

May 24, 2023, Saint-Gallen, Switherland

First steps of the melting of an amorphous polymer through a hot-end of a material extrusion additive manufacturing

Franck Pigeonneau¹, Sarah Marion², Lucas Sardo³ & Thomas Joffre⁴ ¹Mines Paris | PSL Univ. - Centre of Materials Forming, CNRS UMR 7635, Sophia Antipolis, France

²Mines Saint-Etienne, Univ Lyon, CNRS UMR 5307 LGF, Centre SMS, Saint-Etienne, France ³Sciences Computers Consultants, Saint-Etienne, France

⁴IPC Innovation Plasturgie Composites, Bellignat, France

Material extrusion

2

guide heat sink fan heatbreak heat block 10.0 nozzle

Figure 1: Extruder E3D-V6 according to E3D-online¹.

¹E3D-online: E3D Help Centre, https://e3d-online.zendesk.com/hc/en-us, 2021.

2

Material extrusion

Figure 1: Extruder E3D-V6 according to E3D-online¹ and presence of air gap.

¹E3D-online: E3D Help Centre (see n. 1).

2

Material extrusion

Figure 1: Extruder E3D-V6 according to E3D-online¹.

How does the polymer melt?

¹E3D-online: E3D Help Centre (see n. 1).

Material extrusion

3

Figure 2: Melting according to Bellini et al.².

²A. Bellini/S. Güçeri/M. Bertoldi: Liquefier dynamics in fused deposition, in: J. Manuf. Sci. Eng. 126.2 (2004), pp. 237–246.

MINES PARIS | PSL 🕅

4

Material extrusion

Figure 3: Melting according to Osswald et al.³.

³T. A. Osswald/J. Puentes/J. Kattinger: Fused filament fabrication melting model, in: Addit. Manuf. 22 (2018), pp. 51–59.

4

Material extrusion

Figure 3: Melting according to Osswald et al.³.

Numerical computation of the melting of polymer in the extruder

³Osswald/Puentes/Kattinger: Fused filament fabrication melting model (see n. 3).

Figure 4: Channel with dimensions (mm) used in the numerical computation.

Main assumptions

- Fluid dynamics & heat transfer are accounted for in the heatblock channel.
- Polymer considered as solid at the entrance of the channel.
- Two-phase dynamics is considered using a single fluid representation.
- Interface between the two phases is assumed sharp and implicitly tracked by a level-set method.
- The two phases are incompressible.
 - Polymer viscosity follows a Carreau-Yasuda's law.

Table 1: Characteristic variables used in the normalisation.

Table 2: Dimensionless numbers, names, definitions.

Reynolds	capillary	Péclet	Brinkman	Weissenberg
Re	Ca	\mathbf{Pe}	Br	Wi
$\rho_P UD$	$U\eta_{p,0}$	UD	$\eta_{P,0}U^2$	λU
$\eta_{P,0}$	γ	ap	$k_p(T_{\infty}-T_0)$	D

Governing equations

$$\boldsymbol{\nabla}\cdot \mathbf{u} = \mathbf{0}, \tag{4}$$

$$\operatorname{Re}\rho\frac{D\mathbf{u}}{Dt} = -\boldsymbol{\nabla}P + \boldsymbol{\nabla}\cdot[2\eta(\dot{\gamma},\theta,\varphi)\dot{\boldsymbol{\epsilon}}] + \operatorname{Ca}^{-1}\kappa\|\boldsymbol{\nabla}\varphi\|\delta(\varphi)\mathbf{n}_{\varphi}, \qquad (5)$$

$$\operatorname{Pe} \rho C_{\rho} \frac{D\theta}{Dt} = \boldsymbol{\nabla} \cdot [k \boldsymbol{\nabla} \theta] + \operatorname{Br} \eta(\dot{\gamma}, \theta, \varphi) \dot{\gamma}^{2}, \qquad (6)$$

$$\frac{D\varphi}{Dt} = 0. \tag{7}$$

7

Governing equations

$$\boldsymbol{\nabla}\cdot \mathbf{u} = 0, \tag{4}$$

$$\operatorname{Re} \rho \frac{D\mathbf{u}}{Dt} = -\nabla P + \nabla \cdot \left[2\eta(\dot{\gamma}, \theta, \varphi)\dot{\boldsymbol{\epsilon}}\right] + \operatorname{Ca}^{-1} \kappa \|\nabla\varphi\|\delta(\varphi)\mathbf{n}_{\varphi}, \tag{5}$$

$$\operatorname{Pe} \rho C_{\rho} \frac{D\theta}{Dt} = \boldsymbol{\nabla} \cdot [k \boldsymbol{\nabla} \theta] + \operatorname{Br} \eta(\dot{\gamma}, \theta, \varphi) \dot{\gamma}^{2}, \qquad (6)$$

$$\frac{D\varphi}{Dt} = 0. \tag{7}$$

Surface operators at the interface

$$\mathbf{n}_{\varphi} = \frac{\boldsymbol{\nabla}\varphi}{\|\boldsymbol{\nabla}\varphi\|},\tag{8}$$

$$\kappa = -\nabla_{S} \cdot \mathbf{n}_{\varphi}. \tag{9}$$

Governing equations

$$\boldsymbol{\nabla}\cdot \mathbf{u} = 0, \tag{4}$$

$$\operatorname{Re} \rho \frac{D\mathbf{u}}{Dt} = -\nabla P + \nabla \cdot [2\eta(\dot{\gamma}, \theta, \varphi)\dot{\boldsymbol{\epsilon}}] + \operatorname{Ca}^{-1} \kappa \|\nabla \varphi\|\delta(\varphi)\mathbf{n}_{\varphi}, \qquad (5)$$

$$\operatorname{Pe} \rho C_{\rho} \frac{D\theta}{Dt} = \boldsymbol{\nabla} \cdot [k \boldsymbol{\nabla} \theta] + \operatorname{Br} \eta(\dot{\gamma}, \theta, \varphi) \dot{\gamma}^{2}, \qquad (6)$$

$$\frac{D\varphi}{Dt} = 0. \tag{7}$$

Surface operators at the interface

$$\mathbf{n}_{\varphi} = \frac{\nabla \varphi}{\|\nabla \varphi\|}, \qquad (8)$$

$$\kappa = -\boldsymbol{\nabla}_{\mathcal{S}} \cdot \mathbf{n}_{\varphi}. \tag{9}$$

Average properties

$$\rho(\varphi) = H(\varphi) + [1 - H(\varphi)] \rho_{\text{air}}, \qquad (10)$$

$$\frac{1}{k(\varphi)} = H(\varphi) + \frac{1 - H(\varphi)}{k_{\text{air}}}. \qquad (11)$$
Cernef

7

Cem

8

1. Problem statement

Figure 5: Boundary conditions on the channel with the initial position of the polymer and air.

2. Numerical implementation

- Finite element method using our own C++ library, CIMLIB_CFD.
- Implicit Euler scheme is implemented to describe time derivative.
- ▶ \mathbb{P}_1 -bubble/ \mathbb{P}_1 element to satisfy the inf sup condition.
- Equations on θ and φ are stabilised using Streamline Upwind/Petrov-Galerkin (SUPG) method.
- Eikonal property of φ , i.e., $\|\nabla \varphi\| = 1$ is conserved using a direct re-initialisation scheme⁴.

PSI 🕅

9

► An adaptive anisotropic mesh is used⁵.

⁴M. Shakoor et al.: An efficient and parallel level set reinitialization method - Application to micromechanics and microstructural evolutions, in: Appl. Math. Modell. 39.23 (2015), pp. 7291–7302. ⁵G. Jannoun et al.: Anisotropic meshing with time-stepping control for unsteady convection-dominated problems, in: Appl. Math. Modell. 39.7 (2015), pp. 1899–1916.

3. Materials and working conditions

Table 3: Parameters used in Carreau-Yasuda and Arrhenius laws for the ABS.

Figure 6: $\eta(\dot{\gamma}, T)/a_T$ vs. $\dot{\gamma}a_T$ for the ABS at 4 T.

| PSL®

3. Materials and working conditions

Table 4: Thermal properties for the ABS⁶ and air⁷.

PSI 🕅

11

ρ	C_{ρ}	k			
kg/m^3	$ m Jkg^{-1}K^{-1}$	${ m W}{ m m}^{-1}{ m K}^{-1}$			
	ABS				
1150	2100	0.21			
Air, $T = T_{ext}$					
0.701	1034.78	0.0399			

⁶M. E. Mackay et al.: The performance of the hot end in a plasticating 3D printer, in: J. Rheol. 61.2 (2017), pp. 229–236.

⁷K. Kadoya/N. Matsunaga/A. Nagashima: Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase, in: J. Phys. Chem. Ref. Data 14.4 (1985), pp. 947–970.

3. Materials and working conditions

Table 5: Definitions of working conditions.

Case	U (m min ⁻¹)	$U_{ m in}~({ m mms}^{-1})$	T_0 (°C)	T_{∞} (°C)
1	1	0.87		
2	3	2.61	24	230
3	6	5.22		

⁶Mackay et al.: The performance of the hot end in a plasticating 3D printer (see n. 6). ⁷Kadoya/Matsunaga/Nagashima: Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase (see n. 7).

Table 4: Thermal properties for the ABS^6 and air^7 .

Triple line location and T

Figure 7: z_{cl} vs. t (s) for the three cases.

MINES PARIS

The feeding force is numerically evaluated using the Berker's theorem⁸: Theorem

For a velocity field with no-slip condition on a wall, the tension on the wall is given by

$$\mathbf{T} = \left(P - \frac{4\eta}{3} \nabla \cdot \mathbf{u}\right) \mathbf{n} + 2\eta \mathbf{n} \times \boldsymbol{\omega},\tag{12}$$

with

$$\boldsymbol{\omega} = \frac{1}{2} \boldsymbol{\nabla} \times \mathbf{u}. \tag{13}$$

Proof.

Corollary of the Stokes theorem.

► Vorticity is determined using Paraview.

⁸R. Berker: Intégration des équations du mouvement d'un fluide visqueux incompressible, in: Handbuch der Physik, Berlin 1963.

Figure 8: Feeding force vs. *t* for $U=1 \text{ m min}^{-1}$.

MINES PARIS

Figure 8: Feeding force vs. *t* for $U=1 \text{ m min}^{-1}$.

15

Figure 8: Feeding force vs. t for $U=1 \text{ m min}^{-1}$.

MINES PARIS

15

Figure 8: Feeding force vs. t for $U=1 \text{ m min}^{-1}$.

Figure 9: Feeding force vs. t for $U=6 \text{ m min}^{-1}$.

MINES PARIS

Figure 9: Feeding force vs. *t* for $U=6 \text{ m min}^{-1}$.

MINES PARIS

Figure 9: Feeding force vs. *t* for $U=6 \text{ m min}^{-1}$.

4. Results t=6 s 5.0e+02 480 80 460 440 60 -420 T (K) 400 (N) 40 -380 360 - 340

Figure 9: Feeding force vs. *t* for $U=6 \text{ m min}^{-1}$.

PSL

16

MINES PARIS

MINES PARIS | PSL 8

4. Results

Figure 9: Feeding force vs. t for $U=6 \text{ m min}^{-1}$.

Figure 10: F (N) vs. U_{in} (mm min⁻¹) for T_{∞} =230 °C and comparison with Serdeczny et al.⁹ at T_{∞} =225 °C.

⁹M. P. Serdeczny et al.: Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing, in: Addit. Manuf. 36 (2020), p. 101454.

5. Synthesis

MINES PARIS | PSL₩ 18

- Numerical investigations focus on the melting in a particular extruder (E3D-V6).
- ► Two-phase flow accurately described using a level-set method.
- Air gap persists at high feeding velocity.
- ▶ Dynamics of the rising of the contact line in agreement with Hong et al.¹⁰.
- ► At small feeding rate, polymer fully melted in agreement with Bellini et al. (2004).
- At large feeding rate, polymer partially melted in agreement with Osswald et al. (2008).
- Details can be found in Marion et al.¹¹.

¹⁰Y. Hong et al.: In-situ observation of the extrusion processes of Acrylonitrile Butadiene Styrene and Polylactic Acid for material extrusion additive manufacturing, in: Addit. Manuf. 49 (2022), p. 102507. ¹¹S. Marion et al.: First steps of the melting of an amorphous polymer through a hot-end in Fused Filament Fabrication, in: Addif. Manuf. 65 (2023), p. 103435.

Acknowledgements

Work supported by the Carnot Institutes M.I.N.E.S and ingenierie@Lyon through the CARATS project funded by the Programme des Investissements d'Avenir and the Agence Nationale de la Recherche, France

Acknowledgements

Work supported by the Carnot Institutes M.I.N.E.S and ingenierie@Lyon through the CARATS project funded by the Programme des Investissements d'Avenir and the Agence Nationale de la Recherche, France

Sarah Marion Lucas Sardo Thomas Joffre

Acknowledgements

Work supported by the Carnot Institutes M.I.N.E.S and ingenierie@Lyon through the CARATS project funded by the Programme des Investissements d'Avenir and the Agence Nationale de la Recherche, France

Sarah Marion Lucas Sardo Thomas Joffre **Thank you for your attention!**

Contact: franck.pigeonneau@minesparis.psl.eu

