
HAL Id: hal-04143446
https://minesparis-psl.hal.science/hal-04143446

Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Task Scheduling of Big Data Applications in the
Cloud Environment

Laila Bouhouch, Mostapha Zbakh, Claude Tadonki

To cite this version:
Laila Bouhouch, Mostapha Zbakh, Claude Tadonki. Online Task Scheduling of Big Data Applications
in the Cloud Environment. Information, 2023, 14, pp.292. �10.3390/info14050292�. �hal-04143446�

https://minesparis-psl.hal.science/hal-04143446
https://hal.archives-ouvertes.fr

Citation: Bouhouch, L.; Zbakh, M.;

Tadonki, C. Online Task Scheduling

of Big Data Applications in the Cloud

Environment. Information 2023, 14,

292. https://doi.org/10.3390/

info14050292

Academic Editor: Hamid Reza

Arabnia

Received: 9 March 2023

Revised: 8 April 2023

Accepted: 11 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Online Task Scheduling of Big Data Applications in
the Cloud Environment
Laila Bouhouch 1,2,* , Mostapha Zbakh 1 and Claude Tadonki 2

1 National School of Computer Science and Systems Analysis, Mohamed V University in Rabat,
Rabat 10112, Morocco; m.zbakh@um5s.net.ma

2 Mines ParisTech-PSL Centre de Recherche en Informatique (CRI), 77305 Paris, France;
claude.tadonki@mines-paristech.fr

* Correspondence: laila_bouhouch2@um5.ac.ma

Abstract: The development of big data has generated data-intensive tasks that are usually time-
consuming, with a high demand on cloud data centers for hosting big data applications. It becomes
necessary to consider both data and task management to find the optimal resource allocation scheme,
which is a challenging research issue. In this paper, we address the problem of online task scheduling
combined with data migration and replication in order to reduce the overall response time as well as
ensure that the available resources are efficiently used. We introduce a new scheduling technique,
named Online Task Scheduling algorithm based on Data Migration and Data Replication (OTS-
DMDR). The main objective is to efficiently assign online incoming tasks to the available servers
while considering the access time of the required datasets and their replicas, the execution time of
the task in different machines, and the computational power of each machine. The core idea is to
achieve better data locality by performing an effective data migration while handling replicas. As
a result, the overall response time of the online tasks is reduced, and the throughput is improved
with enhanced machine resource utilization. To validate the performance of the proposed scheduling
method, we run in-depth simulations with various scenarios and the results show that our proposed
strategy performs better than the other existing approaches. In fact, it reduces the response time by
78% when compared to the First Come First Served scheduler (FCFS), by 58% compared to the Delay
Scheduling, and by 46% compared to the technique of Li et al. Consequently, the present OTS-DMDR
method is very effective and convenient for the problem of online task scheduling.

Keywords: cloud computing; big data; Cloudsim; task scheduling; data migration; data replication

1. Introduction

Big Data analytics is essential to many applications and supports a variety of user
services. The advance of internet technology has led to big data analytics, and thus,
big data analytics tasks [1]. As a result, managing big data tasks and supporting data-
intensive applications is now possible using cloud data centers [2]. Most of the big data
applications [3–7] are in the form of online task processing. However, it is clear that
these tasks are both computation- and data-intensive [8], hence it becomes a challenge to
efficiently handle them.

Furthermore, in a dynamic cloud environment, resources such as virtual machines,
storage, and networking components are provisioned and deprovisioned as needed to
meet changing demands [9]. This increases the complexity of the task scheduling problem,
as response time is a crucial decision-making parameter for data-intensive tasks. Thus,
scheduling methods should not only aim to reduce task response time but also consider
data migration and replication management to improve response time, throughput, and
resource utilization [10]. In order to cope with dynamic cloud environments, researchers
proposed several task scheduling strategies [11–14] to find a trade-off between different
goals and achieve efficient task planning.

Information 2023, 14, 292. https://doi.org/10.3390/info14050292 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14050292
https://doi.org/10.3390/info14050292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-4238-2583
https://orcid.org/0000-0003-1194-6400
https://doi.org/10.3390/info14050292
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14050292?type=check_update&version=1

Information 2023, 14, 292 2 of 32

Data migration in cloud environments involves the process of transferring data from
one storage or computing system to another within the same cloud infrastructure. The
goal of data migration is to ensure that data are available in the right location at the right
time to meet task needs. Managing data is a crucial factor to consider when dealing with
data-intensive tasks, and there are two cases to consider: local data and remote data. Data
locality occurs when the task and its required data are on the same server, while remote
data involves accessing required data stored on different servers than those hosting the
consumer tasks. Accessing remote data involves additional time [15] due to the migration
process that occurs when moving the datasets over the network and writing them to the
disks. There are several challenges associated with data migration in cloud environments,
such as ensuring data security, maintaining data integrity, handling placement and storage,
and managing costs [16–18].

Therefore, to reduce the task response time, it is preferable to schedule the task in the
server where all or most of its required datasets are stored. Otherwise, the task has to be
scheduled at least in the server ensuring an optimal data migration time. The scheduling
process is also related to other metrics such as the heterogeneity of the configuration of the
servers [19] in terms of CPU frequency, number of CPUs, size of available memory, etc., as
well as the load of each server—to avoid both overloaded and underloaded nodes [20].

Data replication in cloud computing refers to the process of creating multiple copies
of data and storing them across different physical locations or servers within a cloud
computing environment [21]. This is completed to ensure that data are highly available,
resilient, and can be accessed quickly in case of a failure or outage [22]. When it comes to
data replication in cloud environments, there are several key challenges that need to be
addressed. These include network bandwidth, data consistency, replication latency, and
cost [23–26]. It is important to mention that, beside the replicas created during the initial
placement of data, in this paper, the data migration process generates duplicated data that
should be managed efficiently for better data locality.

Due to dynamic provisioning resources for online tasks, there is a constant queue
of tasks waiting to be processed. However, since servers have limited storage capacity,
not all incoming tasks can be scheduled to run locally, making it challenging to efficiently
utilize available resources for improved response time and throughput. As a result, servers
may become either underloaded or overloaded, depending on the demand being lower or
higher than their processing capacity [27].

To deal with the above issues, we address the task scheduling problem by propos-
ing an Online Task Scheduling strategy based on Data Migration and Data Replication
(OTS-DMDR) with the main focus of selecting the most suitable tasks to be executed on
each server.

In our proposed algorithm OTS-DMDR, we first establish a model to estimate the
response times of tasks in different servers. We then decide between the following three
actions: (1) achieve data locality by scheduling the task on the server storing the required
datasets; (2) delay the task execution so it is scheduled on another server for better data
locality; (3) schedule the task on a remote server that gives an optimal response time,
including the migration process. Additionally, in the task response time, we consider
the replicated datasets, the computational capacity, and the load of each server to pre-
vent underloaded and overloaded machines. Finally, after comparing our online task
scheduling OTS-DMDR with other existing algorithms in the literature, the corresponding
results show that the proposed OTS-DMDR can guarantee better average response time
by 46% compared to Li et al. [28], by 58% compared to the Delay Scheduling method, and
acceptable load balancing between machines, improving the overall system efficiency.

In summary, our contributions can be organized as follows:

• Formalize the OTS-DMDR problem considering both the heterogeneity and the pro-
cessing capacity of the servers, together with locality, movement, and replication of
datasets.

Information 2023, 14, 292 3 of 32

• Propose algorithms to estimate the different costs and measure the tasks’ adequacy to
the servers to seek a better task-to-server allocation.

• Conduct extensive simulation experiments to evaluate the efficiency of our algorithm,
OTS-DMDR.

The rest of this paper is organized as follows. Section 2 describes the related work
on various scheduling methods and frameworks. Section 3 presents how our online task
model was established. The proposed OTS-DMDR is outlined with different implemented
algorithms in Section 4. We conduct various experiments and assess the algorithm’s
effectiveness in Section 5. Finally, Section 6 draws conclusions and some perspectives.

2. Related Work

In this section, we desribe some common metrics studied in different task scheduling
methods. Then, we review the two main types of scheduling techniques based, single
objective and multiple-objective. Finally, we highlight our motivation.

2.1. Common Used Metrics

Big data processing requires a lot of computing resources; thus, effectively managing
the resources is essential due to the heterogeneity and dynamism of the environments.
Scheduling algorithms are a set of policies, procedures, and rules, implemented to assign
the best resource for task execution with the aim to accomplish the service provider’s
and cloud user’s objectives. Each of the existing scheduling methods [29–32] take into
consideration several performance metrics. The most common metrics are mentioned
below:

• Throughput [33,34];
• Execution time [35–37];
• Response time [38,39];
• Execution cost [32,40];
• Deadline and Budget constraints [41–43];
• Load balancing [20,44,45];
• Fault tolerance [46,47];
• SLA violation [41,48];
• Energy consumption [49–51];
• Data transfer [28].

2.2. Single-Objective Scheduling Techniques

Some of the earliest scheduling algorithms that have been studied in the literature
are [30,52,53].

The First Come First Served (FCFS) scheduling algorithm is the most traditional one.
Its idea is that the last arrived tasks have to wait until the end of the execution of earlier
ones [52]. Only after a task ends will the next task in the queue be considered. The FCFS
method is also the main scheduler used in the Hadoop framework [54]. The disadvantages
of this strategy are that the waiting time for tasks is increased and it does not consider
task size. Moreover, it fails in balancing the workload among machines and decreases data
locality.

In the Shortest Job First (SJF) method [30], it chooses the shortest task to be executed
first in order to reduce the execution time. Although, due to uneven load distribution on
the servers, the algorithm fails to respect the SLA.

The Round Robin (RR) algorithm [53] circularly distributes tasks and an equal amount
of CPU time is given to every task. The round-robin strategy results in a higher average
waiting time.

The traditional scheduling algorithms (mentioned above) did not find the best solu-
tion to the multi-dimensional scheduling problem since the scheduling algorithm should
simultaneously optimize various parameters [11,31] such as response time with resource
utilization, makespan, cost, energy consumption, etc.

Information 2023, 14, 292 4 of 32

2.3. Multi-Objective Scheduling Techniques

To address the issue mentioned above, many scheduling techniques have been pro-
posed, with focus on enhancing multiple parameters simultaneously [32,55–58].

Shyam and Manvi [55] suggested a resource allocation technique that maximizes
resource usage while minimizing time and budget. The method relies on VM migration
to improve the placement ratio of VMs, which is advantageous for both cloud users
and providers.

Wang et al. [32] proposed a dynamic resource provisioning algorithm that is ideal in
terms of service availability, migration, and leasing costs. The study considers resources
such as CPU, memory, and storage.

For data-intensive applications, Zhao et al. [56] proposed an energy-efficient schedul-
ing technique where datasets and tasks are treated as a binary tree using a data correlation
clustering algorithm. By decreasing the number of active VMs and data transmission time,
the proposed strategy is used to minimize the energy usage of cloud data centers. However,
the online scheduling is not considered.

To minimize the execution time, while increasing resource usage, the work in [57]
proposed a scheduling algorithm based on IBA (Improved Backfill Algorithm) and takes
into account task priority. Priority is one of the important metrics for users who want to
pay more for a quicker answer (VIP request). The limitation of this technique resides in the
performance that is decreasing once the number of tasks grows.

The term Online Potential Finish Time was coined in [58] to improve execution time
and cost in cloud computing. Tasks are distributed onto powerful virtual machines, which
can execute tasks with the least amount of delay.

Reddy G. Narendrababu et al. [59] introduced a modified version of the ant colony
optimization algorithm (MACO) that is tailored to multi-objective task scheduling in cloud
environments. MACO improves upon the original ACO algorithm by assigning pheromone
values to virtual machines (VMs) based on their RAM, bandwidth, storage, processing
speed, makespan, and other factors. This approach facilitates the efficient allocation of
tasks to VMs that are best suited for the task, resulting in better resource utilization and
reduced degree of imbalance. The MACO algorithm outperforms basic ACO, PSO, and GA
algorithms in terms of makespan, system load balance, and task assignment efficiency.

A dynamic round robin scheduling algorithm is proposed in [60]. Authors dynamically
calculate the time quantum for each round by taking into account the differences among the
maximum burst times of the three tasks in the ready queue. One potential issue with this
method is that it does not efficiently handle the starvation challenge. Despite this concern,
the proposed method offers significant benefits such as reducing the average turnaround
time, decreasing the average waiting time, and minimizing the number of context switches.

The research in [61] employed a genetic meta-heuristic algorithm to enhance per-
formance by investigating the environment. The fitness function combined throughput,
response time, and cost criteria, producing overall enhancements. To ensure that all param-
eters were given equal consideration, normalization was employed, resulting in relative
optimization. The suggested method improved waiting time, makespan, and utility while
slightly reducing costs, resulting in superior service for both providers and users. The main
limitation of this work is that it does not address the topic of data-intensive online tasks.
Moreover, it could be hard to adapt such a solution for data-intensive online tasks.

The authors in [62] introduce the Hard Disk Drive and CPU Scheduling (HCS) algo-
rithm for devices with multiple cores and hard disks, aiming to optimize execution time
and energy consumption while minimizing missed tasks. It considers scheduling multiple
parallel tasks with individual deadlines and utilizes multiple stages to execute sorted tasks.
However, this study does not consider memory effects, network bandwidth, and latency of
multi-core systems.

Information 2023, 14, 292 5 of 32

2.4. Our Motivation

It is obvious from the research works referenced above that the majority of authors
focus primarily on resources, especially computing resources, since the main activity of
the task is on CPUs. However, the frequent I/O operations required for big data analytics
tasks make data locality more crucial, as local I/O can minimize task execution time more
effectively than remote ones [1]. The most fundamental scheduling technique used in big
data systems is called DLB (Data Location Based) [12]. For that, a delay algorithm or a
matchmaking algorithm may be used.

The delay algorithm [63] resolves locality through the waiting method. The goal of
this technique is to assign tasks to servers based on the location of their input data, i.e.,
considering that a node in the cluster is free and asks for a task in the queue. It may be
possible that the data required by the selected task are not stored in the given available node.
Hence, the delay scheduling technique delays the task until a node containing the required
data becomes available (achieving data locality). Although, to prevent starvation, a task that
has been waiting for a long time is not executed regardless of the locality of the input data.

The matchmaking algorithm [64] implies that every node has an equal opportunity to
take advantage of the local tasks before a new task is assigned to the nodes. A local task’s
input data are kept at the relevant node.

Generally, the DLB approach attempts to reduce the amount of time spent transferring
data and provide fairness by achieving data locality. The problem is that when the data
are not spread equally across the nodes, the servers’ load may be unbalanced, and thus
the execution time may be longer. Yet, hot data spots may affect both the matchmaking
and the delay algorithms, meaning that some nodes may be overloaded with tasks as a
result of their data storage while others are left idle. The tasks are mostly scheduled on
the servers where the majority of their input data are stored. Therefore, a few servers are
always used, which makes them overloaded. As a result, the task execution time is larger
and the throughput is lower.

The aforementioned scheduling frameworks prioritize the task scheduling problem
while ignoring the deployment of incoming data. Because handling resources and tasks
are seen as the most expensive, the majority of prior works focused on managing them.
However, as scientific applications become more and more data-intensive, handling storage,
data management, and computing resources is increasingly critical [65]. The most related
scheduling strategy to our work is presented by Li et al. in [28]. They proposed an online
job scheduling based on data migration by selecting a proper task to be scheduled when a
server becomes available. The authors make a trade-off between two costs: (1) the task is
assigned to a remote server with a data transfer cost, (2) the task will wait a certain amount
of time for a server that ensures the locality of the data for the task with a waiting time cost.

Paper [28] schedules tasks sequentially, one task after the other, which increases the
waiting time for tasks in the queue. Moreover, when migrating data, a set of characteristics
were not considered such as machine performance, the network between machines, storage
space, and task requirements in terms of CPU, RAM, size, and volume of required data per
task. Consequently, this does not guarantee an optimal result. Furthermore, the process of
handling data replication has not been discussed in [28].

In summary, the specificity of our OTS-DMDR approach is that we use a different
concept to assign tasks to nodes. In fact, we choose a set of tasks from the incoming tasks
from the queue and assign them to the nodes with potentially the best response time. To
calculate the response time, we take into account the data migration time, including the
data replication process and the computing power of each server (e.g., CPU usage, RAM
availability, and storage capacity). Moreover, we anticipate the execution of a task in a
better node by considering the delay time and balancing the load between the servers.

It is important to note that data placement and replication techniques were investigated in
many papers such as [66–68]. These papers can not be compared to the scheduling algorithms
reviewed in our related work section, but we mention them because they study the importance
of data availability in the cloud computing environment. Table 1 summarizes the above analysis.

Information 2023, 14, 292 6 of 32

Table 1. Summary of scheduling methods in the literature

Method Technique Advantages Limitations Parameters

First Come First
Served [52]

The last arrived tasks must wait
until the end of the execution of
earlier ones.

Simple to implement
and efficient.

Increases the waiting time of
tasks and tasks size not
considered.
Imbalance load and decreases
data locality.

-

Shortest Job First [30] Chooses the shortest task to be
executed first.

Reduces execution time
in comparison with
FCFS and RR.

Uneven load distribution on the
servers.

Execution time.
Response time.

Round Robin [53] Circularly distributes tasks.
An equal amount of
CPU time is given to
every task.

A higher average waiting time. -

Shyam and
Manvi [55] VM Migration.

Maximizes resource
usage while minimizing
time and budget.

Needed more agents for
searching the best resource.

Execution time.
Makespan time.
Response time.
Resource utilization.

Wang et al. [32] Dynamic resource provisioning.
Considers resources
such as CPU, memory
and storage.

Data locality and replication not
addressed.

Execution cost.
Availability.

Zhao et al. [56]

Energy-efficient technique
where datasets and tasks are
treated as a binary tree using a
data correlation clustering
algorithm.

Minimizes the energy
usage of cloud data
centers.

Online scheduling is not
considered.

Execution cost.
Resource utilization.
Energy consumption.

Dubey et al. [57]
Scheduling algorithm based on
IBA (Improved Backfill
Algorithm).

Minimizes the execution
time and increases
resource usage.

More tasks imply less
performance.
Considers task priority.

Execution time.
Makespan.
Resource utilization.

Elseoud et al. [58] Online Potential Finish Time
heuristic algorithm.

Improves execution
time and cost in cloud
computing execute tasks
with the least amount of
delay.

Data locality and replication not
addressed.

Execution time/cost.
Makespan.
Response time.
Resource utilization.

Delay algorithm [63]
Assign tasks based on input data
location. It delays tasks until it
required data is available.

The ease of scheduling.
Achieves data locality.

Imbalance load which can cause
higher delays in task execution
and lower throughput.

Execution time.

Matchmaking
algorithm [64]

Before assigning a new task to
nodes, every node has a fair
chance to utilize its local tasks.

High node utilization.
High cluster utilization. No particular. Resource utilization.

Availability.

Li et al. [28]

Online job scheduling based on
data migration based on a
trade-off between data transfer
cost and the waiting time cost.

Handles data migration.

Schedules tasks sequentially
which increases the waiting
time.
Systems characteristics not
considered.
Data replication not discussed.

Throughput.

Reddy et al. [59] Modified Ant Colony
optimization.

Considers VMs RAM,
bandwidth, storage,
processing speed and
makespan in the fitness
function.

Data-intensive online tasks not
addressed.

Resource utilization.
Makespan.
Load balance.

Biswas et al. [60] Dynamic round robin. Dynamically determines
Time Quantum. Starvation not handled. Turnaround.

Waiting time.

Soltani et al. [61] Genetic meta-heuristic.

Multi-purposed
weighted genetic
algorithm to enhance
performances.

Data-intensive online tasks not
addressed.

Response time.
Waiting time.
Makespan.

Mohseni et al. [62] Hard Disk Drive and CPU
Scheduling (HCS) algorithm.

Schedules multiple
tasks among multi-core
systems.

Memory, bandwidth and latency
of multi-core systems are not
considered.

Execution time.
Energy consumption.

Information 2023, 14, 292 7 of 32

For further detail on task scheduling techniques, we refer the following
reviews: [11–13,20]. The papers primarily focus on examining various scheduling tech-
niques used in cloud computing and presenting a new classification scheme for scheduling
algorithms, along with a detailed review of resource scheduling techniques. Additionally,
they aim to highlight the advantages and limitations of heuristic, meta-heuristic, and hybrid
scheduling algorithms.

3. System Model and Problem Formulation
3.1. System Model

The target system of this study is represented by a heterogeneous machine that consists
of two processing types: task processing and data processing.

The machine characteristics and their notations are listed as follows:

• M = {mi} a set of machines, where mi designates the ith machine.
• sci is an integer value that represents the storage capacity of machine mi (MB).
• ri is a float value that represents the read speed of machine mi (MB/second).
• wi is a float value that represents the write speed of machine mi (MB/second).
• RAM[mi] is an integer value that represents the available memory capacity of machine

mi (MB).
• N_CPU[mi] is the number of cores of machine mi.
• P_CPU[mi] is an integer value that represents the CPU performance of each core of

machine mi (Million Instructions per second— MIPS).
• bij is an integer value that represents the bandwidth of the connection between machines

mi and mj (MB/second).
• βij is the elementary data transfer time [68] between machines mi and mj, it is defined by:

βij =

{
0 if i = j
1

bij
otherwise

(1)

• PP[mi] is an integer value that represents the processing power of machine mi (in
Million Instructions per second—MIPS). PP[mi] is the overall CPU amount of mi and
is calculated as follows:

PP[mi] = N_CPU[mi]× P_CPU[mi] (2)

where N_CPU[mi] is the number of cores of mi and P_CPU[mi] is the CPU perfor-
mance of every core in mi.

• TPi defines the list of tasks in progress in mi.

Many independent users submit tasks for execution. In this paper, we consider that
tasks arrive in an online manner to the servers of the different Cloud data centers. All the
online tasks share resources and data over the servers. Since the tasks we are handling
are data-intensive, two important factors are associated with each task: required data and
resources. Tasks are executed in a non-pre-emptive way. However, each task is defined as
follows:

• T = {ti} a set of tasks, where ti is the ith task;
• li an integer value that designates the length of ith task (in Million Instructions—MI);
• RAM[ti] is an integer value that represents the memory capacity required by task ti

(in MB);
• CPU[ti] is an integer value that represents the quantity of MIPS required by task ti;
• V[ti] is an integer value that represents the total size of all the required datasets by task ti;
• αi is the index of the final machine assignment (mαi) of task ti;
• ωi is a decimal value that represents the arrival time of ti;
• URij is the CPU utilization ratio to determine whether a machine mj has a sufficient

amount of resources to support a task ti or not.

Information 2023, 14, 292 8 of 32

As mentioned before, load balancing is a critical aspect to take into consideration
when designing any task scheduling algorithm in a way that optimizes resource utilization,
maximizes throughput, and minimizes response time. For this, we define the workload of
each server as follows:

Load[mi] =
∑tj∈TPi

l[tj]

PP[mi]
(3)

where Load[mi] is a percentage rate that indicates either mi is overloaded or underloaded.
Load[mi] is computed by dividing the total of all tasks that are running in mi on the
processing power PP[mi].

In our work, we assume that a fixed number of datasets are initially stored on the
servers. Each dataset is defined as follows:

• D = {di} a set of datasets where di is the ith dataset;
• vi an integer value that designates the volume of ith dataset (in MB);
• Ψ = {ψij} is the datasets to machines assignment matrix. Equation (4) describes the

computation of matrix Ψ.

ψij =

{
1 if di is stored in mj

0 otherwise
(4)

• F = { fij} is the assignment of the datasets to tasks matrix. We set matrix F because a
task may require one or multiple datasets for its execution and many tasks may use
the same dataset. Matrix F is generated following Equation (5).

fij =

{
1 if di is required by tj

0 otherwise
(5)

For a given dataset di, there could be two options of use. (1) The local use is when
the dataset and its consumer task are on the same node, in that case, the dataset is locally
accessed. (2) The remote use is when the required dataset is stored in a different node than
the one hosting the task; in that case, data migration is needed from a distant source. We
can clearly see that due to the migration process, the execution time of the consumer task is
affected by adding a data migration time DMT, where DMTij is the time to migrate all the
datasets required by ti from their locations to mj (mj is also where ti is assigned) [68].

Our proposed Online Task Scheduling strategy based on Data Migration and Data
Replication (OTS-DMDR) aims to select online tasks from the queue and schedule them to
the appropriate server to ensure better response time as well as a load-balanced system.
The task response time includes two main factors: the performance of the resources and,
more critically, the management of data regarding their location, movement, and replication
within the system.

In addition, the proposed (OTS-DMDR) technique is a generic algorithm that could
be easily extended to handle different types of data. Mainly, we can use a data adapter
component to integrate heterogeneous data types (text, images, logs, videos, etc.) that
could be generated by different devices, such as the one used in IoT, financial institutions,
and healthcare areas [69]. The next section explains in detail and illustrates the benefit of
our approach.

3.2. Problem Formulation

The challenge is how to distribute incoming tasks among servers reduce task response
time while avoiding overloaded or underloaded servers. Since data migration requires
time, it is obvious that we should seek data locality for tasks as much as possible in order
to decrease the response time [1]. When data are migrated to new locations, this will
generate new copies of data over the system, called replicated data. In general, data

Information 2023, 14, 292 9 of 32

replication increases the availability of data, thereby achieving more data locality and
reducing response time for the next incoming tasks.

We re-examine the issue and discover that the tasks in the queue that must be chosen
are the ones that would be carried out on a suitable server with the best response time. In
our algorithm, OTS-DMDR , the scheduling result combines the data locality method, the
data migration method, and the delay scheduling. In other words, the result generates:
data locality, i.e., the task will be placed directly in the server containing all its required
data; or the task will be placed in a remote server that yields a minimal data migration
time; or the task will be delayed until another server having the best response time, via
data locality or data migration, becomes available. Simultaneously, the machine load is
also taken into account in the OTS-DMDR technique to increase the effectiveness of the
entire system.

To better illustrate the OTS-DMDR technique, we give an example in Figure 1. In
Figure 1a, we depict the system configuration. Q is the queue of online tasks. F is the
matrix of the assignment of the datasets to the task and Ψ is the matrix of the assignment of
datasets to machines.

Q = {t1, t2, t3} F =

1 0 1
0 1 1
0 1 0
1 0 0

d1

d3

d2

d4

t1 t2 t3

Ψ =

1 0 0
0 1 0
0 0 1
1 0 0

d1

d3

d2

d4

m1 m2 m3

m1

d1 d4

t1

m2

d2 d3

t2

m3

d3

m1

d1 d4

t1

m2

d2 d3

t3

m3

d3d1

(a)

(b)

(c)

Figure 1. Example to model our proposed scheduling technique OTS-DMDR, where (a–c) depict
respectively the configuration of the system, first iteration of the execution and second iteration of
the execution.

According to the OTS-DMDR method, machine m1 is determined to be the optimal
choice for task t1 as shown in Figure 1b, since it achieves perfect data locality with the
required datasets d1 and d4 already stored on m1. Similarly, for task t2, the OTS-DMDR
method selects machine m2 as the most efficient solution, as in Figure 1b. Therefore,
executing t2 on m2 will result in the shortest response time due to the locally stored
required data d2 and the minimal migration time to migrate the required data d3 from m3
to m2. As a result, tasks t1 and t2 can be executed at the same time (in parallel). In addition,
a replication of d3 is created in m2.

Finally, the OTS-DMDR algorithm estimates the response time of task t3 on all ma-
chines. Using this approach, the algorithm suggests that it is preferable to delay the
execution of t3 until machine m2 becomes available. This delay is represented by a time
interval denoted as ∆. Despite the delay, executing t3 on m2 is expected to result in a lower

Information 2023, 14, 292 10 of 32

response time compared to assigning t3 to other machines that would require greater data
migration times. This is shown in Figure 1c.

It is important to note that in the case of limited computational power of a machine
due to different causes (lack of memory, lack of storage, overload of cpu, etc.), the proposed
OTS-DMDR algorithm, as we will see in Section 4.1.1, proceeds by either skipping that
machine for another one that could host the current task, or delaying the task’s execution
until that machine becomes available to host the current task.

3.3. Objective Function

In this section, we design a mathematical formulation for our proposed algorithm
OTS-DMDR. Our objective function seeks an efficient task scheduling that minimizes the
task response time while maintaining a balanced load of the nodes. The response time is
the time required for each task to complete its execution from the moment it arrives in the
queue. The value is a combination of the following metrics (see Figure 2):

• Scheduling Time (ST): the time between the arrival of the task in the queue and
its scheduling.

• Delay Time (∆): the time that a task can wait for the availability of a given machine.
• Waiting Time (WT): the sum of scheduling time (ST) and delay time (∆).
• Data Migration Time (DMT): the time a task needs to locally gather all its remote

required datasets.
• Data Access Time (DAT): the time it takes for a task to read all its local required datasets.
• Execution Time (ET): the time to execute the task.
• Total Execution Time (TET): the sum of data migration time (DMT), data access time

(DAT), and execution time (ET).
• Response Time (RT): the sum of waiting time (WT) and total execution time (TET).

Task arrives

to Queue

Task

scheduled

Task starts

execution

Task get

remote data

Task read

all its data

Task finishes

its execution

Response Time

(RT)

Scheduling Time

(ST)

Delay Time

(Δ)

Data Migration

Time (DMT)

Data Access

Time (DAT)

Execution Time

(ET)

Waiting Time

(WT)

Total Execution Time

(TET)

Figure 2. Response Time Scheme.

The problem of reducing the response time of a task ti when scheduled in mj can be
formulated as:

min RTij = min (WTij + TETij)

= min (STij + ∆ij + DMTij + DATij + ETij)
(6)

The constraints related to our objective function are shown in Equations (7)–(9).

s.t. RAM[ti] ≤ RAM[mj]− ∑
tk∈TPj

RAM[tk] (7)

D

∑
l=1

vl × fli ≤ scj − ∑
tk∈TPj

V[tk], if Ψl j = 0 (8)

Loadmin ≤ Loadj ≤ Loadmax (9)

Information 2023, 14, 292 11 of 32

The constraint from Equation (7) guarantees that the remaining amount of RAM
in mj exceeds the requested amount of RAM required by task ti (TPj is the list of tasks
running in mj). The constraint from Equation (8) ensures there is enough storage in mj
to store the required datasets for ti in the case of data migration (tk is in progress in mj)
and when dl is a remote dataset. Finally, the constraint from Equation (9) assures the load
balancing of the system in such a way that the load of machine mj should be comprised
between two thresholds (Loadmin and Loadmax) in order to avoid (resp.) underload and
overloaded nodes.

For simplicity, we will set the default value of Loadmax at 70% CPU utilization and the
default Loadmin value at 20% CPU usage [70] for the remainder of the paper.

4. Proposed Approach

In this section, we explain the main steps of our suggested task scheduling strategy
OTS-DMDR, which selects a set of tasks from the queue and schedule them in machines
with the optimal response time.

Our approach consists of the following four steps (see Figure 3):

1. Estimate the response time matrix for the incoming tasks in the queue for all machines;
2. Generate a preference list for task-to-machine assignment;
3. Perform task selection and assignment;
4. Update system state (the availability of the machines and the tasks in the waiting

queue Q).

Yes
Q is empty Wait for tasks in Q

Update System state

Generate Preference List

Tasks Selection and Assignment

Compute Response Time Matrix for tasks in Q

1

2

3

4

No

Figure 3. Flowchart of our proposed scheduling strategy.

The steps above are repeated for tasks in the queue. Based on the waiting time of the
task, the data migration time, the overall execution time, and the load of machines, a set of
tasks will be selected from the queue and will be assigned to servers that best fit.

4.1. Response Time Matrix

The idea of our proposed task scheduling strategy is to choose a set of tasks from the
waiting queue and assign each of them to the most appropriate server. In other words,
we select the appropriate hosting tasks for each server. This method not only allows us to
efficiently use all available servers but also, simultaneously schedule multiple tasks instead
of scheduling them task by task.

In order to select tasks and assign them to the most suitable servers, we first have to
compute the response time matrix RT for each task in the queue for all the machines. The
RT matrix contains the response time RTij of each task ti if it is assigned to machine mj.

Figure 4 and Algorithm 1 show how the response time matrix is computed in detail.
For each task ti in the queue Q, we go through the set of servers in order to estimate RTij, the
response time of the task ti if assigned to mj. First, we check if mj can host ti by computing
the fitness value using the method MachineFitTask, as shown in line 9 in Algorithm 1 and
step 1 in Figure 4. Then, we compute the response time RTij based on four main costs:

Information 2023, 14, 292 12 of 32

• Waiting time WTij, which includes both the delay time ∆ij and the scheduling time
STij (line 20).

– Scheduling time STij is how much time ti waits in the queue to be scheduled
in mj.

– Delay time ∆ij is how much time ti can wait for mj to be available. It is measured
using the ComputeDelayTime function (line 13). ∆ij is computed only if mj will
suit ti later (see also step 2 in Figure 4). More details are explained in Section 4.1.4.

• Time to migrate required remote data DMTij is computed when there is no data locality
for a given required dataset (line 17 and step 3). Function ComputeDataMigrationTime
is detailed in Section 4.1.2. Otherwise, if all the required datasets are locally available,
DMTij = 0.

• Time to access required data locally DATij (step 4 in Figure 4) is computed by calling
the ComputeDataAccessTime function in line 18. This step aims to measure the needed
time to consume the datasets already available locally and the one that has just been
gathered via the migration process. More information is depicted in Section 4.1.3.

• Time to execute ti in mj defined by ETij as shown at line 19 in Algorithm 1 and step 5
in Figure 4.

for ti in Q

j < M.size

for mj in M

i < Q.size

Compute Fitness of ti in mj

Fitness
Response Status

1

0

−1
Compute Delay Time of ti in mj

Data
 Locality
of ti in mj

No

Yes

Compute Data Migration Time of ti in mjCompute Data Access Time of ti in mjCompute Execution Time of ti in mj

Compute Response Time of ti in mj

Compute Response Time Matrix for Tasks in
Q in all Machines M

2

1

3
45

6

Figure 4. Flowchart of computing response time matrix for incoming tasks in the queue.

Information 2023, 14, 292 13 of 32

Algorithm 1 Compute Total Response Time Matrix for Each Task in the Queue Q

Input:
1: Q = (t1, t2, . . . , tn): Queue of arrived tasks
2: M = (m1, m2, . . . , mp): Set of machines

Output:
3: RTij: Response time of ti if placed in mj, where 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |M|
4: if Q is empty then
5: Wait for tasks to arrive to Q (see Figure 3)
6: else
7: for (i ∈ Q) do
8: for (j ∈ M) do // assume ti will be placed in mj
9: φij ← MACHINEFITTASK(i, j)

10: if (φij = −1) then
11: exit; // mj can’t host ti, move to the next machine
12: else if (φij = 0) then
13: ∆ij ← COMPUTEDELAYTIME(i, j)
14: else if (φij = 1) then
15: ∆ij ← 0
16: end if
17: DMTij ← COMPUTEDATAMIGRATIONTIME(i, j)
18: DATij ← COMPUTEDATAACCESSTIME(i, j)
19: ETij ← li

PPj
+ DATij

20: WTij ← STij + ∆ij
21: RTij ← DMTij + DATij + ETij + WTij
22: end for
23: end for
24: PL← GENERATEPREFERENCELIST(RT)
25: (Q, α)← SELECTTASKS(M, Q, PL)
26: end if

Afterward, we have a matrix of response time RT (step 6, Figure 4) of all the tasks in
the queue, assuming that they are executed in all the machines of the system. The RT matrix
will be the basis for our scheduling scheme. Based on matrix RT, the OTS-DMDR algorithm
generates a preference list PL for the task-to-machine assignment (line 24, Algorithm 1)
and is better detailed in Section 4.2. Therefore, a set of tasks is selected to be scheduled in
the appropriate servers using method SelectTasks (in line 25). The tasks’ selection process is
described in Section 4.3.

4.1.1. Fitness

The fitness calculation algorithm defines whether the chosen machine mj is adequate
and fit for the execution of task ti (as shown in Figure 4, step 1). If mj cannot host ti (mj
does not fit ti), mj is directly discarded. In our work, we consider several metrics to say that
ti can be assigned to mj or that the fitness of mj to ti is achieved. The fitness metrics are: the
amount of RAM, storage capacities, and CPU utilization rate (UR). URij is the CPU usage
rate of ti in mj and is computed using Equation (10). PP[mj] is the processing power of mj
and is calculated using Formula (2).

URij =
CPU[ti]

PP[mj]
(10)

The last metric is the machine load, which determines if the machine is overloaded or
underloaded. The load is calculated by Equation (11).

Loadj =
∑tI∈TPJ

li
PP[mj]

(11)

Information 2023, 14, 292 14 of 32

Algorithm 2 depicts how the fitness of task ti in machine mj is computed. There are
three response states:

1. φij = −1, if the utilization ratio is more than 1 (lines 5 and 6).
2. φij = 1, if and only if the utilization rate does not exceed 1, when the remaining

storage capacity in mj can accommodate the total amount of required data by ti (line
9 to 15). The load of mj must be between the Loadmin and Loadmax thresholds (line 16
to 25), and the amount of remaining RAM in mj should be greater than RAM[ti].

3. φij = 0, if one or more of the conditions above are not verified, i.e., mj does not
have enough CPU or/and not enough RAM to host ti, or/and the storage capacity
of mj cannot store the remote required datasets of ti or/and mj is overloaded or
underloaded.

The fitness status obtained from Algorithm 2 is returned to the main Algorithm 1 for
processing the three different cases of compatibility (fitness):

• φij = −1, the machine mj cannot host the task ti due to the lack of CPU, and no action
can be taken. We start by checking this first case, so we can know from the beginning if
we can continue the process of calculating the response time. In this case, the scheduler
moves to the next machine.

• φij = 0, the machine mj cannot host the task ti due to insufficient RAM or/and storage
or/and mj being overloaded or underloaded. The peculiarity here is that the task can
be delayed and wait for these conditions to be verified and accomplish the fitness on
mj. In this case, we talk about delay scheduling technique. Task ti can wait for a delay
∆ij so that the resources of mj become available again to host ti. The measurement of
the delay time ∆ will be explained in Section 4.1.4.

• φij = 1, the machine mj can host the task ti without constraint violations and
delay time.

We would like to mention that in the case where the storage of mj is not enough to
store the required datasets of ti, we select a set of datasets to delete from mj. For that,
we use our previous work [68], based on data replication, for data selection and deletion
processes. The idea is based on two factors:

1. Dependency between tasks and datasets (dependk): this factor seeks to define how
many duplicated datasets in mj are required for the uncompleted tasks in the queue.
In other words, we compute how many tasks in Q are using every replicated dataset
in mj.

2. Number of existing replicas of the dataset (replk): this factor attempts to define how
many replicas of each dataset dk are currently available in the whole system. Therefore,
we check if each machine mj stores dk as a replica copy. The value of replk is raised by
one each time a replica of dk is identified.

Due to the possibility of multiple replications, only datasets with more than maxRep
replicas (here equals three) are qualified for deletion.

We select di with the lowest dependk (the least used di from the unfinished tasks). If
there are multiple datasets with the same depend factor, we take the one with the highest
repl into consideration. Based on this, we delete the datasets one after another until the
deleted space is greater than the requested size, liberating the storage needed by the
datasets that will be migrated for ti execution.

Information 2023, 14, 292 15 of 32

Algorithm 2 Compute Fitness of mj to host ti

Input:
1: i: index of task for which fitness is checked
2: j: index of machine whom we check the placement fitness

Output: φij: fitness status (1,0,−1)
3: function MACHINEFITTASK(i, j)

// CPU Utilization Ratio measurement
4: URij ← CPU[ti]

PP[mj]

5: if (URij > 1) then
6: φij ← −1
7: exit;
8: else

// Storage capacity verification
9: V[ti]← 0

10: for (k ∈ D) do
11: V[ti]← V[ti] + fki × vk // total remote data size required by ti
12: end for
13: if (scj ≥ V[ti]) then
14: selectedDatasets← SELECTDATASETSTODELETE(i, V[ti])
15: end if

// Load measurement
16: Loadj ← 0
17: for (k ∈ TPj) do // search tasks in progress in mj

18: Loadj ← Loadj +
lk

PP[mj]

19: end for
20: if (Loadj ≥ Loadmax) then // mj is overloaded
21: mj.overloaded = 1
22: end if
23: if (Loadj ≤ Loadmin) then // mj is underloaded
24: mj.underloaded = 1
25: end if

// Fitness Measurement
26: if (∑tk∈TPj

RAM[tk] ≥ RAM[tk] && mj.overloaded = 0 && mj.underloaded = 0)
then

27: φij ← 1
28: else
29: φij ← 0
30: end if
31: end if

return φij
32: end function

4.1.2. Migration Time

Once the fitness of scheduling a proper task ti in a proper machine mj is calculated,
we can now start computing the migration time DMTij in order to estimate the response
time of ti in mj.

Algorithm 3 is used to compute the time needed to migrate the remote required
datasets of task ti from their remote locations to mj. There are two potential issues in
calculating the migration time. The first is that ti may need one or more datasets to migrate.
The second is that multiple replicas may exist for a single dataset. In Algorithm 3, the block
between line 5 and line 16 describes how to solve these two issues.

Information 2023, 14, 292 16 of 32

Algorithm 3 Compute required remote Datasets Migration Time of ti placed in mj

Input:
1: i: index of task for which we will estimate the needed time to migrate its required data
2: j: index of machine we assumed ti will be scheduled and data will be migrated to

Output: DMTij: Data Migration Time of the remote required datasets of ti from their
distant locations to the local node mj where ti is scheduled

3: function COMPUTEDATAMIGRATIONTIME(i, j)
4: DMTij ← 0
5: for (k ∈ D) do
6: if (fki = 1) then // dk is required by ti

7: τ
kj
ij ← 0

8: if (ψkj = 0) then // dk is a remote data
9: l ← 0

10: for (l ∈ M− {mj}) do
11: τkl

ij ← 0
12: if (ψkl = 1) then // dk is stored in ml
13: τkl

ij ← (1
rl
+ 1

wj
+ 1

bl j
)× vk // time to migrate dk required by ti from

distant ml to local mj
14: end if
15: end for
16: end if

// Sort migration times of all machines of each dk τij(k, :) in ascending order
17: [σij(k, :)]← sort(τij(k, :)) // σij(k, q) = l, i.e., dk is migrated from ml with time of

τkl
ij

18: s← σij(k, 0) // ms is the machine source with least migration time to move dk to
mj

19: DMTij ← DMTij + τks
ij // data migration time

20: end if
21: end for

return DMTij
22: end function

For each dataset, we check if dk is required by ti (line 6) and if dk is not stored locally in
mj (line 8). In this case, the migration of dk is required by finding all its locations, calculating
the time needed to migrate dk from each of its locations to mj, and finally selecting the
location ml with the smallest migration time. Line 13 shows how to calculate the time to
migrate dk from one of the found locations ml to the local node mj. This migration time is
denoted by τkl

ij .
In fact, the migration depends on the size of the data (vk) and consists of three processes:

(1) reading dk from the remote node ml with a read speed of rl , (2) writing dk to the local
node mj with a write speed of wj, and (3) transferring dk from ml to mj via a bandwidth
with a transfer rate of bl j.

For now, for each data dk required by ti not achieving the data locality, we have its
migration time τij(k, :) from all its existing locations to the local machine mj. The next step
is to select the best location from which dk will be migrated. To do this, we sort the vector
τij(k, :) (line 17) into ascending order and pick the first element σij(k, 0), which gives the
best machine ms providing dk with the lowest migration time τks

ij (line 18).

Before moving on to the next dataset, the value τks
ij is added to the DMTij value (line

19), where DMTij is the total time needed to migrate all the required remote datasets of ti
affected to mj.

Information 2023, 14, 292 17 of 32

Finally, after browsing all the remote data and computing their migration time from
their best location, the total value of DMTij is detained for use in Algorithm 1 at line 17.

4.1.3. Data Access Time

It is mandatory that a task accesses and consumes its required data in order to complete
its execution, otherwise the task fails. The access time for the local consumption of all data
is designed by DATij as indicated in Algorithm 4. Once DATij has been calculated, its
value is returned to Algorithm 1 so that it is taken into account in the response time RTij.

Algorithm 4 Compute Data Access Time of ti placed in mj

Input:
1: i: index of task for which we will estimate time to locally access its required data
2: j: index of machine we assumed ti will be scheduled at

Output: DATij: Data Access Time of all the required datasets of ti in the local node mj
3: function COMPUTEDATAACCESSTIME(i, j)
4: DATij ← 0
5: for (k ∈ D) do
6: if (fki = 1) then // dk required by ti
7: DATij ← DATij +

vk
rj

8: end if
9: end for

return DATij
10: end function

4.1.4. Delay Time

As mentioned previously, it is possible that a given machine mj does not fit ti due to
insufficient storage space, RAM, or load of the machine. This incompatibility might be
solved if the execution of the task is postponed. This type of scheduling is called Delay
Scheduling .

The proposed OTS-DMDR technique is based on the delay method, which could lead
to a better response time. Algorithm 5 employs the delay scheduling, which will allow
the computation of the delay time (∆ij) for the task ti until the resources of machine mj are
available again.

The measurement of the ∆ij is conducted as follows. First, we sort the tasks in the
machine mj by their estimated finish time in ascending order. The sorting result is in a
sorted queue designated by Q′j (line 4, Algorithm 5). Then, we go through each task in Q′

to verify when the fitness of ti will be achieved (line 9). For each task tk in Q′j, we obtain its
remaining execution time (RETk). RETk is added to the delay time ∆ij (line 11); then, the
RAM, storage capacity, and load of mj are updated in order to add the value consumed by
tk (line 12 to line 14). The goal is to check if this updated state will allow to free more RAM
and/or storage and/or load on the machine mj so that it receives the concerned task ti.

The process is repeated until the fitness of mj and ti is achieved (line 10). Finally, we
receive the exact delay time ∆ij, which will be considered subsequently in the response
time of task ti in mj in the main Algorithm 1 at line 13.

Information 2023, 14, 292 18 of 32

Algorithm 5 Compute Delay Time

Input:
1: i: index of task for which fitness is checked
2: j: index of machine whom we check the placement fitness

Output: ∆ij: Delay time so that mj is available to host ti
3: function COMPUTEDELAYTIME(i, j)
4: Q′j ← sort(TPj) // sort in ascending order by estimated finish time the tasks in mj // or by

arrival time of assigned tasks to mj
5: ∆ij ← 0
6: newRAM[mj]← RAM[mj]
7: newScj ← scj
8: newLoadj ← Loadj
9: for (k ∈ Q′j) do

10: while (mj.overloaded = 1 ‖ mj.underloaded = 1 ‖ newRAM[mj] < RAM[ti] ‖
newSc[mj] < V[ti]) do

11: ∆ij ← ∆ij + RETk
12: newRAM[mj]← newRAM[mj] + RAM[tk]
13: newScj ← newScj + V[tk]

14: newLoadj ← newLoadj +
lk

PP[mj]

15: if (newLoadj ≤ Loadmax) && (newLoadj ≥ Loadmin) then
16: mj.overloaded = 0
17: mj.underloaded = 0
18: end if
19: end while
20: end for

return ∆ij
21: end function

4.2. Task to Machine Preference List

So far, we have been able to compute the response time RT matrix. In the current
work, we aim to efficiently select a set of incoming tasks and assign them to the appropriate
servers. Hence, we propose a preference list PL that generates potential association between
tasks and the available machines.

To generate the preference list PL, we sort the elements of the matrix RT in ascending
order. The elements of PL are represented by a triplet of task ti, machine mj, and their
corresponding response time RTij, as follows:

PL = {plk} =
[(

ti, mj, RTij
)]

(12)

where the first element (plL1) of the list PL is the lowest response time if we assign ti to mj.
To better understand the process, we give an example in Figure 5.

m1 m2 m3 m4

5 3 4 6
4 2 1 2
3 6 9 5
7 5 8 3
8 4 5 1

t1

t2

RT = t3

t4

t5

[(t2,m3,1), (t5,m4,1), (t2,m2,2), (t2,m4,2), (t1,m2,3),

(t3,m1,3), (t4,m4,3), (t1,m3,4), (t2,m1,4), (t5,m2,4),

(t1,m1,5), (t3,m4,5), (t4,m2,5), (t5,m3,5), (t1,m4,6),

(t3,m2,6), (t4,m1,7), (t4,m3,8), (t5,m1,8), (t3,m3,9)]

PL =

RT23 = 1 is the response

time of executing t2 in m3

Figure 5. Example of generating the preference list.

Information 2023, 14, 292 19 of 32

The matrix RT gives the PL where the best assignment is represented by the lowest
value RT23 = 1 when t2 will be scheduled in m3, followed by placing t5 in m4. While
the worst assignment is the highest value 9, which happens if t3 is affected by m3 for the
execution. Hence, in the following subsection, we present an efficient technique to select an
optimal assignment task-to-machine based on PL.

4.3. Tasks Selection

In this section, we select the set of tasks that must be scheduled in each of the machines.
Since our work is based on online tasks. Therefore, we always have a queue containing
tasks that must be executed as soon as possible. For this reason, we have opted for the
idea of selecting a set of tasks. Task selection allows us not only to choose the tasks with
the best response times but also to take advantage of the use of all the available machines.
In this way, we are sure to achieve our goal of minimizing the response time and using
the resources efficiently. The selection process of tasks is described in Algorithm 6 and
illustrated by Figure 6.

PL is
empty ?

k < PL.size
for plk in

PLno
Select pl1 = (ti, mj, RTij)

Update M = M − {mj}
Update mj state

Update Q = Q − {ti}

3 4 5

6
7

Assign ti to mj
α = j

 Available machines = M
 Arrival tasks = Q
 Sorted RT = PL

for pll in
PL l < PL.size

pll contains ti
OR

pll contains mj

PL = PL − {pll}

Update PL

1

2

8

yes

yes

PL = PL − {pl1}

Figure 6. Flowchart of task selection process.

For the task selection procedure, as a first step, we need the available machines M, the
arrival tasks in the queue Q, and the preference list PL as input. Then, by going through
the preference list PL (step 3 in Figure 6), we select the first element pl1 (step 4), which has
the lowest response time RTij (line 9, Algorithm 6) and that happens when assigning ti to
mj. After assigning ti to mj (step 5), mj is marked as the best assignment for ti as indicated
in line 10.

The vector α is used to describe the indices of the final task assignments, i.e.,
α = (α1, α2, . . . , αj), where αi is the index of the machine where ti is assigned. In other
words, the best machine to host ti is mαi . After that, we perform four updated operations:

1. The available machines M are updated by removing mj;
2. The characteristics of mj are updated, i.e., the RAM occupied by ti is subtracted from

the total RAM of mαi (line 12), then the storage capacity of mαi is modified by deleting
the volume of migrated data required by ti (line 13) and the used load by ti is added
to the total load of mαi (line 14);

3. The queue Q of incoming tasks is updated by removing the assigned task ti;
4. The preference list PL is updated (step 8, lines between 18 and 22) by removing all

the triplets concerning the task ti or the machine mj.

Information 2023, 14, 292 20 of 32

Updating PL is required to avoid rescheduling an already assigned task and not to
use a machine to which we have already assigned a task.

The whole process is repeated until the preference list is empty, which means either no
available tasks are in the queue or all the machines were used for the tasks in the queue. In
that case, we run the main Algorithm 1 to re-check the queue and repeat the computation
of the response time matrix and so on.

To help understand how task selection operates, we illustrate it using the example in
Figures 7 and 8.

Algorithm 6 Tasks Selection

Input:
1: M: Available machines in the system
2: Q: Arrival tasks in the queue
3: PL: Preference list issued by sorting RT

Output:
4: Q: Updated Q
5: α: Vector of the final assignment of selected tasks

6: function SELECTTASKS(M, Q, PL)
7: while (PL is not empty) do
8: for (k ∈ PL) do
9: selectedPL← pl1 // pl1 = (ti, mj, RTij) is lowest response time

10: αi ← j // the best placement of ti is mj
11: M← M− {mj} // update M
12: RAM[mj]← RAM[mj]− RAM[ti]
13: scj ← scj −V[ti]

14: Loadj ← Loadj +
li

PP[mj]

15: TPj.add(ti)
16: Q← Q− {ti} // update M
17: PL← PL− {pl1} // update PL by removing the 1st element
18: for (l ∈ PL) do
19: if ((pll .contains(ti) ‖ pll .contains(mj))) then
20: PL ← PL − {pll} // Update PL by removing elements with ti or mj

in triplet
21: end if
22: end for
23: end for
24: end while

return (Q, α)
25: end function

The example begins with the input of four available machines M, five incoming tasks
in the queue Q, and the preference list PL generated in Figure 5. A first iteration takes
effect to assign one of the tasks to the adequate server (see Iteration 1 in Figure 7). First, we
select the first element of PL, which is the triplet (t2, m3, 1). This triplet provides the lowest
response time in matrix RT and allows us to assign t2 to m3 with RT23 = 1. As result, m3 is
removed from the available machines M, t2 is deleted from the queue Q, and PL is updated
by removing all the triplets containing either t2 or m3. All updates are described by cross
marks with red color in the output box. A second iteration is conducted by taking as input
the updated values from Iteration 1 of the available machines M, Q, and PL. After selecting
the first triplet (t5, m4, 1) in PL, t5 is assigned to m4 with a response time of 1. The updates
are completed by removing m4 from M, t5 from Q, and all the triplets concerning t5 and
m4 from PL. In our example, the process is repeated until iteration 4 (see Figure 8) where
all the machines were used (M = {∅}) and PL is empty. In contrast, this case results in
a task t4 that is not assigned and that will be handled when repeating the main process

Information 2023, 14, 292 21 of 32

from computing the matrix RT and where new tasks will be added to the arrival queue.
Therefore, we can say that our proposed strategy OTS-DMDR assigned four incoming tasks
out of five while minimizing their response time and maximizing the system resources.

Iteration 1

M = {m1,m2,m3,m4}

Q = {t1,t2,t3,t4,t5}

PL = [(t2,m3,1), (t5,m4,1), (t2,m2,2), (t2,m4,2), (t1,m2,3), (t3,m1,3),

(t4,m4,3), (t1,m3,4), (t2,m1,4), (t5,m2,4), (t1,m1,5),

(t3,m4,5), (t4,m2,5), (t5,m3,5), (t1,m4,6), (t3,m2,6),

(t4,m1,7), (t4,m3,8), (t5,m1,8), (t3,m3,9)]

pl1 = (t2,m3,1)

t2 assigned to m3

M = {m1,m2,m3,m4}

Q = {t1,t2,t3,t4,t5}

PL = [(t2,m3,1), (t5,m4,1), (t2,m2,2), (t2,m4,2), (t1,m2,3),

(t3,m1,3), (t4,m4,3), (t1,m3,4), (t2,m1,4), (t5,m2,4),

(t1,m1,5), (t3,m4,5), (t4,m2,5), (t5,m3,5), (t1,m4,6),

(t3,m2,6), (t4,m1,7), (t4,m3,8), (t5,m1,8), (t3,m3,9)]

Output

Input

Iteration 2

M = {m1,m2,m4}

Q = {t1,t3,t4,t5}

PL = [(t5,m4,1), (t1,m2,3), (t3,m1,3), (t4,m4,3), (t5,m2,4), (t1,m1,5),

(t3,m4,5), (t4,m2,5), (t1,m4,6), (t3,m2,6), (t4,m1,7),

(t5,m1,8)]

pl1 = (t5,m4,1)

t5 assigned to m4

M = {m1,m2,m4}

Q = {t1,t3,t4,t5}

PL = [(t5,m4,1), (t1,m2,3), (t3,m1,3), (t4,m4,3), (t5,m2,4),

(t1,m1,5), (t3,m4,5), (t4,m2,5), (t1,m4,6), (t3,m2,6),

(t4,m1,7), (t5,m1,8)]

Output

Input

Figure 7. Example of task selection (iterations 1 and 2), where the selected elements are highlited
with green color and the deleted elements are highlited with red color.

Iteration 3

Available machines = {m1,m2}

Q = {t1,t3,t4}

PL = [(t1,m2,3), (t3,m1,3), (t1,m1,5), (t4,m2,5), (t3,m2,6), (t4,m1,7)]

pl1 = (t1,m2,3)

t1 assigned to m2

Available machines = {m1}

Q = {t3,t4}

PL = [(t3,m1,3), (t4,m1,7)]

Output

Input

Iteration 4

Available machines = {m1}

Q = {t3,t4}

PL = [(t3,m1,3), (t4,m1,7)]

pl1 = (t3,m1,3)

t3 assigned to m1

Available machines = { ø }

Q = {t4}

PL = [ø]

Output

Input

Figure 8. Example of task selection (iterations 3 and 4), where the selected elements are highlited
with green color.

5. Simulation Setup and Result Analysis

In this section, we present the experiments performed to assess the effectiveness of
the proposed scheduling algorithm OTS-DMDR. The following subsections present the
performance metrics, the used benchmarks, the experimental setup, and a discussion of the
obtained results.

5.1. Simulation Setup

Since the target system is a cloud computing environment, the evaluation of scheduling
algorithms is crucial. However, experiments on real cloud platforms would be costly
and challenging, especially when it comes to repeating the experiments under the same
circumstances in order to compare other algorithms. As a result, a simulator is required
to measure the performance of the proposed algorithms. In order to model and simulate
cloud-based systems, we used an extensible toolkit CloudSim 3.03 [71,72]. Nevertheless,
the Cloudsim framework does not support data management such as data storage, data
migration, data replication, and remote data consumption. Due to these limitations, we
extended Cloudsim in our previous work [73] so that it can effectively address those needs.

For our experiments, we vary the number of machines between 5 and 100. Each
machine is considered with its characteristics (CPU, RAM, Storage Capacity, Read/Write

Information 2023, 14, 292 22 of 32

Speed). We also consider a range of tasks between 30 and 2000 tasks, where every task
requires at least 1 and at most 10 datasets. The size of datasets is evenly distributed within
the range [1–100 GB]. The overall configuration is depicted in Table 2.

Table 2. Setup characteristics.

Characteristic Value

Number of machines [5–100]
P_CPU (MIPS) [1000–5000]

RAM (GB) [64–2048]
Storage capacity (TB) [1–25]

Number of tasks [30–2000]
Size of tasks (MI) [1000–4000]

Number of datasets 300
Size of datasets (GB) [1–100]

Number of required datasets [1–10]

CloudSim offers the flexibility of time-sharing and space-sharing techniques for re-
source allocation in tasks [71,72]. The appropriate technique can be selected by users
depending on their specific requirements, such as performance, cost, and resource utiliza-
tion, which significantly affects the overall efficiency and performance of cloud computing
applications. Our proposed algorithm utilizes the time-sharing technique provided by
CloudSim, allowing tasks to be executed in parallel. In time-shared mode, multiple task
units, or Cloudlets, can perform multitasking within a machine.

We generate various scenarios, take into account 100 executions for each, and use the
average as our final measurement.

We would like to mention that the initial data placement is conducted based on the
max–max algorithm [74]. This means, that the data with the largest size is placed in the
storage with the maximum remaining storage capacity.

We compare our proposed task scheduling strategy (OTS-DMDR) with four other
scheduling algorithms: FCFS [52], the traditional scheduling algorithm that schedules
tasks based on their arrival time, i.e., the first arrived is the first to be executed; Delay
Scheduling [63], delays the execution of a task in order to assign it to the server achieving
the data locality; Li et al. method [28], that compromises between waiting time and data
migration costs. Finally, we compare OTS-DMDR with a proposed algorithm that does
not consider the data replication, which we name Online Task Scheduling based on Data
Migration (OTS-DM).

5.2. Performance Metrics

To quantitatively evaluate the performance of the OTS-DMDR algorithm and compare
its effectiveness with other algorithms in the literature, we need to use a variety of metrics,
which are listed below.

Response Time (RT)

Needed time for a task to finish its execution. The response time includes the following
stages (also see Figure 2):

• Scheduling Time (ST);
• Delay Time (∆);
• Waiting Time (WT);
• Data Migration Time (DMT);
• Data Access Time (DAT);
• Execution Time (ET);
• Total Execution Time (TET);

Information 2023, 14, 292 23 of 32

Throughput

Number of tasks that can be processed by the whole system within a time slot.

Degree of Imbalance (DI)

Calculates the imbalance across all of the machines using Equation (13).

DI = |M| × VETmax −VETmin
OET

(13)

where |M| is the total number of machines. VETmax and VETmin are (resp.) the maximum
and minimum total execution time among all machines and OET is the overall execution
time of all machines and is calculated as follows:

OET = ∑
j∈M

VETj (14)

5.3. Result Analysis
5.3.1. Experiment 1: Task Variation

In the first experiment, we aim to measure the impact of varying the number of incom-
ing tasks that arrived into the queue within the same time slot w.r.t. the aforementioned
time metrics (response time, migration time, waiting time, etc.). For that, we fix the number
of machines M to 100 and the number of required data RD varying within the range of
[1–10], while the number of incoming tasks T takes the values 500, 1000, 1500, and 2000.

Figure 9 presents a comparison between the different scheduling algorithms in terms
of the average response time RT. Where the x-axis represents the number of tasks and the
y-axis is the measured average response time for a given number of tasks.

Figure 9. Average Response Time for Task Variation of the proposed methods OTS-DM and OTS-
DMDR, compared to Li et al. [28], Delay Scheduling [63] and FCFS [52].

We can see from the results of Figure 9 that the proposed algorithms OTS-DMDR and
OTS-DM outperformed the rest of the scheduling strategies for all of the test cases, showing
a considerable reduction in average response time, particularly for a higher number of
tasks (1500 and 2000 tasks). In the meantime, the Li et al. [28] and delay scheduling methods
have a competitive performance only for 500 and 1000 tasks. Meanwhile, the FCFS method
exhibits poor performance for all the cases.

To investigate the performance of each method in more detail, we chose the test case
of 2000 tasks, then we computed the time spent on each stage (namely, ST, ∆, DMT, DAT,
and ET). Figure 10 gives the percentages of each stage for each tested method.

Information 2023, 14, 292 24 of 32

Figure 10. Percentage Response Time for Tasks Variation of the proposed methods OTS-DM and
OTS-DMDR, compared to Li et al. [28], Delay Scheduling [63] and FCFS [52].

The FCFS method dedicates more than 41% of the response time to data migration.
This is justified by the fact that the FCFS method does not consider both data locality
and machine performance when scheduling tasks. Moreover, since the FCFS method is
based on a first come first served stragey to assign the incoming tasks, the time between
scheduling and starting the execution of every task is very low, which can be considered 0
(∆ = 0). In contrast, the scheduling time is quite high (ST = 7%) because tasks that arrive
may not be immediately scheduled due to the unavailability of machines.

Since the delay scheduling method is based on delaying tasks in order to achieve data
locality and does not consider any data migration, we can clearly see in Figure 10 that
the percentage of waiting time is significant (21%) and helps to gain in terms of local data
accesses (representing only 18% of the response time). In addition, to avoid starvation,
the migration process takes effect and remote data is not efficiently gathered. Thus, the
response time is dominated by data migration by 31%.

The response time of Li et al. [28] is overtaken by both data migration time and
execution time with a rate of 36% and 25%, respectively. On the other hand, for the OTS-
DM method, the data migration rate is decreased to 31%, while the execution time is slightly
increased to 27%. The reduction of data migration in the proposed OTS-DM method is due
to the strategy that chooses the best location from which to pull the data. For OTS-DMDR,
41% of the total time is consumed by execution time (ET), while 25% is consumed by data
migration. One can recall a huge decrease in terms of DMT in comparison with all of
the existing strategies; this can be justified by replicating datasets across the machines, as
explained in Section 4.1.1.

Finally, from this experiment, we can conclude that the proposed strategy OTS-DMDR
presents a significant improvement in terms of response time and can be very useful for
online task scheduling for big data applications that involve both small and large numbers
of tasks. In addition, the decision to schedule some tasks on the most appropriate machine
can be determined based on a compromise between data locality and data migration cost,
while considering data replication and delay scheduling cost, thus yielding an optimal
response time with lower data transfer.

One major advantage of data migration is that it can help to address data accessibility
and availability. By having multiple replicas of data across multiple machines, it is pos-
sible to leverage multi-task processing and accelerate the execution process. This can be
particularly useful for large-scale machine learning problems or for training on big data
sets [6].

Information 2023, 14, 292 25 of 32

5.3.2. Experiment 2: Machine Variation

In contrast to the previous experiment, in this scenario, we fix the number of tasks T to
2000, while the number of machines M takes values 25, 50, 100, 250, and 500. The purpose
of this experiment is to examine the scheduling behavior of the algorithms under different
system configurations.

Figure 11 represents the plotting of the average response time for various numbers of
machines corresponding to different scheduling methods. The results demonstrate that
our proposed algorithm OTS-DMDR outperforms the other scheduling techniques for
all of the test scenarios, providing a significant reduction of the average response time,
particularly for a higher number of machines (500 machines). The OTS-DM Li et al. [28]
and delay scheduling algorithms currently perform well. The FCFS approach, on the other
hand, yields consistently poor results.

Figure 11. Percentage Response Time for Machine Variation of the proposed methods OTS-DM and
OTS-DMDR, compared to Li et al. [28], Delay Scheduling [63] and FCFS [52].

To further compare the effectiveness of each technique, a detailed experimental analy-
sis is performed in terms of the percentage rate of each metric (WT, DMT, DAT, and ET)
compared to the total response time RT. For this, we select the case of 100 machines. In this
respect, Figure 12 shows the percentage rate for all the tested algorithms.

Figure 12. Percentage Response Time for Machines Variation of the proposed methods OTS-DM and
OTS-DMDR, compared to Li et al. [28], Delay Scheduling [63] and FCFS [52].

As can be observed from the results of the OTS-DMDR strategy, the execution time
took 45% of the total response time, while the percentage of migration time consumed only
25% of the response time. As OTS-DMDR is based on a trade-off between optimizing data

Information 2023, 14, 292 26 of 32

locality, delay scheduling, and data migration relying on data replication, this led to a good
data migration time rate of 25% as well as a small waiting time (5%) compared to other
techniques.

For the OTS-DM strategy, the migration time was considered to be the overtaken time
(36%). This is a significant difference compared to OTS-DMDR because OTS-DM does
not consider the replicated data while moving it. Li et al. [28] found similar results to the
OTS-DM strategy for all metrics.

In the delay scheduling strategy, the waiting time was greater than the other strategies
(17%) since the idea behind the method was based on delaying tasks in order to achieve
better data locality (22%). The DMT rate still had a noticeable value (30%) in comparison
with OTS-DMDR.

Finally, for the FCFS method, we can clearly see that the data migration time again
dominated response time with a percentage of 45%. The reason is that FCFS assigns tasks
without considering data locality nor data movement.

From the result of Figures 11 and 12, we can notice a strong relationship between
the average response time of tasks and the number of machines, as the number of ma-
chines increases the average response time decreases. Moreover, OTS-DMDR performs
competitively with OTS-DM, Li et al. [28], and Delay Scheduling methods for a higher
number of machines, while for the lower number of machines, it is very obvious that the
proposed OTS-DMDR gives significantly better results than all of the existing algorithms.
Eventually, the proposed OTS-DMDR algorithm showed sufficient performance to be used
as an alternative task scheduling algorithm for big data systems.

5.3.3. Experiment 3: Datasets Variation

In this scenario, we vary the number of required datasets to see how it impacts the
total response time. We use three different scales: (a) Small number of required data [1–5],
(b) Medium number of required data [5–10], and (c) Large number of required data [10–20].
Figure 13 depicts the plots of the average response time for the three different scales for
each scheduling strategy.

(a) (b)

(c)

Figure 13. Response Time of Dataset Variation for the proposed methods OTS-DM and OTS-DMDR,
compared to Li et al. [28], Delay Scheduling [63] and FCFS [52], where (a) is for small number of
required data, (b) is for medium number of required data and (c) is for large number of required data.

We can see that our proposed algorithm OTS-DMDR performed best throughout the
three experiments. Furthermore, one can observe a competitive performance between
OTS-DM and Li et al. [28] with a slight advantage of the proposed OTS-DM. However, both
delay scheduling and FCFS methods gave higher response times for all scales.

Information 2023, 14, 292 27 of 32

The corresponding percentage response times of this experiment are reported in
Figure 14a–c. We observe that, even though the number of required data changed, our
method OTS-DMDR consistently gave the least DMT percentage rate. While a comparable
performance was observed between OTS-DM and Li et al. [28] in the three scales. For the
delay scheduling, the WT percentage was higher compared than the other methods. Similar
to previous results, the FCFS response time was mostly spent migrating data.

Our method, OTS-DMDR, consistently produces the least DMT percentage rate re-
gardless of the changing data requirements. This is especially due to considering the
replication of data, which creates new copies of data in the system. As a result, schedul-
ing tasks based on data migration and reusing replicated data can offer benefits such
as enhanced data availability, improved data locality, and decreased response time for
incoming tasks.

(a) (b)

(c)

Figure 14. Percentage Response Time of Dataset Variation for the proposed methods OTS-DM and
OTS-DMDR, compared to Li et al. [28], Delay Scheduling [63] and FCFS [52], where (a) is for small
number of required data, (b) is for medium number of required data and (c) is for large number of
required data.

Finally, we conclude that the obtained results by our proposed algorithm OTS-DMDR
are more stable than those generated by the other scheduling algorithms. Furthermore,
OTS-DMDR is very applicable to different scales of required datasets, which ensures the
usefulness of the proposed task scheduling and validates the theoretical algorithm design
developed in this paper.

5.3.4. Experiment 4: Tasks Arrive in 100 Time-Slot

For this scenario, we aimed to evaluate the throughput metric, which is the percentage
of tasks executed for a specific time slot. Importantly, we analyze the load balancing of our
system using the Degree of Imbalance (DI) metric. For this, we have 2000 tasks to execute
in 100 machines. The tasks will arrive every 100 time slots. The throughput, the percentage
of tasks that were completed for a given time slot, is indicated for each point in Figure 15.

As expected, FCFS did not perform well. Meanwhile, the Delay Scheduling, Li et al., and
OTS-DM methods were comparable and gave acceptable results. OTS-DMDR achieved

Information 2023, 14, 292 28 of 32

the best performance due to the efficient management of data replication throughout
task scheduling.

Figure 16 shows the degree of imbalance for the FCFS, Delay scheduling, Li et al., OTS-
DM, and OTS-DMDR algorithms, where the lower value of DI indicated a higher load
balancing performance.

According to the reported results, it can be concluded that the degree of imbalance of
the proposed OTS-DMDR algorithm had the smallest value. Since the OTS-DMDR strategy
considers the load of each machine when assigning tasks, as a result, it avoids imbalanced
workload situations.

Figure 15. Throughput.

Figure 16. Degree of Imbalance for the proposed methods OTS-DM and OTS-DMDR, compared to Li
et al. [28], Delay Scheduling [63] and FCFS [52].

However, a remarkable topic to be discussed is how to combine the proposed algorithm
with other meta-heuristic algorithms to further enhance scheduling results by choosing
optimal weight for parameters involved in the objective function, as discussed in [59,61].

6. Conclusions

Big data analytics tasks are now feasible due to advances in internet technology and
the use of cloud data centers. However, managing these data-intensive tasks is challenging,
especially in dynamic cloud environments. To address this challenge, it becomes highly
demanding to consider data aspects when designing task scheduling algorithms. This
paper introduces a new method named Online Task Scheduling based on Data Migration
and Data Replication (OTS-DMDR). It considers various metrics to select the appropriate
task for the appropriate machine, including, data access time, data migration time, tasks
requirement, performance power, and load of the machines. By combining data migration
and data replication features with delay scheduling, the OTS-DMDR method achieves
better data locality, minimizes the response time, and improves the task throughput.

Accordingly, extensive simulations are carried out to demonstrate the validity of
our proposed OTS-DMDR method. The results show that the proposed OTS-DMDR
method outperforms existing scheduling techniques, reducing response time by 78% when

Information 2023, 14, 292 29 of 32

compared to the First Come First Served (FCFS) scheduler, by 58% compared to the Delay
Scheduling, and by 46% compared to the technique of Li et al.—all of this while ensuring a
balanced load over the machines. Consequently, this demonstrates the effectiveness and
convenience of the proposed approach for the problem of online task scheduling.

The study on online task scheduling combined with data migration and replication in
the cloud presents an important research implication for the development of efficient task
scheduling algorithms for data-intensive applications. The study’s findings indicate the
importance of considering data locality in task scheduling, which can be further explored
in future research. Furthermore, as future work, it will be important to investigate how
to dynamically place the initial datasets and handle data replicas in order to enhance the
performance of the system. In conclusion, it can be inferred that the performance of the
proposed OTS-DMDR algorithm is adequate to be utilized as an alternative online task
scheduling algorithm for big data systems.

Author Contributions: All authors contributed equally to this work. L.B., M.Z. and C.T. designed
and performed the experiments and prepared the manuscript. L.B., M.Z. and C.T. supervised the
work and contributed to the writing of the paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Acknowledgments: The authors thankfully acknowledge the Laboratory of the Smart Systems
Laboratory (SSLab) ENSIAS for his support to achieve this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barika, M.; Garg, S.; Zomaya, A.Y.; Wang, L.; Moorsel, A.V.; Ranjan, R. Orchestrating Big Data Analysis Workflows in the Cloud:

Research Challenges, Survey, and Future Directions. ACM Comput. Surv. 2019, 52, 1–41. https://doi.org/10.1145/3332301.
2. Rjoub, G.; Bentahar, J.; Wahab, O.A. BigTrustScheduling: Trust-aware big data task scheduling approach in cloud computing

environments. Future Gener. Comput. Syst. 2020, 110, 1079–1097. https://doi.org/10.1016/j.future.2019.11.019.
3. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. https:

//doi.org/10.1109/ACCESS.2020.2991734.
4. Petrolo, R.; Loscrì, V.; Mitton, N. Towards a smart city based on cloud of things, a survey on the smart city vision and paradigms.

Trans. Emerg. Telecommun. Technol. 2017, 28, e2931. https://doi.org/10.1002/ett.2931.
5. Fedushko, S.; Ustyianovych, T.; Syerov, Y.; Peracek, T. User-Engagement Score and SLIs/SLOs/SLAs Measurements Correlation

of E-Business Projects Through Big Data Analysis. Appl. Sci. 2020, 10, 9112. https://doi.org/10.3390/app10249112.
6. Zhang, C.; Li, M.; Wu, D. Federated Multidomain Learning With Graph Ensemble Autoencoder GMM for Emotion Recognition.

IEEE Trans. Intell. Transp. Syst. 2022, 1–11. https://doi.org/10.1109/TITS.2022.3203800.
7. Luo, X.; Zhang, C.; Bai, L. A fixed clustering protocol based on random relay strategy for EHWSN. Digit. Commun. Netw. 2023,

9, 90–100. https://doi.org/10.1016/j.dcan.2022.09.005.
8. Chen, H.; Wen, J.; Pedrycz, W.; Wu, G. Big Data Processing Workflows Oriented Real-Time Scheduling Algorithm using Task-

Duplication in Geo-Distributed Clouds. IEEE Trans. Big Data 2020, 6, 131–144. https://doi.org/10.1109/TBDATA.2018.2874469.
9. Arunarani, A.; Manjula, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener.

Comput. Syst. 2019, 91, 407–415. https://doi.org/10.1016/j.future.2018.09.014.
10. Amini Motlagh, A.; Movaghar, A.; Rahmani, A.M. Task scheduling mechanisms in cloud computing: A systematic review. Int. J.

Commun. Syst. 2020, 33, e4302. https://doi.org/10.1002/dac.4302.
11. Kumar, M.; Sharma, S.; Goel, A.; Singh, S. A comprehensive survey for scheduling techniques in cloud computing. J. Netw.

Comput. Appl. 2019, 143, 1–33. https://doi.org/10.1016/j.jnca.2019.06.006.
12. Liu, J.; Pacitti, E.; Valduriez, P. A Survey of Scheduling Frameworks in Big Data Systems. Int. J. Cloud Comput. 2018, 7, 103–128.

https://doi.org/10.1504/IJCC.2018.10014859.
13. Gautam, J.V.; Prajapati, H.B.; Dabhi, V.K.; Chaudhary, S. A survey on job scheduling algorithms in Big data processing. In

Proceedings of the 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT),
Coimbatore, India, 5–7 March 2015; pp. 1–11. https://doi.org/10.1109/ICECCT.2015.7226035.

14. Mishra, S.K.; Puthal, D.; Sahoo, B.; Jena, S.K.; Obaidat, M.S. An adaptive task allocation technique for green cloud computing. J.
Supercomput. 2017, 74, 370–385.

https://doi.org/10.1145/3332301
https://doi.org/10.1016/j.future.2019.11.019
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1002/ett.2931
https://doi.org/10.3390/app10249112
https://doi.org/10.1109/TITS.2022.3203800
https://doi.org/10.1016/j.dcan.2022.09.005
https://doi.org/10.1109/TBDATA.2018.2874469
https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1002/dac.4302
https://doi.org/10.1016/j.jnca.2019.06.006
https://doi.org/10.1504/IJCC.2018.10014859
https://doi.org/10.1109/ICECCT.2015.7226035

Information 2023, 14, 292 30 of 32

15. Stavrinides, G.L.; Karatza, H.D. Scheduling Data-Intensive Workloads in Large-Scale Distributed Systems: Trends and Challenges.
In Modeling and Simulation in HPC and Cloud Systems; Kołodziej, J., Pop, F., Dobre, C., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 19–43. https://doi.org/10.1007/978-3-319-73767-6_2.

16. Yang, C.; Huang, Q.; Li, Z.; Liu, K.; Hu, F. Big Data and cloud computing: innovation opportunities and challenges. Int. J. Digit.
Earth 2017, 10, 13–53. https://doi.org/10.1080/17538947.2016.1239771.

17. Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Ullah Khan, S. The rise of “big data” on cloud computing: Review
and open research issues. Inf. Syst. 2015, 47, 98–115. https://doi.org/10.1016/j.is.2014.07.006.

18. Mazumdar, S.; Seybold, D.; Kritikos, K.; Verginadis, Y. A survey on data storage and placement methodologies for Cloud-Big
Data ecosystem. J. Big Data 2019, 6, 1–37. https://doi.org/10.1186/s40537-019-0178-3.

19. Natesan, G.; Chokkalingam, A. Task scheduling in heterogeneous cloud environment using mean grey wolf optimization
algorithm. ICT Express 2019, 5, 110–114. https://doi.org/10.1016/j.icte.2018.07.002.

20. Jafarnejad Ghomi, E.; Masoud Rahmani, A.; Nasih Qader, N. Load-balancing algorithms in cloud computing: A survey. J. Netw.
Comput. Appl. 2017, 88, 50–71. https://doi.org/10.1016/j.jnca.2017.04.007.

21. Alami Milani, B.; Jafari Navimipour, N. A comprehensive review of the data replication techniques in the cloud environments:
Major trends and future directions. J. Netw. Comput. Appl. 2016, 64, 229–238. https://doi.org/10.1016/j.jnca.2016.02.005.

22. Ahmad, N.; Che Fauzi, A.A.; Sidek, R.; Zin, N.; Beg, A. Lowest Data Replication Storage of Binary Vote Assignment Data Grid.
Commun. Comput. Inf. Sci. 2010, 88, 466–473. https://doi.org/10.1007/978-3-642-14306-9_46.

23. Mohammadi, B.; Navimipour, N.J. Data replication mechanisms in the peer-to-peer networks. Int. J. Commun. Syst. 2019,
32, e3996. https://doi.org/10.1002/dac.3996.

24. Campêlo, R.A.; Casanova, M.A.; Guedes, D.O.; Laender, A.H.F. A Brief Survey on Replica Consistency in Cloud Environments. J.
Internet Serv. Appl. 2020, 11, 1.

25. Long, S.Q.; Zhao, Y.L.; Chen, W. MORM: A Multi-objective Optimized Replication Management strategy for cloud storage cluster.
J. Syst. Archit. 2014, 60, 234–244. https://doi.org/10.1016/j.sysarc.2013.11.012.

26. Mokadem, R.; Hameurlain, A. A data replication strategy with tenant performance and provider economic profit guarantees in
Cloud data centers. J. Syst. Softw. 2020, 159, 110447. https://doi.org/10.1016/j.jss.2019.110447.

27. Wang, D.; Chen, J.; Zhao, W. A Task Scheduling Algorithm for Hadoop Platform. J. Comput. 2013, 8, 929–936. https:
//doi.org/10.4304/jcp.8.4.929-936.

28. Li, X.; Wang, L.; Lian, Z.; Qin, X. Migration-based Online CPSCN Big Data Analysis in Data Centers. IEEE Access 2018,
6, 19270–19277. https://doi.org/10.1109/ACCESS.2018.2810255.

29. Dubey, K.; Kumar, M.; Sharma, S. Modified HEFT Algorithm for Task Scheduling in Cloud Environment. Procedia Comput. Sci.
2018, 125, 725–732. https://doi.org/10.1016/j.procs.2017.12.093.

30. Mondal, R.; Nandi, E.; Sarddar, D. Load Balancing Scheduling with Shortest Load First. Int. J. Grid Distrib. Comput. 2015,
8, 171–178.

31. Lakra, A.V.; Yadav, D.K. Multi-Objective Tasks Scheduling Algorithm for Cloud Computing Throughput Optimization. Procedia
Comput. Sci. 2015, 48, 107–113. https://doi.org/10.1016/j.procs.2015.04.158.

32. Wang, H.; Wang, F.; Liu, J.; Wang, D.; Groen, J. Enabling customer-provided resources for cloud computing: Potentials, challenges,
and implementation. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1874–1886. https://doi.org/10.1109/TPDS.2014.2339841.

33. Gill, S.S.; Chana, I.; Singh, M.; Buyya, R. CHOPPER: an intelligent QoS-aware autonomic resource management approach for
cloud computing. Clust. Comput. 2018, 21, 1203–1241. https://doi.org/10.1007/s10586-017-1040-z.

34. Thomas, A.; Krishnalal, G.; Raj, P.V. Credit Based Scheduling Algorithm in Cloud Computing Environment. Procedia Comput. Sci.
2015, 46, 913–920. https://doi.org/10.1016/j.procs.2015.02.162.

35. Sajid, M.; Raza, Z. Turnaround Time Minimization-Based Static Scheduling Model Using Task Duplication for Fine-Grained Parallel
Applications onto Hybrid Cloud Environment. IETE J. Res. 2015, 62, 402–414. https://doi.org/10.1080/03772063.2015.1075911.

36. Hadji, M.; Zeghlache, D. Minimum Cost Maximum Flow Algorithm for Dynamic Resource Allocation in Clouds. In Proceedings
of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 876–882.
https://doi.org/10.1109/CLOUD.2012.36.

37. Elzeki, O.; Reshad, M.; Abu Elsoud, M. Improved Max-Min Algorithm in Cloud Computing. Int. J. Comput. Appl. 2012, 50, 22–27.
https://doi.org/10.5120/7823-1009.

38. Fernández Cerero, D.; Fernández-Montes, A.; Jakóbik, A.; Kołodziej, J.; Toro, M. SCORE: Simulator for cloud optimization of
resources and energy consumption. Simul. Model. Pract. Theory 2018, 82, 160–173. https://doi.org/10.1016/j.simpat.2018.01.004.

39. Ma, T.; Chu, Y.; Zhao, L.; Otgonbayar, A. Resource Allocation and Scheduling in Cloud Computing: Policy and Algorithm. IETE
Tech. Rev. 2014, 31, 4–16. https://doi.org/10.1080/02564602.2014.890837.

40. Carrasco, R.; Iyengar, G.; Stein, C. Resource Cost Aware Scheduling. Eur. J. Oper. Res. 2018, 269, 621–632. https://doi.org/10.101
6/j.ejor.2018.02.059.

41. Coninck, E.; Verbelen, T.; Vankeirsbilck, B.; Bohez, S.; Simoens, P.; Dhoedt, B. Dynamic Auto-scaling and Scheduling of Deadline
Constrained Service Workloads on IaaS Clouds. J. Syst. Softw. 2016, 118, 101–114. https://doi.org/10.1016/j.jss.2016.05.011.

42. Yi, P.; Ding, H.; Ramamurthy, B. Budget-Minimized Resource Allocation and Task Scheduling in Distributed Grid/Clouds. In
Proceedings of the 2013 22nd International Conference on Computer Communication and Networks (ICCCN), Nassau, Bahamas,
30 July–2 August 2013; pp. 1–8. https://doi.org/10.1109/ICCCN.2013.6614111.

https://doi.org/10.1007/978-3-319-73767-6_2
https://doi.org/10.1080/17538947.2016.1239771
https://doi.org/10.1016/j.is.2014.07.006
https://doi.org/10.1186/s40537-019-0178-3
https://doi.org/10.1016/j.icte.2018.07.002
https://doi.org/10.1016/j.jnca.2017.04.007
https://doi.org/10.1016/j.jnca.2016.02.005
https://doi.org/10.1007/978-3-642-14306-9_46
https://doi.org/10.1002/dac.3996
https://doi.org/10.1016/j.sysarc.2013.11.012
https://doi.org/10.1016/j.jss.2019.110447
https://doi.org/10.4304/jcp.8.4.929-936
https://doi.org/10.4304/jcp.8.4.929-936
https://doi.org/10.1109/ACCESS.2018.2810255
https://doi.org/10.1016/j.procs.2017.12.093
https://doi.org/10.1016/j.procs.2015.04.158
https://doi.org/10.1109/TPDS.2014.2339841
https://doi.org/10.1007/s10586-017-1040-z
https://doi.org/10.1016/j.procs.2015.02.162
https://doi.org/10.1080/03772063.2015.1075911
https://doi.org/10.1109/CLOUD.2012.36
https://doi.org/10.5120/7823-1009
https://doi.org/10.1016/j.simpat.2018.01.004
https://doi.org/10.1080/02564602.2014.890837
https://doi.org/10.1016/j.ejor.2018.02.059
https://doi.org/10.1016/j.ejor.2018.02.059
https://doi.org/10.1016/j.jss.2016.05.011
https://doi.org/10.1109/ICCCN.2013.6614111

Information 2023, 14, 292 31 of 32

43. Reddy, G. A Deadline and Budget Constrained Cost and Time Optimization Algorithm for Cloud Computing. Commun. Comput.
Inf. Sci. 2011, 193, 455–462. https://doi.org/10.1007/978-3-642-22726-4_47.

44. Xin, Y.; Xie, Z.Q.; Yang, J. A load balance oriented cost efficient scheduling method for parallel tasks. J. Netw. Comput. Appl. 2017,
81, 37–46. https://doi.org/10.1016/j.jnea.2016.12.032.

45. Yang, S.J.; Chen, Y.R. Design adaptive task allocation scheduler to improve MapReduce performance in heterogeneous Clouds. J.
Netw. Comput. Appl. 2015, 57, 61–70. https://doi.org/10.1016/j.jnca.2015.07.012.

46. Smara, M.; Aliouat, M.; Pathan, A.S.; Aliouat, Z. Acceptance Test for Fault Detection in Component-based Cloud Computing and
Systems. Future Gener. Comput. Syst. 2016, 70, 74–93. https://doi.org/10.1016/j.future.2016.06.030.

47. Fan, G.; Chen, L.; Yu, H.; Liu, D. Modeling and Analyzing Dynamic Fault-Tolerant Strategy for Deadline Constrained Task
Scheduling in Cloud Computing. IEEE Trans. Syst. Man Cybern. Syst. 2017, 50, 1260–1274. https://doi.org/10.1109/TSMC.2017.2
747146.

48. Zhou, Z.; Abawajy, J.; Chowdhury, M.; Hu, Z.; Li, K.; Cheng, H.; Alelaiwi, A.; Li, F. Minimizing SLA violation and power
consumption in Cloud data centers using adaptive energy-aware algorithms. Future Gener. Comput. Syst. 2017, 86, 836–850.
https://doi.org/10.1016/j.future.2017.07.048.

49. Pradhan, R.; Satapathy, S. Energy-Aware Cloud Task Scheduling algorithm in heterogeneous multi-cloud environment. Intell.
Decis. Technol. 2022, 16, 279–284. https://doi.org/10.3233/IDT-210048.

50. Chen, H.; Liu, G.; Yin, S.; Liu, X.; Qiu, D. ERECT: Energy-Efficient Reactive Scheduling for Real-Time Tasks in Heterogeneous
Virtualized Clouds. J. Comput. Sci. 2017, 28, 416–425. https://doi.org/10.1016/j.jocs.2017.03.017.

51. Duan, H.; Chen, C.; Min, G.; Wu, Y. Energy-aware scheduling of virtual machines in heterogeneous cloud computing systems.
Future Gener. Comput. Syst. 2017, 74, 142–150. https://doi.org/10.1016/j.future.2016.02.016.

52. Shaikh, M.B.; Waghmare Shinde, K.; Borde, S. Challenges of Big Data Processing and Scheduling of Processes Using Various
Hadoop Schedulers: A Survey. Int. J. Multifaceted Multiling. Stud. 2019, III, 1–6.

53. Mohapatra, S.; Mohanty, S.; Rekha, K. Analysis of Different Variants in Round Robin Algorithms for Load Balancing in Cloud
Computing. Int. J. Comput. Appl. 2013, 69, 17–21. https://doi.org/10.5120/12103-8221.

54. Li, R.; Hu, H.; Li, H.; Wu, Y.; Yang, J. MapReduce Parallel Programming Model: A State-of-the-Art Survey. Int. J. Parallel Program.
2016, 44, 832–866. https://doi.org/10.1007/s10766-015-0395-0.

55. Shyam, G.K.; Manvi, S.S. Resource allocation in cloud computing using agents. In Proceedings of the 2015 IEEE International
Advance Computing Conference (IACC), Banglore, India, 12–13 June 2015; pp. 458–463. https://doi.org/10.1109/IADCC.2015.7
154750.

56. Zhao, Q.; Xiong, C.; Yu, C.; Zhang, C.; Zhao, X. A new energy-aware task scheduling method for data-intensive applications in
the cloud. J. Netw. Comput. Appl. 2016, 59, 14–27. https://doi.org/10.1016/j.jnca.2015.05.001.

57. Dubey, K.; Kumar, M.; Chandra, M.A. A priority based job scheduling algorithm using IBA and EASY algorithm for cloud
metaschedular. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications,
Ghaziabad, India, 19–20 March 2015; pp. 66–70. https://doi.org/10.1109/ICACEA.2015.7164647.

58. Nasr, A.A.; El-Bahnasawy, N.A.; Attiya, G.; El-Sayed, A. A new online scheduling approach for enhancing QOS in cloud. Future
Comput. Inform. J. 2018, 3, 424–435. https://doi.org/10.1016/j.fcij.2018.11.005.

59. Reddy, G.; Kumar, S. MACO-MOTS: Modified Ant Colony Optimization for Multi Objective Task Scheduling in Cloud
Environment. Int. J. Intell. Syst. Appl. 2019, 11, 73–79. https://doi.org/10.5815/ijisa.2019.01.08.

60. Biswas, D.; Samsuddoha, M.; Asif, M.R.A.; Ahmed, M.M. Optimized Round Robin Scheduling Algorithm Using Dynamic Time
Quantum Approach in Cloud Computing Environment. Int. J. Intell. Syst. Appl. 2023, 15, 22–34. https://doi.org/10.5815/ijisa.20
23.01.03.

61. Soltani, N.; Barekatain, B.; Soleimani Neysiani, B. MTC: Minimizing Time and Cost of Cloud Task Scheduling based on Customers
and Providers Needs using Genetic Algorithm. Int. J. Intell. Syst. Appl. 2021, 13, 38–51. https://doi.org/10.5815/ijisa.2021.02.03.

62. Mohseni, Z.; Kiani, V.; Rahmani, A. A Task Scheduling Model for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time
Systems. Int. J. Inf. Technol. Comput. Sci. 2019, 11, 1–13. https://doi.org/10.5815/ijitcs.2019.01.01.

63. Zaharia, M.; Borthakur, D.; Sen Sarma, J.; Elmeleegy, K.; Shenker, S.; Stoica, I. Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling; EuroSys’10; Association for Computing Machinery: New York, NY, USA, 2010;
pp. 265–278. https://doi.org/10.1145/1755913.1755940.

64. He, C.; Lu, Y.; Swanson, D. Matchmaking: A New MapReduce Scheduling Technique. In Proceedings of the 2011 IEEE
Third International Conference on Cloud Computing Technology and Science, Athens, Greece, 29 November–1 December 2011;
pp. 40–47. https://doi.org/10.1109/CloudCom.2011.16.

65. Kosar, T.; Balman, M. A new paradigm: Data-aware scheduling in grid computing. Future Gener. Comput. Syst. 2009, 25, 406–413.
https://doi.org/10.1016/j.future.2008.09.006.

66. Vobugari, S.; Somayajulu, D.V.L.N.; Subaraya, B.M. Dynamic Replication Algorithm for Data Replication to Improve System
Availability: A Performance Engineering Approach. IETE J. Res. 2015, 61, 132–141. https://doi.org/10.1080/03772063.2014.988757.

67. Bouhouch, L.; Zbakh, M.; Tadonki, C. A Big Data Placement Strategy in Geographically Distributed Datacenters. In Proceedings
of the 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications
(CloudTech), Marrakesh, Morocco, 24–26 November 2020; pp. 1–9. https://doi.org/10.1109/CloudTech49835.2020.9365881.

https://doi.org/10.1007/978-3-642-22726-4_47
https://doi.org/10.1016/j.jnea.2016.12.032
https://doi.org/10.1016/j.jnca.2015.07.012
https://doi.org/10.1016/j.future.2016.06.030
https://doi.org/10.1109/TSMC.2017.2747146
https://doi.org/10.1109/TSMC.2017.2747146
https://doi.org/10.1016/j.future.2017.07.048
https://doi.org/10.3233/IDT-210048
https://doi.org/10.1016/j.jocs.2017.03.017
https://doi.org/10.1016/j.future.2016.02.016
https://doi.org/10.5120/12103-8221
https://doi.org/10.1007/s10766-015-0395-0
https://doi.org/10.1109/IADCC.2015.7154750
https://doi.org/10.1109/IADCC.2015.7154750
https://doi.org/10.1016/j.jnca.2015.05.001
https://doi.org/10.1109/ICACEA.2015.7164647
https://doi.org/10.1016/j.fcij.2018.11.005
https://doi.org/10.5815/ijisa.2019.01.08
https://doi.org/10.5815/ijisa.2023.01.03
https://doi.org/10.5815/ijisa.2023.01.03
https://doi.org/10.5815/ijisa.2021.02.03
https://doi.org/10.5815/ijitcs.2019.01.01
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1109/CloudCom.2011.16
https://doi.org/10.1016/j.future.2008.09.006
https://doi.org/10.1080/03772063.2014.988757
https://doi.org/10.1109/CloudTech49835.2020.9365881

Information 2023, 14, 292 32 of 32

68. Bouhouch, L.; Zbakh, M.; Tadonki, C. Dynamic data replication and placement strategy in geographically distributed data centers.
Concurr. Comput. Pract. Exp. 2022, early view. https://doi.org/10.1002/cpe.6858.

69. Mohamed, A.; Najafabadi, M.K.; Wah, Y.B.; Zaman, E.A.K.; Maskat, R. The state of the art and taxonomy of big data analytics:
view from new big data framework. Artif. Intell. Rev. 2020, 53, 989–1037. https://doi.org/10.1007/s10462-019-09685-9.

70. Samadi, Y.; Zbakh, M.; Tadonki, C. DT-MG: many-to-one matching game for tasks scheduling towards resources optimization in
cloud computing. Int. J. Comput. Appl. 2021, 43, 233–245. https://doi.org/10.1080/1206212X.2018.1519630.

71. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R. CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50.
https://doi.org/10.1002/spe.995.

72. Calheiros, R.; Ranjan, R.; De Rose, C.; Buyya, R. CloudSim: A Novel Framework for Modeling and Simulation of Cloud
Computing Infrastructures and Services. arXiv 2009, arXiv:0903.2525.

73. Bouhouch, L.; Zbakh, M.; Tadonki, C. Data Migration: Cloudsim Extension. In Proceedings of the ICBDR 2019: 2019 the
3rd International Conference on Big Data Research, Cergy-Pontoise, France, 20–22 November 2019; pp. 177–181. https:
//doi.org/10.1145/3372454.3372472.

74. Niznik, C.A. Min-max vs. max-min flow control algorithms for optimal computer network capacity assignment. J. Comput. Appl.
Math. 1984, 11, 209–224. https://doi.org/10.1016/0377-0427(84)90021-9.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/cpe.6858
https://doi.org/10.1007/s10462-019-09685-9
https://doi.org/10.1080/1206212X.2018.1519630
https://doi.org/10.1002/spe.995
https://doi.org/10.1145/3372454.3372472
https://doi.org/10.1145/3372454.3372472
https://doi.org/10.1016/0377-0427(84)90021-9

	Introduction
	Related Work
	Common Used Metrics
	Single-Objective Scheduling Techniques
	Multi-Objective Scheduling Techniques
	Our Motivation

	System Model and Problem Formulation
	System Model
	Problem Formulation
	Objective Function

	Proposed Approach
	Response Time Matrix
	Fitness
	Migration Time
	Data Access Time
	Delay Time

	Task to Machine Preference List
	Tasks Selection

	Simulation Setup and Result Analysis
	Simulation Setup
	Performance Metrics
	Result Analysis
	Experiment 1: Task Variation
	Experiment 2: Machine Variation
	Experiment 3: Datasets Variation
	Experiment 4: Tasks Arrive in 100 Time-Slot

	Conclusions
	References

