers to represent the liquefier. Indeed, G(p) is just the product of two Laplace functions. The first one is the Laplace transform of a PFR mixer, exp(-τ 1 p), in which τ 1 is identical to τ PFR . The second function is the Laplace transform of a CSTR mixer for which τ 2 corresponds to τ CSTR . This means that the liquefier can be seen as a compound of a PFR in serial with a CSTR. The inverse of the Laplace transform of G(p) gives the following residence time distribution

E(t) = ∞ 0 E CSTR (t ′ )E PFR (t -t ′ )dt ′ , (8) 
corresponding to a convolution product [START_REF] Prosperetti | Advanced Mathematics for Applications[END_REF] of the two elementary residence time distributions of each ideal reactor. The values of these two characteristic times are gathered in Table 1 for the three Péclet numbers in dimensionless and physical units in parentheses. With the increase of the Péclet number, the characteristic time for the PFR mixer increases since the plug flow is more pronounced at large Péclet number. In dimensionless unit, the flow rate does not change. Consequently, the sum of the two characteristic times could be the same. Indeed, the total time corresponds usually as a ratio of the mass of the reactor to the mass flow rate. As it can be verified easily, the sum of τ PFR and τ CSTR in dimensionless stays approximately equal to 193, quasi constant for all cases. Of course, in physical unit, with the increase of the extrusion velocity, the total residence time decreases. While this value is around 10 s for the smallest extrusion velocity, it is equal to 3.44 s for the largest extrusion velocity. 1: τ PFR and τ CSTR of the compound of a PFR in serial with CSTR in dimensionless unit (first column) and in second (second column) for the three cases.
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Local mean residence time

The complementary quantity very useful to analyze the flow motion in the liquefier is the local mean residence time. This quantity has been introduced by Sandberg [START_REF] Sandberg | What is ventilation efficiency? Build[END_REF] to study the ventilation efficiency of buildings and by Baléo and Le Cloirec [START_REF] Baléo | Validating a prediction method of mean residence time spatial distributions[END_REF]. The determination of a local mean residence time is based on the assumption that the residence time distribution can have also a local meaning. Since this function can be seen as a probability density function, it is solution of a continuity equation:

∂e(x, t) ∂t + ∇ • [e(x, t)u(x)] = 0, (9) 
in which the local residence time distribution has been noted e(x, t). The local mean residence time is defined by

t (x) = ∞ 0 te(x, t)dt. ( 10 
)
To assume that the local mean residence time is only a function of spatial coordinates, the flow regime has to be stationary, i.e. ∂u/∂t=0. Now, by multiplying equation ( 9) by t and after integration over time, t (x) is solution to the simple equation ∇

• [ t (x)u(x)] = 1. (11) 
The source term comes from the integration by parts. Equation ( 11) can be solved in post-processing with the boundary conditions:

t (x) = 0, ∀x ∈ ∂Ω in , (12) 
∂ t ∂n = 0, ∀x ∈ ∂Ω/∂Ω in . (13) 
The same numerical method as previously presented above has been used. Figure 5 depict the field of the local mean residence time for the three values of Pe in second. The iso-values of t (x) does not change significantly radially close to the inlet due to the relative importance of the plug flow. Downstream, the iso-values are more and more elongated. For small Péclet number, the transition between the plug to parabolic flows appears more upstream in comparison with the largest Péclet number. It is clearly seen an area at the connection between the cylinder and the convergent where the t (x) is more important. in this area, the fluid is difficult to drain which gives the tail in the residence time distributions.

This analysis in terms of residence time corroborates the experiments did in [START_REF] Peng | Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing[END_REF]. Indeed, the transport of a purely passive scalar is the signature of the flow field. As it was observed experimentally, the numerical results confirm that the flow is not solution of a simple iso-thermal power law model.

Conclusion

The residence time distribution and the local mean residence time in a liquefier of a material extrusion process are determined from computational fluid dynamics already published in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF]. The residence time distributions found numerically fit very well with a transfer function established by Bellini et al. [START_REF] Bellini | Liquefier dynamics in fused deposition[END_REF]. These results suggest that the hot end can be considered as a serial combination of a plug flow reactor with a continuous stirred tank reactor. The local mean residence time shows that the flow motion is close to the plug flow in the first part before becoming more close to a generalized Hagen-Poiseuille flow due to the increase of the temperature of the polymer.

Numerical softwares developed for the computational fluid dynamics presented in [START_REF] Pigeonneau | Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer[END_REF] and for this work are accessible in the github platform: materialextrusion.git.
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 1 Figure 1: Geometry of the liquefier used for numerical computations. Dimensions are given in mm.
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 2 Figure 2: Snapshots of the concentration field solution of the unsteady equation (2) for six increasing dimensionless times and for Pe = 562.5 with C ≤ 0.5 in red and C > 0.5 in blue.
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 34 Figure 3: Snapshots of the concentration field solution of the unsteady equation (2) for six increasing dimensionless times and for Pe = 1687.5 with C ≤ 0.5 in red and C > 0.5 in blue.(a) (b)
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 5 Figure 5: Representation of t (x) in the liquefier for the three Péclet number.