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ABSTRACT - In this paper, models based on fuzzy logic and recurrent high-order neural networks are developed for 
forecasting the power output of a wind park. These models appear several advantages over conventional models ; e.g. they 
permit to consider easily explanatory variables like wind speed, direction etc. Adaptive learning laws are derived for the 
estimation of the various parameters. The architecture of the models is optimised automatically using a non-linear 
optimisation technique that aims to substitute the usually applied trial-and-error method. The developed models have been 
tested using various time-series of wind power where they outperform persistence as well as conventional models. Finally, 
the paper presents issues on the on-line implementation of a forecasting model into an advanced control system for the 
optimal operation and management of a real autonomous wind-diesel power system. 
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1.   INTRODUCTION 
 
The integration of wind energy conversion systems (WECS) 
in power systems and especially in isolated ones, like the 
systems of islands or the ones of rural areas, may result in 
important environmental and economic benefits. However, 
the stochastic nature of the wind, imposes considerable 
difficulties on the optimal management of these systems. 

The consideration of efficient wind power forecasts by 
the power system control and management functions may 
result in an improvement of the quality of service and a 
reduction of operating costs [2]. 
 In the literature, various models, have been developed 
for wind speed or power prediction. The time scale of these 
models ranges from some seconds, when the objective is 
wind turbines control, to some minutes, or even hours, when 
the objective is economic dispatch and power system 
planning. In smaller time scales, the time-series 
methodology is generally applied, according to which, past 
values of the process are used to predict its future evolution. 
In higher time-scales, of some hours or more, models 
incorporating meteorological information are usually used. 
These models produce forecasts a limited number of times 
per day and necessitate more parameters and considerable 
computer time compared to time-series models.  

In this paper, the time-series approach is followed in 
order to develop artificial intelligence based models for 
forecasting the power output of a wind park. Namely, 
models based on recurrent neural networks and fuzzy logic 
are built. The paper is mainly concerned with forecasts 
useful for the short-term scheduling of an isolated power 
system that is, with forecasts of the WECS power output 
profile for the next 2 or 3 hours with a time step in the order 
of 10 minutes 

The time-series models found in the literature do not 
provide a significant improvement over the method of 
persistence. As a consequence, the latest one, being 
extremely simple (the wind in all future time-steps will be 
equal to the wind now), is almost exclusively used in the 
applications.  
 In [4], ARMA models for wind speed prediction achieve 
an improvement with respect to the persistence in the order 
of 5-12 % on 2-second data (horizon up to 20 seconds), and 

9-14 % on 1-minute data (horizons up to 10 minutes) 
relative to the root mean square (RMS) criterion of errors. 
In previous work of the same author based on Kalman filter 
techniques, the RMS improvement on 1-minute data, is in 
the order of 4 to 10 %. The performance of the method 
becomes very small or  negative when 10-minute averaged 
data are used. In [5], multi-layer feed-forward neural 
networks and radial basis functions are applied for wind 
power prediction. The improvement with respect to 
persistence is in the order of 11 % for one-step predictions 
of 1-minute data and 8 % for 10-min data. In [6], various 
models like ARMA and bilinear ones are developed for 
wind power. They achieve an improvement of 7 to 12 % 
with respect to the persistence, for a forecast horizon of 2 
hours and time-steps of 30 min. Finally, statistically 
evaluated results on multi-step ahead forecasting of time-
series with a time-step in the order of 10 min. are not met in 
the literature. 
   
2.  THE FORECASTING METHODOLOGY 
  
 Two main approaches may be followed in order to 
generate wind power forecasts : 
(i)  to develop an explicit prediction model for wind power, 
in which it will be possible to consider wind speed, wind 
direction etc. as explanatory variables.   
(ii) to develop a prediction model for wind speed and a 
second model for the transformation of wind speed to 
power. As transformation model can be used the 
manufacturer’s characteristic curve of the wind turbine 
power output as a function of wind speed. If however, the 
point of measurement of wind speed is different than the 
hub height of a wind turbine - as is the case in the case-
study of the paper, then the transformation model should 
account for the spatial variations of  the wind speed. 

In the case-study of Paragr. 3, the consideration of the 
characteristic curve as a transformation model gave poor 
results, while an advanced transformation model did not 
give any advantages over the first approach. Similar results 
are also reported in [6]. 
 
2.1   The "Naive" Predictors 
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 When an advanced forecasting model is not available, 
forecasts may be obtained with a minimal effort and data 
manipulation and can be based solely on the most recent 
information available. Such forecasts are referred to as 
Naive forecasts. One such method (Persistence or Naive_1 
method), is to use the most recent datum available P(t),  as 
forecast   /P t k t  for each one of the future time-steps. 
 The forecasting errors over a set of data, are used to 
calculate various performance criteria like the RMS both for 
Naive and advanced methods. The benefit gained by the use 
of an advanced method is typically measured as a 
percentage improvement on a certain criterion (e.g. RMS)  
[1-6]. 
 
2.2   The Artificial Neural Network Model 
 
 In the last years, increasing interest has been shown for 
the use of recurrent neural networks for time-series 
forecasting where they are found to outperform the classical 
feed-forward neural networks (FNN). Recurrent networks 
dispose dynamic elements in the form of feedback 
connections. This distinguishes them from FNN, where the 
output of one neuron is connected only to neurons in the 
next layer. Here the class of recurrent higher-order neural 
networks (RHONN) is considered.  

A RHONN has only one layer with n neurons, each one 
giving a forecast yi  for a different time-step of the forecast 
horizon. The input vector u consists of the n neurons 
outputs (recurrence) plus the m external inputs (e.g. past 
values of wind power, speed, direction etc.) :  

          u , , ,   ,  , ,  u u u u S y S y S x S xn n m n
T

n m
T

1 1 1 1    
  

As remarked from the definition of u each input is 
passed though the function S(.) which is a sigmoidal 
function :  

 

 S x
e x





 



1
1

                     (1) 
 

where  are positive real numbers and is a real 
number. 

A RHONN is linear in the weights and allows higher-
order interactions between neurons. E g. in a recurrent 
second-order  NN,  the total input to the neuron is not only 
a linear combination of the components uj, but also of their 
products ujuk. Moreover, one can pursue along this line and 
include higher-order interactions represented by triplets 
ujukul, quadruplets, etc. Each first or higher order term can 

be represented by zk, which is defined as:  z uk j
d k

j I

j

k



 , 

where  I I I L1 2, , ,  is a  collection of L not-ordered 

subsets of  1 2, , , m n , and dj(k) are non-negative 
integers. 

Following the above definitions the global form of the 
model is given by the following difference equation  : 
 

        y t a y t b w t z ti i i i ik
k

L

k  

1

1

              (2) 
 

where y i  is the state of the i-th neuron (i=1,,n), ai, bi are 
constants, wik is the synaptic weight connecting the k-th 
input to the i-th neuron.  

The stochastic gradient method is used to derive the 
following learning rules for the weights estimation : 
 

       w t w t z t e tik ik i k i  1                     (3) 
 

where      e t y t y ti i i    denotes the prediction error, yi(t) 
is the measured value of the process and i is a small 
positive parameter denoting the learning rate. 

Since the RHONN model is linear in the weights the 
learning process leads to globally optimal values of them.  
 
2.3   The Fuzzy Logic based model. 
 

In recent years the construction and use of fuzzy models 
has been accepted as a useful method when confronted with 
dynamic systems whose underlying dynamics are unknown, 
as is the case with wind, or too complex for analysis by 
conventional mathematical methods.   
  Being in the form of IF-THEN rules, a fuzzy model can 
be used as an  explanatory  model  for  the  process itself 
whose underlying dynamics are unknown. In addition 
constraints on the operation of a wind park, like cut-in/out 
speed, may be easily considered. This is an advantage 
compared to neural networks models, which are generally 
understood as black-box models. A fuzzy model describes 
locally a dynamic process since at each rule a different 
model of the process is associated and a  rule is activated 
only for certain regions of values of the input variables. This 
aspect was indeed a motivation in our application. Several 
characteristics of the wind, like non-stationarity and 
seasonallities, are favourable factors to apply local 
modelling.  

In the literature several different types of fuzzy models 
are found. Here the Sugeno and Tagaki model [7] is used. It 
consists of a set of r fuzzy rules of the type :  
 

   R x A x A y g x xm m m
1

1 1
1 1 1 1

1:    IF  is   and  is     THEN   , ,  , ,   
                                                                                            

   R x A x A y g x xr r
m m

r r r
m    IF  is   and  is      THEN   1 1 1, ,  , , 

 
 

where :  
x1,,xm are input variables of the system.  
A j

i  is a fuzzy set [7] characterised by the membership 

function   i
j

jx  with  i=1,,r  and  j=1,,m. 

y i  is the output of the i-th rule. The function gi is a linear 
or non-linear function that implies the value of 
y i when x1,,xm satisfy the premise. Here, a linear 

function of the form  g p p x p xi i i
m
i

mx    0 1 1   is 
considered. 

 

Since the variables x1,,xm are past values (and eventually 
errors or exogenous variables) of the process, it is obvious 
that the consequent part of each rule is an ARMAX model. 

The notion of fuzzy set is fundamental in fuzzy logic. If  
xi represents "wind speed", then a number of fuzzy sets, 
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representing vague terms like "small", "medium", or "large" 
may be associated to this variable, as shown in Fig. 1.  

Here, fuzzy sets are represented by Gaussian functions 
which are defined by :  

  A j
j j

i

j
ij

i x
x a

b
 


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
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


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













exp
2

      (4) 

where bj
i  0 is the center value and a j

i   the dispersion 
of the Gaussian membership function.  

When an input  x , , , x x xm
T

1 2   is presented to a 

rule i, the values of the membership functions are calculated. 
The product of these values gives the activation degree - or 
weight wi - of the rule. When, for a given input, more than 
one rules  
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Figure 1 :  Representation 
of fuzzy speeds. "Speed" is a 
linguistic variable with three 
terms "slow", "medium", 
and "fast" represented as 
fuzzy sets with the 
membership functions 
shown in the Figure. 

 

 

are activated, the global output y  of the model is the 
weighted average of the outputs y i  of the rules.  
The fuzzy model may be written analytically as following : 
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 The following learning rules are derived according to the 
stochastic gradient scheme. These rules are used to tune all 
the parameters of the model : 

     
1    if   

  if   jp t p t w t e t
j

x jj
i

j
i

p
i

j
j

( ) ( ) ( ) ( )      








1

0
0

    

     
 

 a t a t w y y t
x a t

b t
e tj

i
j
i

a
i i j j

i

j
i

( ) ( )        


1
2

2  

    
b t b t w y y t

x a

b t
e tj

i
j
i

b
i i j j

i

j
i( ) ( )  
( )

( )      


1
2

2

3    (6) 

 

2.4   The learning procedure 
 
The learning laws are applied at the presentation of 

each data to the model. The presentation of the whole data 
set (the one reserved for learning) is characterised as 
learning epoch. Usually, a certain number of K epochs is 
necessary for the convergence of the learning process. The 
value of the learning rate is adjusted at each epoch in order 
to avoid residual fluctuations or instability for both neural 
and fuzzy types of models. Here, an adaptive learning rate 
scheme (LRS) is followed according to which the learning 
rate is reduced by a factor D if the sum of square prediction 

errors (SSE) during the k-th epoch has increased relatively 
to that of k-1.  In the contrary case , the learning rate 
increases by a factor I : 

  k
k SSE k SSE k
k SSE k SSE k

I

D
 

  
  





1
1
1

 
 

( ) ( ) ( )
( ) ( ) ( )

    if  
    if  

  (7) 

 

where DI and D<1. The initial learning rate value is 0. 
If D=I<1, then a LRS of "search-then-converge" type is 
obtained [1].  
 
2.5   Modelling the wind 
 

Consider now that there is a dynamic process, whose 
input/output relation is given by a general difference 
equation of the form : 

    y( ) y , xt f t t 1                    (8) 

where ynis the scalar process output, xm is the scalar 
input of the process and f(.) is an unknown function. Models 
(2) and (5) are proven to be universal approximators of 
systems described by (8) if the later satisfy several mild 
conditions [1]. 
 Considering the problem of the wind power prediction, 
it is assumed that the dynamic process y, is the future wind 
power profile. The objective is then, to find a neural 
network or fuzzy model fM(.) that can approximate f(.).   
 
2.6   Optimisation of the forecasting model architecture 
 

Usually in practise, the trial-and-error method is 
applied to test various alternative model architectures and 
choose the one with the optimal generalisation capability. 
As generalisation, is defined the capability of a model to 
predict data other than those on which it has been trained.  
 The architecture parameters that affect generalisation 
are the types of data used as input to the model (speed, 
direction...), the number of past values of each kind of data, 
and the parameters of the learning process - 0D, I, K. 
Concerning fuzzy models, the number of fuzzy sets 
associated to each input variable must also be estimated.  
The above parameters are optimised according to the cross-
validation scheme and by using an algorithm based on the 
non-linear Simplex method of Box. The method has been 
adapted to optimise both discrete (e.g. number of past data) 
and continuous variables (e.g. learning rate) [1]. 
 
3.   EXPERIMENTAL RESULTS & DISCUSSION 
 
 The case-study of the wind-diesel system of the Greek 
island of Lemnos, where 2 wind parks of a total capacity of 
1.14 MW are installed [8 WTs of 55 kW, 7 WTs of 100 
kW], is considered. The short-time scheduling of the above 
power system is performed by an advanced control system 
described in [2], and necessitates forecasts of the average 
wind turbines power of each wind park for an horizon of 2 
hours with a time-step of 10 minutes [2].  

A set of real data coming from the data acquisition 
system of the island - see Fig. 2 - were used to estimate the 
parameters of the models, while a second independent set of 
data - test set (on the right of the dashed line of Fig. 2) - 
was used to evaluate the forecasting models.  



1996 European Union
20-24 May 1996,  

Wind Energy Conference, 
Göteborg, Sweden. 

 

4 

 Three basic ANN configurations have been tested : (i) a 
network with 12 outputs, one for each time-step, denoted as 
ANN-a. (ii) A network with one output, which is used 
iteratively to give forecasts for all the 12 time-steps, 
denoted as ANN-b. It’s architecture has been optimised by 
considering the forecast errors of all the time-steps. (iii) A 
network similar to the previous one, denoted as ANN-c, 
which has been optimised by considering only the errors of 
the first time-step. High-order terms up to two were 
considered in all cases, while the neurons are fully 
interconnected via recurrent links. The configuration of the 
fuzzy (FL) model is similar to ANN-b.  The number of past 
values for each type of model where found to be :  
 

 ANN-a ANN-b ANN-c F-L 
Wind power 2 8 6 6 
Wind speed 1 3 5 0 

 

 The improvement on the RMS criterion gained by the 
four models over Persistence is given in Fig. 3. From the 
use of  the  advanced  models there  is  a  clear  gain   
concerning  
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Fig. 2 : Average wind turbines power and wind speed data from the 

2nd wind park of Lemnos (7x100kW).  
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Fig. 3:  RMS error of various models and improvement of ANN and 

Fuzzy logic (FL) models over simple methods. 
 
multi-step forecasts. ANN-a and ANN-b have a better 
performance than ANN-c on forecasts of longer time-steps. 
This is because in the architecture optimisation of these 
networks their performance in the whole horizon has been 
considered. Concerning one step-ahead forecasts, a better 
performance is achieved by ANN-c, which has been 
exclusively built for such forecasts. Although better results 
can be expected if a different model is built for each time-
step, this approach is undesirable from the on-line 
implementation point of view. 

The fuzzy model was found to outperform any other 
type of model tested. The amelioration over Persistence on 

the RMS criterion was between 9% and 18% according to 
the time step - see Figure 3.  

Finally,  it  is remarked  that  the length of the 
considered time-series is certainly small for a complete 
statistical evaluation of the developed models. However, this 
case-study, has been selected for presentation here due to the 
on-line implementation of the developed models as 
described in the next Paragraph. In addition, from tests with 
longer time-series from other sites, it was concluded that the 
above results can be considered as representative for the 
level of performance that can be obtained by the proposed 
models. 

 
3.1   Implementation in the existing Control System 

 
 An advanced control system (CS) for the optimal 
operation and management of wind-diesel power systems 
has been developed in the frame of the EU project JOU2-
CT92-0053 [2, 3]. The control system has been installed 
and is under evaluation in the wind-diesel power system of 
the island of Lemnos. 
 The CS aims to assist the power system operators by 
proposing optimal scenarios for the power system operation, 
so that maximum fuel saving is achieved, without 
deterioration of the quality of service to the consumers. The 
scenarios are generated by an economic dispatch module by 
taking into account load and wind power forecasts. Wind 
power forecasts are provided by a wind power forecasting 
(WPF) module. Various Naive predictors, as well as 
advanced models, have been integrated in the WPF module. 
The  ANN-a RHONN model was chosen for implementation 
due to its  globally  better performance compared to ANN-b 
and ANN-c (the fuzzy model has been developed later than 
this implementation).  
 The utilisation of advanced forecasts by the control 
system, results (i) in a decrease of the total number of 
start/stops of the diesel units, which may arise up to 30 %; 
(ii) in a decrease of the loss of load events; (iii) in an 
increase of fuel savings; (iv) and finally in a higher 
utilisation of the available wind energy [2, 3]. 
 
4.   CONCLUSIONS 
 
 In the present paper, artificial intelligence techniques, 
and namely adaptive neural networks and fuzzy logic based 
models, have been developed for time-series forecasting of 
wind power. Special attention has been given to the 
optimisation of the architecture of the forecasting models. 
Both types of models outperform Persistence, while the 
obtained results are superior to similar results of the known 
alternatives. However, the fuzzy model was found to have 
the best performance. This was mainly due to the aspect of 
local modelling characterising the fuzzy model. 
Furthermore, the fuzzy model being in the form of rules 
provides some insight to the unknown dynamics of the 
procedure as opposed to the ANN model which acts as a 
black box. The validation of the models using other wind 
time-series, as well as benchmark data, leaded to similar 
positive conclusions.     
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