Optimizing wind energy trading decisions using interpretable AI-based tools: The symbolic regression approach

Konstantinos Parginos, Simon Camal, Ricardo Bessa, Georges Kariniotakis

To cite this version:
Konstantinos Parginos, Simon Camal, Ricardo Bessa, Georges Kariniotakis. Optimizing wind energy trading decisions using interpretable AI-based tools: The symbolic regression approach. WindEurope Annual Event 2023, Apr 2023, Copenhagen, Denmark. 2023. hal-04162065

HAL Id: hal-04162065
https://minesparis-psl.hal.science/hal-04162065
Submitted on 14 Jul 2023
Optimizing wind energy trading decisions using interpretable AI-based tools – the symbolic regression approach –

Konstantinos Parginos, Simon Camal, Ricardo Bessa, George Kariniotakis
1MINES Paris PSL, 2INESC TEC

Context and Motivation

- Artificial Intelligence (AI) based tools have proven their efficiency in various applications in the energy sector ranging from forecasting to optimization and decision making.
- Despite the advantages of data-driven models, AI-based tools are often seen as black-box models and this penalizes their acceptability by end-users (traders, power system operators a.o.).
- Developing interpretable AI tools is a major challenge for the wider adoption of AI in the energy sector.
- Incorporating Human Expert knowledge in such tools is expected to increase performance and facilitate better generalization of the obtained strategies.

Objectives

USE OF SYMBOLIC REGRESSION
Proposal and validation of a data-driven modelling approach that leverages genetic programming (GP) to derive interpretable decisions, called symbolic expressions.

ENHANCING INTERPRETABILITY
We introduce a penalty metric that reduces the complexity of symbolic expressions by penalizing each solution with the number of operations performed.

INCLUDE HUMAN EXPERT KNOWLEDGE
We demonstrate expert knowledge integration in the data-driven algorithm that facilitates the concept of “Human in the Loop” by tailoring the grammatical space of symbolic expressions to the expert needs.

Methods

We are using Symbolic Regression (SR) from Genetic Programming algorithm to derive interpretable analytical expressions that represent our model. Those equations result according to a value-oriented reward function. The optimal solutions are selected naturally mimicking the biological theory of survival of the fittest. After the production of several individual tree structures that represent the analytical expressions, reproduction mechanisms are utilized to proceed to the next generation of analytical solutions, until we meet a determined threshold.

We propose a fitness metric tailored to the trading of a dual-pricing market which is formed as follows:

\[\rho_{market} = \max \rho_{e} - \left((\rho_{e} - \rho_{offer})^{2} + \lambda \right) \]

where \(\rho_{market} \) is the revenue obtained by bidding \(\rho_{offer} \) when the actual energy produced is equal to \(\rho_{e} \).

The decision derived from GP is defined as a. The objective is to minimize the imbalance cost of our trading decisions as well the complexity of the final decision. The penalty metric for complexity is defined as:

\[\lambda = \frac{1}{2} \left(|\epsilon| - 1 \right) \]

\[\epsilon = \frac{x - y}{2} \]

Case study / Open Data:

- 17MW Wind Farm Sotavento, Portugal.
- Market prices from ENTSO-e Transparency.
- Training: 11 months / Testing: 10 months
- Scenarios for Low (L), Normal (N) and High (H) Prices, global SR model (g), expert splits based on hour of the day (h), and price spreads (p)
- Grammatic Spaces:
 - S0: [+, -, ÷, x]
 - S1: [G0, mean, 75%-quantile, 25%-quantile]

Results

Our observations indicate that the interpretable strategies produced by SR are equally effective as the ones derived by analytical Opt. Quantile, across all three different market price scenarios. On top of that, when expert knowledge introduces functions in grammatic space G1, SR performs better than Opt. Quantile by identifying a solution that further minimizes imbalance Penalties.

Acknowledgements

This work is carried out in part in the frame of the European project Smart4RES supported by the H2020 Framework Program and in part in the frame the Marie-Curie COFUND project Ai4theSciences.