
HAL Id: hal-04080704
https://minesparis-psl.hal.science/hal-04080704

Preprint submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Primal Decomposition Schemes for Large-Scale
Infrastructure Networks

Alexander Engelmann, Sungho Shin, François Pacaud, Victor Zavala

To cite this version:
Alexander Engelmann, Sungho Shin, François Pacaud, Victor Zavala. Scalable Primal Decomposition
Schemes for Large-Scale Infrastructure Networks. 2023. �hal-04080704�

https://minesparis-psl.hal.science/hal-04080704
https://hal.archives-ouvertes.fr

Scalable Primal Decomposition Schemes for
Large-Scale Infrastructure Networks

Alexander Engelmann, Sungho Shin,
François Pacaud, Victor M. Zavala*

December 22, 2022

The real-time operation of large-scale infrastructure networks requires scal-
able optimization capabilities. Decomposition schemes can help achieve scal-
ability; classical decomposition approaches such as the alternating direction
method of multipliers (ADMM) and distributed Newtons schemes, however,
often either suffer from slow convergence or might require high degrees of
communication. In this work, we present new primal decomposition schemes
for solving large-scale, strongly convex QPs. These approaches have global
convergence guarantees and require limited communication. We benchmark
their performance against the off-the-shelf interior-point method Ipopt and
against ADMM on infrastructure networks that contain up to 300,000 deci-
sion variables and constraints. Overall, we find that the proposed approaches
solve problems as fast as Ipopt but with reduced communication. Moreover,
we find that the proposed schemes achieve higher accuracy than ADMM
approaches.

1. Introduction

The operation of infrastructure networks such as power systems, district heating grids
or gas networks is challenging. In many cases, these networks are large and composed
of many complex subsystems such as lower-level networks or buildings. Operation is
often based on numerical optimization due to its flexibility and recent advances in solver
development, which allows to solve large-scale problems quickly and to a high accuracy.
For large networks, however, a centralized solution is often not desirable since, a), the

*AE is with TU Dortmund University, Dortmund, Germany (alexander.engelmann@ieee.org). SS is with
Argonne National Laboratory, Lemont, IL, USA (sshin@anl.gov). FP is with Centre Mathématiques
et Systèmes, Mines Paris-PSL, Paris, France (francois.pacaud@minesparis.psl.eu). VZ is with Uni-
versity of Wisconsin-Madison, Madison, WI, USA and Argonne National Laboratory, Lemont, IL,
USA (victor.zavala@wisc.edu).

1

problem becomes computationally challenging, even with state-of-the-art solvers; b),
information collection in a central entity should be avoided due to confidentiality and
privacy concerns, and, c), the responsibility for operation and updates in modeling should
stay mainly in the subsystems.
One line of research addresses the above challenges via aggregation. Here, the idea is

to simplify the subproblems by projecting the constraint set on the coupling variables
of the infrastructure network. Examples for this can be found for power systems [1,
2]. A drawback of this approach is a loss of optimality. Moreover, aggregation is often
not straightforward, feasibility is hard to guarantee and disaggregation requires solving
additional local optimization problems.
A second line of research is based on distributed optimization. Prominent approaches

are duality-based first-order algorithms such as Lagrangian dual decomposition and the
Alternating Direction Method of Multipliers (ADMM) [3–5]. Application examples range
from the operation of power systems [6, 7], over gas networks [8], district heating systems
[9, 10], to water networks [11]. With their at most linear rate of convergence, these
approaches often require many iterations to converge even for a modest solution quality.
This is often prohibitive for real-time implementation.
Distributed second-order methods exhibit faster convergence. Here, classical ap-

proaches aim at decomposing the block-structure of the Karush-Kuhn-Tucker (KKT)
system within interior-point algorithms [12, 13] or sequential quadratic programming
[14]. Alternative second-order methods based on augmented Lagrangians can be found
in [15, 16]. As a drawback, these approaches typically require an expensive central
coordination, although it is possible to partially alleviate the computational load by de-
centralizing the Newton-steps [17–19]. Moreover, ensuring global convergence is difficult
in a distributed setting, since this requires monitoring a merit function centrally.
Primal decomposition approaches [20–22] come with the advantage of achieving a high

degree of feasibility in a small number of iterations. Here, the idea is to partition the
problem in a hierarchical fashion, i.e. to construct lower-level problems coordinated by
one upper-level problem, where the upper-level problem considers the lower-level prob-
lems by their optimal value functions. Primal decomposition has been very successful in
solving large-scale problems from chemical engineering [23, 24] and some of the largest
Quadratic Programs (QPs) and Nonlinear Programs (NLPs) from power systems [25–
27]. Moreover, these approaches allow to use specialized, domain-specific solvers to solve
the subproblems and the master problem efficiently [21].
In this work, we propose two primal decomposition schemes for solving large-scale

strongly convex QPs, with global convergence guarantees. Both methods rely respec-
tively on augmented Lagrangians and exact ℓ1-penalties for ensuring feasibility in the
subproblems. Whereas similar ℓ1-penalty based approaches have been proposed in pre-
vious works [21], the augmented-Lagrangian framework is new to the best of our knowl-
edge. We show that the augmented Lagrangian formulation exhibits improved perfor-
mance compared to the ℓ1 formulation. Moreover, we demonstrate that the algorithms
are faster than off-the-shelf interior-point solvers. We benchmark our algorithms against
a distributed ADMM and the nonlinear solver Ipopt with sparse and parallel linear alge-
bra. As benchmarks, we consider the operation of HVAC systems in a city district with

2

a variable number of buildings and with up to 300, 000 decision variables and inequality
constraints.

Notation

Given A ∈ Rm×n, [A]j denotes the jth row of A and nr(A)
.
= m corresponds to the

number of rows of A. The Lagrange multiplier λ ∈ Rng associated to the constraint
function g : Rnx → Rng is written as g(x) = 0 | λ. Given a vector v ∈ Rn, D = diag(v) ∈
Rn×n is a matrix with the elements of v on the main diagonal. For a tuple of matrices
(A,B), blkdiag(A,B) denotes their block-diagonal concatenation.

2. Problem Formulation

Many infrastructure network problems can be formulated as strongly convex QPs over
a set of subsystems S = {1, . . . , S},

min
{xi}i∈S ,y

∑
i∈S

1

2

[
xi
y

]⊤[
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

] [
xi
y

]
+

[
hxi
hyi

]⊤[
xi
y

]
(1a)

subject to
[
Ax

i Ay
i

] [
x⊤i y⊤

]⊤ − bi = 0, i ∈ S, (1b)[
Bx

i By
i

] [
x⊤i y⊤

]⊤ − di ≤ 0, i ∈ S, (1c)

Ayy − by = 0, Byy − dy ≤ 0. (1d)

Here, the global decision variable vector x = [x1, . . . , xS]
⊤ is composed of local decision

variables xi ∈ Rnxi , where each xi belongs to one subsystem i ∈ S. The decision
variables y ∈ Rny are “global” in the sense that they belong to the interconnecting
infrastructure network, described by the constraints (1d). Each coefficient matrix/vector
in the objective (1a) and the constraints (1b), (1c) belongs to one i ∈ S.

3. Primal Decomposition Schemes

In contrast to duality-based techniques such as ADMM or dual decomposition, primal
decomposition decomposes entirely in the primal space, i.e. no dual variables are updated
in the solution process. The main idea here is to replace the subproblems in (1) by their
optimal value functions. Specifically, one reformulates (1) as

min
y

∑
i∈S

ϕi(y), s.t. Ayy − by = 0, Byy − dy ≤ 0, (2)

where for all i ∈ S, the value function ϕi is defined as

ϕi(y)
.
=min

xi

1

2

[
xi
y

]⊤[
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

][
xi
y

]
+

[
hxi
hyi

]⊤[
xi
y

]
(3a)

subject to
[
Ax

i Ay
i

] [
x⊤i y⊤

]⊤ − bi = 0, i ∈ S, (3b)[
Bx

i By
i

] [
x⊤i y⊤

]⊤ − di ≤ 0, i ∈ S. (3c)

3

The key idea is to apply standard algorithms for solving (2) by optimizing only with
respect to the coupling variables y. Doing so can lead to enhanced robustness, as the
complexity of the subproblems is not exposed to the algorithm solving (2).
Algorithms for solving (2) typically require first-order and possibly second-order deriva-

tives of all {ϕi}i∈S . Since all {ϕi}i∈S are non-smooth because of the inequality con-
straints, one typically relies on smooth reformulations. Inspired by interior-point meth-
ods [21], we introduce log-barrier functions and slack variables si ∈ Rnii , which approx-
imate (3) by

Φδ
i (y)

.
= min

xi,si

1

2

[
xi
y

]⊤ [
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

] [
xi
y

]
+

[
hxi
hyi

]⊤ [
xi
y

]
−δ1⊤ ln(s) (4a)

subject to
[
Ax

i Ay
i

] [
x⊤i y⊤

]⊤ − bi = 0, i ∈ S, (4b)[
Bx

i By
i

] [
x⊤i y⊤

]⊤ − di + si = 0, i ∈ S, (4c)

where δ ∈ R+ is a barrier parameter, 1
.
= [1, . . . , 1]⊤, and the ln(·) is evaluated

component-wise. Note that limδ→0Φ
δ
i (y) = ϕi(y), and that Φδ

i is smooth1. A basic
primal decomposition strategy with smoothing is summarized in Algorithm 1.

Algorithm 1: A basic primal decomposition scheme.

Initialize y0, δ0.
while not terminated do

1) Solve (2) for ϕi ≡ Φδ
i with a NLP solver; in case the NLP solver calls

(∇yΦ
δ
i ,∇2

yΦ
δ
i), compute them locally for all i ∈ S.

3) Decrease δ.
end

Return yk, {xki }i∈S .

Dealing With Infeasibility

An issue in Algorithm 1 is that the subproblems (3) may be infeasible for a given y.
One way of circumventing this is to introduce auxiliary variables zi ∈ Rny and to use
relaxation techniques either based on augmented Lagrangians or on exact ℓ1-penalties.
Consider a set of auxiliary variables {zi}i∈S and introduce additional constraints zi = y

1Under standard regularity assumptions [22, A1-C1].

4

for all i ∈ S. Then, we reformulate (4) equivalently as 2

Φδ
i (y) = min

xi,si,zi

1

2

[
xi
y

]⊤ [
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

] [
xi
y

]
+

[
hxi
hyi

]⊤ [
xi
y

]
−δ1⊤ ln(s) (5a)

subject to
[
Ax

i Ay
i

] [
x⊤i z⊤i

]⊤ − bi = 0, i ∈ S, (5b)[
Bx

i By
i

] [
x⊤i z⊤i

]⊤ − di + si = 0, i ∈ S, (5c)

zi = y, i ∈ S, (5d)

which can still be infeasible, but paves the way for augmented Lagrangian and exact ℓ1
relaxations.

Augmented Lagrangian Relaxation

A simple way of making (5) feasible for all y is to relax (5d) via a quadratic penalty [21].
However, in this case, large penalty parameters might lead to numerical difficulties and
feasibility can in general not be guaranteed for a finite penalty parameter. Hence, we
use an Augmented Lagrangian (AL) approach to solve (2) for late outer iterations with a
constant barrier parameter δ. Assigning the Lagrange multiplier λi to (5d), we relax (5d)
in an Augmented Lagrangian fashion by adding the terms λk⊤i (y − zi) + ρ

2∥y − zi∥
2
2 to

the objective:

Φδ,ρ
i (y, λki)

.
=min
xi,si,zi

1

2

xiy
zi

⊤ Hxx
i Hxy

i 0

Hxy⊤
i Hyy

i + ρI −ρI
0 −ρI ρI

xiy
zi

+

 hxi
hyi + λki
−λki

⊤ xiy
zi

− δ1⊤ ln(si)

subject to
[
Ax

i Ay
i

] [
x⊤i z⊤i

]⊤ − bi = 0, | γi[
Bx

i By
i

] [
x⊤i z⊤i

]⊤
+ si − di = 0, | µi.

(6)

Here, (γi, µi) are Lagrange multipliers corresponding to the constraints in the same line.
Note that the solution of (5) can be forced to be arbitrarily close to that of (6) by
letting ρ→∞, if (5) is feasible for y. In addition, if one has a good Lagrange multiplier
estimate λk ≈ λ⋆, (5) and (6) are equivalent for a finite ρ < ∞ [28, Sec. 3.2.1], [29,
Thm. 17.5]. We will exploit this fact in the following.
Primal decomposition based on the augmented Lagrangian works as follows: In phase 1,

the barrier parameter δ and the penalty parameter ρ are increased/decreased simulta-
neously. In phase 2, when δ/ρ are sufficiently small/large, both are held constant and
a standard augmented Lagrangian algorithm is applied to the resulting optimization
problem to obtain feasibility in (5d). We use the standard first-order update rule from
augmented Lagrangian algorithms [29, Chap. 17.3]

λk+1
i = λki + ρ(yk − zki). (7)

The resulting scheme is summarized in Algorithm 2.

2Observe that we have replaced y by zi in the constraints here but not in the objective. Exchanging y
in the objective is possible but might lead to a different numerical behavior.

5

Algorithm 2: AL-based primal decomposition.

Initialize y0, δ0, ρ0; λi = 0, i ∈ S.
while phase 1 do

1) Solve (2) for ϕi ≡ Φδ,ρ
i with a NLP solver; in case the NLP solver calls

(∇yΦ
δ,ρ
i ,∇2

yyΦ
δ,ρ
i), compute them locally for all i ∈ S.

3) Decrease δ, increase ρ.
end
while phase 2 do

1) Solve (2) as in phase 1.
2) Update λki according to (7).

end

Return yk, {xki }i∈S .

ℓ1-penalty relaxation

A second variant to ensure feasibility is to relax (5d) via an ℓ1-penalty function. This
has the advantage that it is exact also for a finite penalty parameter λ̄ ∈ R+ without
the need for Lagrange-multiplier estimation. By doing so, the objective becomes non-
smooth. However, the non-smoothness can be eliminated by using an elastic relaxation
[29, p.535]: the ℓ1-penalty miny,zi ∥y − zi∥1 is reformulated by introducing two non-
negative auxiliary variables vi, wi ∈ Rny

+ as miny,zi,vi,wi vi+wi subject to y−zi = vi−wi.
The corresponding reformulation of (5) reads

Φδ,λ̄
i (y)

.
= min

xi,si,zi
vi,wi

1

2

[
xi
zi

]⊤[
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

][
xi
zi

]
+

[
hxi
hyi

]⊤[
xi
zi

]
+λ̄1⊤(vi + wi)− δ(1⊤ ln(si)+1⊤ ln(vi)+1⊤ ln(wi)) (8)

subject to
[
Ax

i Ay
i

] [
x⊤i z⊤i

]⊤ − bi = 0, | γi,[
Bx

i By
i

] [
x⊤i z⊤i

]⊤
+ si − di = 0, | µi,

y − zi − vi + wi = 0, | χi,

where the bounds (vi, wi) ≥ 0 are replaced by log-barrier functions. If one chooses λ̄ <∞
large enough, (5) and (8) are equivalent [29, Thm 17.3].

Primal decomposition based on the ℓ1-penalty solves (2) using Φδ,λ̄
i with a fixed λ̄ larger

than a certain threshold and decreases the barrier parameter δ during the iterations. The
overall algorithm is summarized in Algorithm 3.

6

Algorithm 3: ℓ1-based primal decomposition.

Initialize y0, δ0, λ̄ large enough.
while not terminated do

1) Solve (2) for ϕi ≡ Φδ,λ̄
i with a NLP solver; in case the NLP solver calls

(∇yϕi,∇2
yyϕi), compute them locally for all i ∈ S.

3) Decrease δ.
end

Return yk, {xki }i∈S .

4. Computing sensitivities

Next, we show how to compute ∇yΦ
δ
i and ∇2

yyΦ
δ
i under standard regularity assumptions

based on the implicit function theorem [22]. Reformulate (4) by

Φδ
i (y) = min

xi,si
f δi (xi, si; y) (9)

subject to gi(xi; y) = 0 | γi, hi(xi; y) + si = 0 | µi,

where f δi is defined by (4a), and gi and hi are defined by (4b), (4c). Define the Lagrangian
to (9),

Lδ
i (xi, si, γi, µi; y)

.
= f δi (xi, si; y) + γ⊤i gi(xi; y) + µ⊤i (hi(xi; y) + si).

Assume that (9) is feasible for a given y and that regularity conditions such as LICQ,
SOSC and SCC hold, cf. [22, Ass. 1-4]. Then, the KKT conditions to (9) form an implicit
function in form of F δ

i (x
⋆
i , s

⋆
i , γ

⋆
i , µ

⋆
i ; y) = 0, where the superscript (·)⋆ indicates a KKT

stationary point. Thus, by the implicit function theorem, there exist a neighborhood
around y for which there exists functions p⋆i (y)

.
= (x⋆i (y), s

⋆
i (y), γ

⋆
i (y), µ

⋆
i (y)) such that

F δ
i (p

⋆
i (y); y) = 0. Hence, we can rewrite (9) as Φδ

i (y) = fi(x
⋆
i (y), s

⋆
i (y); y) = Li(p

⋆
i (y); y)

since p⋆i (y) is feasible.
Applying the total derivative and the chain rule yields

∇yΦ
δ
i (y) =∇yL

δ
i (p

⋆
i (y); y)+∇p⋆i

Lδ
i (p

⋆
i (y); y)∇yp

⋆
i (y).

By the KKT conditions, we have that ∇p⋆i
Lδ
i (p

⋆
i (y); y) = 0 and thus

∇yΦ
δ
i (y) =∇yL

δ
i (p

⋆
i (y); y). (10)

Again by the total derivative, the Hessian can be computed by

∇2
yyΦ

δ
i (y) = ∇2

yyLi(p
⋆
i (y); y) +∇2

yp⋆i
Li(p

⋆
i (y); y)∇yp

⋆
i (y). (11)

7

It remains to derive an expression for ∇yp
⋆
i (y). The KKT conditions of (9) read

F δ
i (x

⋆
i , s

⋆
i , γ

⋆
i , µ

⋆
i ; y) =

∇xifi(x
⋆
i , y) +∇xigi(x

⋆
i , y)γ

⋆
i +∇xihi(x

⋆
i , y)µ

⋆
i

−δS⋆−1
i 1+ µ⋆i
gi(x

⋆
i , y)

hi(x
⋆
i , y) + s⋆i

 !
= 0,

where S⋆
i = diag(s⋆i). By the total differential and the chain rule we have∇yF

δ
i (p

⋆
i (y), y)+

∇p⋆i
F δ
i (p

⋆
i (y), y)∇yp

⋆
i (y) = 0. Hence, we can compute the Jacobian ∇yp

⋆
i (y) by solving

the system of linear equations(
∇p⋆i

F δ
i (p

⋆
i (y), y)

)
∇yp

⋆
i (y) = −∇yF

δ
i (p

⋆
i (y), y). (12)

Observe that (12) is a system of linear equations with multiple right-hand sides. In
summary, we can compute ∇2

yyΦ
δ
i (y) locally for each i ∈ S by combining (11) and (12).

The corresponding formulas for the gradient and the Hessian of Φδ,ρ
i and Φδ,λ̄

i from (6)
and (8), i.e. of the AL relaxation and the ℓ1 relaxation (9) are given in Appendix A.

5. Solving the Master Problem and Globalization

An important question is how to solve the master problem (2) for different variants
of ϕi. In general, this can be done by any sensitivity-based NLP solver. We proceed
by showing how to obtain a simple globalized version of Algorithm 1 based on a line-
search scheme; here, the idea is to show global convergence for the relaxed problem (2)

with ϕi ∈ {Φδ,ρ
i ,Φδ,λ̄

i } for fixed penalty and barrier parameters. This leads to converge
of a solution to the original problem (1) by standard results from penalty and barrier
methods [29, Thms. 17.1, 17.6].

Define the objective of (2), ψ(y)
.
=

∑
i∈S ϕi(y), as a global merit function, where

ϕi ∈ {Φδ,ρ
i ,Φδ,λ̄

i }. The basic idea is to employ a Sequential Quadratic Programming
(SQP) scheme, where we ensure a sufficient decrease in ψ at each step via the Armijo
condition. The overall algorithm is summarized in Algorithm 4. Similar to the general
primal decomposition scheme from Algorithm 1, the master problem solver evaluates the
sensitivities (∇yϕi,∇2

yyϕi) in step (i), in order to construct a quadratic approximation
of (2) in step (ii). Solving this approximation yields a search direction ∆y. The stepsize
α is updated with a backtracking line-search with the Armijo condition as termination
criterion.

Global Convergence

We now establish global convergence3 of Algorithm 4 to a minimizer of the relaxed

problems (2) for ϕi ∈ {Φδ,ρ
i ,Φδ,λ̄

i }. Assume that the following regularity assumptions

3We use the definition of global convergence in the context of NLPs, i.e. the convergence to a KKT
point from an arbitrary initialization [29, Chap. 3]. However, since problems (1) and (2) are strongly
convex and we assume regularity in Assumption 1, every KKT point is also a global minimizer.

8

Algorithm 4: A simple master problem solver.

Initialize y0, ϵ, δ, ζ ∈ (0, 1), ρ or λ̄, ϕi ∈ {Φδ,ρ
i ,Φδ,λ̄

i }.
while ∥∆y∥ > 0 do

(i) compute (∇yϕi,∇2
yyϕi) locally for all i ∈ S;

(ii) solve the coordination problem

min
∆y

∑
i∈S

1

2
∆y∇2

yyϕi(y)∆y
⊤+∇yϕi(y)

⊤∆y (13)

s.t.Ay(y+∆y)− by=0, By(y+∆y)− by≤0.

α = 1
while ψ(y)− ψ(y + α∆y) ≥−σα∇yψ(y)

⊤∆y do
α← ζα

end
y ← y + α∆y

end
Return y, {xi}i∈S .

hold at the optimal solution at p⋆
.
= [p⋆i (y

⋆)]i∈S .

Assumption 1 (Regularity). Assume that for all i ∈ S

a)

[
∆x⋆i
∆y⋆

]⊤[
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

][
∆x⋆i
∆y⋆

]
> 0, for all

[
∆x⋆i
∆y⋆

]
̸= 0 with

[
Ax

i Ay
i

][∆x⋆i
∆y⋆

]
=0;

b)

[
Ax

i Ay
i

Bx
i By

i

]
has full row rank;

c) [µ⋆i]j+
[
[Bx

i By
i][x

⋆⊤
i y⋆⊤]⊤

]
j
̸= 0, ∀j = 1, . . . ,nr(Bx

i).

Line-search methods require that the search direction ∆y is a descent direction, i.e.
∆y

(∑
i∈S ∇iϕ

δ
i (y)

)
< 0. This can be ensured by showing that

∑
i∈S ∇2

yyϕ
δ
i ≻ 0 for all

variants of ϕi, which we do with the next lemma.

Lemma 1 (Positive definite Hessians). Let Assumption 1 hold and assume that (si, µi, vi, wi) >

0. Then, a), the Hessian ∇2
yyΦ

δ,ρ
i is positive definite for all ρ > 0. Moreover, b), ∇2

yyΦ
δ,λ̄
i

is positive definite if λ̄ is larger than all multipliers associated to the elastic constraints
λ̄ > maxj |[χ⋆

i]j |.

The proof of Lemma 1 is given in Appendix B. Now we are able to show global

convergence of Algorithm 4 to the solution of problem (2) with ϕi ∈ {Φδ,ρ
i ,Φδ,λ̄

i } for
fixed penalty and barrier parameters.

9

Theorem 1 (Convergence of Algorithm 4 for fixed δ, ρ, λ̄). Consider Algorithm 4 with

either fixed (δ, ρ, λ) if ϕi = Φδ,ρ
i or with fixed (δ, λ̄) if ϕi = Φδ,λ̄

i . Let Assumption 1 and
the conditions of Lemma 1 hold. Then, Algorithm 4 converges to the global minimizer

of problem (2) with ϕi ∈ {Φδ,ρ
i ,Φδ,λ̄

i }.

Proof. The unconstrained minimizer to (13), ∆y = −
∑

i∈S ∇2
yyϕ

−1
i (y)

∑
i∈S ∇yϕi(y),

is a descent direction for the merit function ψ(·) since
∑

i∈S ∇yϕi(y)
⊤∆y < 0 by the

positive definiteness of the Hessians from Lemma 1. Observe that ∆y = 0 is feasible
for (13) by feasibility of y. This shows that either ∆y = 0, or ∆y is a descent direction.
Hence, by [29, Lem 3.1], there exists an α ∈ (0, 1] such that ψ(y) − ψ(y + α∆y) ≥
−σα∇yψ(y)

⊤∆y is satisfied and thus the inner while loop is well defined. Moreover, by
the convergence of line-search methods [29, Thm 3.2], Algorithm 4 will either converge
to a stationary point of ψ returning ∆y = 0. Alternatively, if the unconstrained search
direction is blocked by the constraints in (13), ∆y = 0 is returned since ∆y = 0 is
feasible.
We now show that y is optimal for (2) if ∆y = 0. The KKT conditions associated to

(13) read 
∑
i∈S
∇2

yyϕi(y)∆y +∇yϕi(y)
⊤ +Ay⊤γy +By⊤µy = 0

Ay(y +∆y)− by = 0, By(y +∆y)− by ≤ 0,

(By(y +∆y)− by)⊤µ = 0, µ ≥ 0,

which are precisely the KKT conditions for (2) if ∆y = 0. Since (2) is convex and
Assumption 1 holds, the assertion follows.

Combining Theorem 1 with the convergence results for the ℓ1-penalty method [29,
Them 17.3] or the augmented Lagrangian method [30, Prop 2.7] implies convergence of
Algorithm 4 to the minimizer of the original problem (1) for sufficiently large penalties.

Remark 1 (Satisfying the assumptions of Theorem 1). Observe that the assumptions
for Theorem 1 are standard regularity assumptions from nonlinear programming [22,
Ass. 1-4]. Moreover, (si, µi, vi, wi) > 0 is always ensured when using interior-point
solvers for solving (5) and (6) even in the case of early termination.

6. Implementation Aspects

Solving Local Subproblems

The evaluation of the sensitivities of ϕi ∈ {Φδ,ρ
i ,Φδ,λ̄

i } requires solving local optimization
problems (6) or (8) for fixed δ, ρ, λ̄. Observe that this can be done using specialized
and optimized interior-point solvers, if they allow termination once a certain barrier
δ is reached. Moreover, interior-point solvers factorize the KKT matrices ∇piF

δ
i (cf.

(23), (26)) at each inner iteration and these factorizations can be re-used for Hessian
computation via (12). Here we provide two variants: our own interior-point QP solver

10

∑
i∈S

vki ≤ v̄
vk1 vk|S|

. . .

Figure 1: Buildings connected via a network with limited capacity.

based on standard techniques for stepsize selection and barrier parameter decrease [29,
Chap. 16.6] and the option to use third-party solvers such as Ipopt [31].

In early iterations, it is typically not necessary to solve the local problems to a high
precision, since the barrier parameter δ are still large and the penalty parameters (ρ, λ̄)
are still small. Hence, we solve the subproblems to an accuracy measured in the violation
of the optimality conditions ∥F δ

i (p
k
i , y

k)∥∞ and terminate if ∥F δ
i (p

k
i , y

k)∥∞ < min(δ, 1/ρ)
or ∥F δ

i (p
k
i , y

k)∥∞ < min(δ, 1/λ̄). This is inspired by the termination of inexact interior-
point methods [32]. Warm-starting the local solves with the solution of the previous
iteration reduces computation time significantly.

Numerical Linear Algebra

Efficient numerical linear algebra is crucial for performance. The most expensive steps
in terms of memory and CPU time are the factorization of the local KKT matrices and
the backsolves in (12). Since we only consider QPs, large parts of the KKT matrices in
(12) are constant over the iterations, which can be exploited for pre-computation. Here,
we make heavy use of the Schur complement. Details on how to achieve this for the AL
formulation are given in Appendix A.

Updating Penalties

We use simple update rules for the penalty parameters. They are

δk+1 = 0.2δk, λ̄k+1 = 2λ̄k, ρk+1 = 3ρk,

with initial values δ0 = 0.1, ρ0 = 103, and λ̄0 = 100. After a fixed amount of 8 iterations,
phase 2 starts and the above values stay constant.

7. Numerical Case Studies

We consider an optimal control problem for a city district with a scalable number of
commercial buildings connected via a electricity grid with limited capacity. The building
data is from [33]. We neglect the waterside HVAC system and assume that the buildings
are equipped with heat pumps with a constant coefficient of performance.

11

Building Model

The evolution of the temperature of the mth zone in the ith building reads

Cm,i(T
k+1
m,i − T

k
m,i) = −Hm,i(T

k
m,i− T k

a)−
∑
n∈Zi

Gmn,i(T
k
m,i− T k

n,i)− Q̇ck
m,i+ Q̇dk

m,i, (14)

where at time step k, T k
m,i is the temperature of zonem and T k

a the ambient temperature,
Ci,m is the thermal capacity, Hm,i and Gmn,i are heat transfer coefficients with the am-
bient and between two zones. Moreover, (Q̇ck

m,i, Q̇
dk
m,i) are the controllable/uncontrollable

heat influxes from the heat pump and from sources of disturbance such as solar irradia-
tion and occupancy. Eq. (14) can be written in compact form as

Ci(T
k+1
i − T k

i) = −Hi(T
k
i − T k

a)−GiT
k
i − Q̇ck

i + Q̇dk
i ,

where T⊤
i

.
= [T1,i, . . . T|Zi|,i], Q̇

ck⊤
i

.
= [Q̇ck

1,i, . . . Q̇
ck
nz ,i

] and Q̇dk⊤
i

.
= [Q̇dk

1,i, . . . Q̇
dk
nz ,i

]. This
yields a state-space model

T k+1
i

.
= zk+1

i =
(
I − C−1

i (Hi +Gi)
)
T k
i − C−1

i Q̇ck
i + C−1

i [Hi I][T k⊤
a Q̇dk⊤

i]⊤ (15)
.
= Aix

k +Biu
k
i + Eid

k
i . (16)

Stacking the above over N time steps yields

z̄i=

[
0 0

IN−1 ⊗Ai 0

]
z̄i+

[
0

IN−1⊗Bi

]
ūi+

[
0

IN−1⊗ Ei

]
d̄i+z̄

f
i

.
= Āiz̄i + B̄iūi + Ēid̄i + z̄fi ,

where z̄⊤i
.
= [z0⊤i , . . . , zN⊤

i], ū⊤i
.
= [u1⊤i , . . . , uN⊤

i], d̄⊤i
.
= [d1⊤i , . . . , dN⊤

i], z̄f⊤i
.
= [zfi , 0

⊤, . . . , 0⊤]

and zfi are the initial temperatures. Define the total energy consumption of building
i ∈ S at time step k by vki = 1⊤uki , and v̄⊤i

.
= [v0⊤i , . . . , vN⊤

i]. Then, the above is
equivalent to [

(I − Āi) −B̄i 0
] [
z̄⊤i ū⊤i v̄⊤i

]⊤
= Ēid̄i + z̄fi . (17)

The grid coupling between all subsystems i ∈ S induces an upper-bounded energy supply
writing as a global constraint: 1⊤vki ≤ v̄ for all times k. Moreover, we have local comfort
constraints T1 ≤ zki ≤ 1T̄ .

Optimal Control Problem

Assume that the goal of each building is to minimize its cost of energy consumption over
N time steps respecting all constraints. The cost function to buy the power form the
utility is given by fki (u

k
i)

.
= 0.5 ck(uki)

2+gkuki , where g
k is a linear and ck > 0 is a (small)

12

quadratic cost coefficient. This yields a discrete-time Optimal Control Problem (OCP)
for building i,

ϕi(vi)
.
=min
z̄i,ūi,v̄i

1

2

z̄iūi
v̄i

⊤0 0 0
0 cI 0
0 0 0

x̄iūi
v̄i

+
 0
1⊤ ⊗ g

0

⊤z̄iūi
v̄i


subject to (17),

[
I 0 0
−I 0 0

]z̄iūi
vi

 ≤ [
T̄1
−T1

]
, v̄i = I ⊗ 1⊤ūi.

The overall OCP — including global grid constraints — reads

min
v1,...,v|S|

∑
i∈S

ϕi(vi), subject to (1⊤ ⊗ I) [v⊤1 , . . . , v⊤|S|]
⊤≤ v̄ 1. (18)

To obtain a problem in form of (1), define x⊤i = [x̄⊤i , ū
⊤
i , v̄

⊤
i], i ∈ S, y⊤ = [v⊤1 , . . . , v

⊤
|S|],

Hx
i = blkdiag(0, cI, 0), hxi = [0, 1⊤⊗g, 0]⊤, hyi = 0, Hxy

i = 0, By
i = 0, d⊤i = [T̄1⊤, −T̄1⊤],

Ax
i =

[
(I − Āi) −B̄i 0

0 I ⊗ 1⊤ 0

]
, Ay

i =

[
0

−e⊤i ⊗I

]
, Bx

i =

[
I 0 0
−I 0 0

]
,

where ei is the ith unit vector, b⊤i =
[
(Ēid̄i + z̄fi)

⊤ 0
]
, Ay = 0, by = 0, By = 1⊤ ⊗ I,

and dy = v̄1.

Technical Setup

We benchmark our algorithms against ADMM (as one of the most popular algorithms
for decomposition) and against Ipopt (as one of the most prominent centralized NLP
solvers).4 The particular variant of ADMM is described in Appendix C. We rely on
OSQP v0.6.2 [34] for solving subproblems and the coordination problem in ADMM. In
primal decomposition, we rely on our own interior-point solver for the subproblems and
on Algorithm 4 for coordination, where we solve (13) via Ipopt.
We perform all simulations on a shared-memory virtual machine with 30 cores and

100GiB memory. The underlying hardware is exclusively used for the case studies. All
algorithms are parallelized via Julia multi-threading. Ipopt v3.14.4 runs partially in
parallel via the parallel multi-frontal linear algebra solver MUMPS v5.4.1.

Numerical Results

We compare the numerical performance of all algorithms on OCP (18) for |S| ∈ {30, 180, 300}
buildings. Table 2 shows the corresponding number of local/global decision variables
nx/ny, the number of local equality/inequality constraints ne/ni, and the number of
global equality/inequality constraints ney/niy. We employ ADMM from Appendix C
with penalty parameters ρ ∈ {101, 102, 103, 104}.
4The ADMM-based QP solver OSQP solver did not converge for the problems presented here.

13

Table 1: #decision variables and #constraints for |S| ∈ {30, 180, 300} buildings.
|S| nx ny ne ni ney niy
30 28,200 690 15,090 28,800 0 1,403

180 169,200 4,140 90,540 172,800 0 8,303
300 282,000 6,900 150,900 288,000 0 13,823

Table 2: Timing and #iter for |S| ∈ {30, 180, 300} buildings, 30 cores.

Ipopt ADMM ADMM
|S| Alg. AL l1 (par. LA) (ρ = 10) (ρ = 100)

300 t[s] 431.5 - 386.7 (522.3) (611.8)
180 195.7 - 218.1 (62.9) (143.2)
30 18.1 270.0 25.5 (20.4) (16.9)
300 iter. 13 - 145 100
180 12 - 141 100
30 13 12 104 100

term. rel. opt. 10−4 optimality fixed #iter
infeas 10−5

Figure 2: Convergence for |S| = 30 buildings.

14

Figure 3: Convergence for |S| = 180 buildings.

Figure 4: Convergence for |S| = 300 buildings.

15

Figure 2 illustrates the numerical performance of both primal decomposition variants
and ADMM. Figures 3-4 show the AL formulation only, since the ℓ1 formulation runs out
of memory for these cases. The constraint violations for the equality constraints (1b),∥∥[Ax Ay][x⊤ y⊤]⊤ − b

∥∥
∞, for the inequality constraints (1c), max([Bx By][x⊤ y⊤]⊤ −

b), and the value of the cost function f([x⊤, y⊤]⊤) from (1a) are displayed, where the x-
axis shows the iteration count. One can observe that the primal decomposition schemes
achieve a high degree of feasibility in less than 10 iterations for all cases. Moreover, the
optimality gap (f([x⊤, y⊤]⊤)−f([x⋆⊤, y⋆⊤]⊤))/f([x⋆⊤, y⋆⊤]⊤) is below 0.01% in less than
10 iterations for both primal decomposition variants and for all |S|, where [x⋆⊤, y⋆⊤]⊤

is computed via Ipopt. For ADMM, infeasibility and the optimality gap stay large
independently of the choice of the tuning parameter ρ.

Remark 2 (Scaling of the ℓ1 formulation). The reason for the poor scaling of the ℓ1-
formulation is two-fold: First, the relaxation (8) introduces 2ny additional slack variables
and inequality constraints. Hence, the KKT system in the subproblems defined via (26)
has a larger size than the KKT system we get with the AL formulation (23). More-
over, the additional inequality constraints potentially lead to smaller stepsizes due to the
fraction-to-boundary rule [29, Eq 19.9]. Hence, more iterations in the subproblems are
required compared to the AL formulation.

Discussion of Algorithmic Properties

Next, we discuss algorithm properties in view of the desirable properties from Section 1.

Computation Times

Comparing computation times between algorithms is difficult, since the numerical per-
formance strongly depends on the implementation. Nonetheless, we would like to provide
some timing information to underline the potential of primal decomposition methods.
Table 2 shows the computation times and the number of iterations for all algorithms.
Ipopt is terminated at optimality with default settings and the computation time for
the primal decomposition schemes are evaluated once an optimality gap of 10−4 and
a maximum constraint violation for equality/inequality constraints of 10−5 is reached.
ADMM is terminated after a fixed amount of 100 iterations. One can observe that the
AL formulation and Ipopt with parallel linear algebra have similar computation times
independently of |S|. Although fast computation is not our primary focus here, this
indicates the potential of primal decomposition for large-scale optimization.
Ipopt requires more than 100 iterations in all cases, which is unusual for second-order

interior-point methods. Both ADMM and the open-source solver OSQP are not able to
solve these problems to a sufficient accuracy with a reasonable number of iterations
(4,000 for OSQP). This indicates that these problems are rather difficult, which might be
due to the large number of inequality constraints coming from the temperature bounds.
On the other hand, the primal decomposition schemes require far less iterations. A
possible explanation for the behavior of Ipopt is that interior-point methods typically

16

Table 3: Internal timing (%) for the AL formulation, 30 cores.

|S| sensitivity eval. local sol. coord. line search other

300 68.10 6.66 6.10 17.84 1.30
180 41.58 19.86 9.02 26.89 2.65
30 4.37 6.69 9.35 79.29 0.30

choose the smallest stepsize such that no inequality constraint is violated (fraction-to-
boundary rule) [29, Eq 19.9]. This can lead to a slow progress since in this case only
small steps are taken. In primal decomposition schemes, each subproblem chooses “its
own” stepsize independently which might be one explanation for faster progress.
Internal timings for the AL formulation and different sizes |S| are shown in Table 3.

Here, the time spent in the coordination problem (13) and in the local solvers stays
relatively constant for varying |S|. The time spent for sensitivity computation, however,
increases significantly with |S|. One explanation for that is that the complexity in
the backsolves for computing the Hessian via (12) increases with O(n3y). In case the
backsolves can be parallelized, for example if the subproblems themselves use multi-
threading in a cluster environment, computation time can be reduced.

Communication Requirements

Both primal decomposition schemes require the communication of the gradient and the
Hessian of the optimal value functions in each outer iteration. In the line-search, only
the current iterate has to be communicated to the subsystems and the resulting optimal
value of the local problem is communicated back. Hence, the required amount of com-
munication in one iteration is higher than in ADMM, where only the current iterates
of the coupling variable y has to be communicated. However, the difference in total
communication—i.e. the number of bits to be communicated until a certain solution ac-
curacy is reached—is still often smaller since the primal decomposition schemes require
a significantly smaller number of iterations for a given target solution quality.

Feasibility and Optimality

Reaching feasibility fast is often crucial in the context of infrastructure systems to ensure
system stability. Here, primal decomposition can shine. For all case studies, one can
observe a high degree of primal feasibility in 10-20 iterations. ADMM requires far
more iterations to reach a sufficient degree of feasibility, which is a known limitation of
ADMM [4].

8. Conclusion and Outlook

We have presented two primal decomposition schemes to solve large-scale QPs for the
operation of infrastructure networks. The developed methods are proven to converge

17

globally to the optimal solution. Numerical experiments have demonstrated their po-
tential for solving large-scale QPs in a small number of iterations to a high degree of
feasibility and optimality, which distinguishes them from classical distributed methods
such as ADMM. Moreover, we have shown that primal decomposition based on aug-
mented Lagrangians has numerical benefits compared to the classical ℓ1-formulation.
Future work will further improve implementation aspects of the developed primal de-

compositions schemes. Here, sparse backsolves or quasi-Newton Hessian approximations
have the potential to greatly reduce the computation time spent in Hessian computation.

A. Sensitivities and Precomputation for Augmented
Lagrangians

Observe that for computing ∇yΦ
δ
i and ∇2

yyΦ
δ
i in (10) and (11), the partial derivatives

of the implicit function F δ
i and Li are required. Next, we derive these quantities for the

two relaxed local problems (6) and (8).
For (6), the Lagrangian (omitting arguments) reads

Lδ,ρ
i
.
=
1

2

xiy
zi

⊤ Hxx
i Hxy

i 0

Hxy⊤
i Hyy

i + ρI −ρI
0 −ρI ρI

xiy
zi

+
 hxi
hyi + λki
−λki

⊤xiy
zi


− δ1⊤ ln(si) + γ⊤i

([
Ax

i Ay
i

] [
x⊤i z⊤i

]⊤ − bi)
+ µ⊤i (

[
Bx

i By
i

] [
x⊤i z⊤i

]⊤
+ si − di).

Hence, the local KKT conditions read

T δ,ρ
i (q⋆i , y)

.
=


Hxx

i x⋆i +Hxy
i y + hxi +Ax⊤

i γ⋆i +Bx⊤
i µ⋆i

ρ(z⋆i − y)− λki +Ay⊤
i γ⋆i +By⊤

i µ⋆i
−(S⋆

i)
−1δ1+ µ⋆i[

Ax
i Ay

i

] [
x⋆⊤i z⋆⊤i

]⊤ − bi[
Bx

i By
i

] [
x⋆⊤i z⋆⊤i

]⊤
+ s⋆i − di

=0,

where q⊤i
.
=

[
x⊤i , z

⊤
i , s

⊤
i , γ

⊤
i , µ

⊤
i

]
. Moreover,

∇qiT
δ,ρ
i (qi, y) =


Hxx

i 0 0 Ax⊤
i Bx⊤

i

0 ρI 0 Ay⊤
i By⊤

i

0 0 S−1
i Mi 0 I

Ax
i Ay

i 0 0 0
Bx

i By
i I 0 0

 , (19)

∇yT
δ,ρ
i (qi, y) =

[
Hxy⊤

i −ρI 0 0 0
]⊤
, (20)

where Mi = diag(µi). Moreover, by (10),

∇yΦ
δ,ρ
i (y) = ∇yLi

δ,ρ(q⋆i (y); y) = (Hyy
i + ρI)y +Hxy

i x⋆i + hyi + λki − ρz⋆i .

18

Furthermore, by (11),

∇2
yyΦ

δ,ρ
i (y)=Hyy

i +ρI+[Hxy⊤
i −ρI 0 0 0]∇yq

⋆
i (y), (21)

where q⋆i (y) can be computed by the system of linear equations

∇qiT
δ,ρ
i (q⋆i , y)∇yq

⋆
i (y) = −∇yT

δ,ρ
i (q⋆i , y) (22)

Precomputation for Hessian Evaluation

Next, we show how to precompute matrices to make (22) easier to solve, cf. [35, Sec
IV]. We assume that Hxx

i is invertible—if this is not the case, one can use the variant

without precomputation. Recall that by (21), we need to compute Hxy⊤
i ∇yx

⋆
i − ρ∇yz

⋆
i ,

where (∇yx
⋆
i ,∇yz

⋆
i) are given by (22):
Hxx

i 0 0 Ax⊤
i Bx⊤

i

0 ρI 0 Ay⊤
i By⊤

i

0 0 S⋆−1
i M⋆

i 0 I
Ax

i Ay
i 0 0 0

Bx
i By

i I 0 0



∇yx

⋆
i

∇yz
⋆
i

∇ys
⋆
i

∇yγ
⋆
i

∇yµ
⋆
i

=

−Hxy

i

ρI
0
0
0

. (23)

By the third block-row, we have that ∇ys
⋆
i = −M

⋆−1
i S⋆

i∇yµ
⋆
i . This yields

Hxx
i 0 Ax⊤

i Bx⊤
i

0 ρI Ay⊤
i By⊤

i

Ax
i Ay

i 0 0

Bx
i By

i 0 −M⋆−1
i S⋆

i



∇yx

⋆
i

∇yz
⋆
i

∇yγ
⋆
i

∇yµ
⋆
i

 =


−Hxy

i

ρI
0
0

 .
Since Hxx

i is invertible, we have[
∇yx

⋆
i

∇yz
⋆
i

]
=

[
Hxx

i 0
0 ρI

]−1

︸ ︷︷ ︸
.
=P−1

i

[[
−Hxy

i

ρI

]
−
[
Ax

i Ay
i

Bx
i By

i

]⊤
︸ ︷︷ ︸

.
=K⊤

i

[
∇yγ

⋆
i

∇yµ
⋆
i

]]
. (24)

Employing the Schur complement with respect to the first two block rows yields[
KiP

−1
i K⊤

i +

[
0 0

0M⋆−1
i S⋆

i

]
︸ ︷︷ ︸

.
=Wi

][
∇yγ

⋆
i

∇yµ
⋆
i

]
=

[
−Ax

iH
xx−1
i Hxy

i +Ay
i

Bx
i H

xx−1
i Hxy

i +By
i

]
︸ ︷︷ ︸

.
=Ri

.

Observe that Hxx−1
i ,Ki and Ri can be precomputed. Moreover, the above system of

linear equations has significantly less decision variables compared to (22) and is in ad-
dition positive definite under Assumption 1. This allows to use the Cholesky or Bunch-
Kaufmann (LDL) factorization instead of LU.

19

Precomputation for the Local Solvers

Similar to the above, we can use precomputation for speeding up the solution of the
local optimization problems (6) in case interior-point methods are used. Here, we need

to compute Newton steps ∇qiT
δ,ρ
i (qi, y)∆qi = −T δ,ρ

i (qi, y), i.e.
Hxx

i 0 Ax⊤
i Bx⊤

i

0 ρI Ay⊤
i By⊤

i

Ax
i Ay

i 0 0

Bx
i By

i 0 −M−1
i Si



∆xi
∆zi
∆γi
∆µi

 = (25)

−


Hxx

i xi +Hxy
i y + hxi +Ax⊤

i γi +Bx⊤
i µi

ρ(zi − y)− λki +Ay⊤
i γi +By⊤

i µi[
Ax

i Ay
i

] [
x⊤i z⊤i

]⊤ − bi[
Bx

i By
i

][
x⊤i z⊤i

]⊤
+si−di+M−1

i (δ1− Siµi)

 .=

g1
g2
h1
h2

,
where we have eliminate the third block-row via ∆si = −M−1

i (Si∆µi − δ1 + Siµi).
Solving for the first two block-rows yields[

∆xi
∆zi

]
= P−1

i

([
g1
g2

]
−K⊤

i

[
∆γi
∆µi

])
,

where P−1
i and Ki are from (24). Again, employing the Schur-complement with respect

to the first two block rows yields(
KiP

−1
i K⊤

i +Wi

)[∆γi
∆µi

]
= KiP

−1
i

[
g1
g2

]
−
[
h1
h2

]
.

Observe that the above is again a small system of linear equations with positive definite
coefficient matrix, which allows for using Cholesky factorization and precomputedHxx−1

i

and Ki.

Sensitivities for the ℓ1 Formulation

The Lagrangian to (8) reads

Li =
1

2

[
xi
zi

]⊤ [
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

] [
xi
zi

]
+

[
hxi
hyi

]⊤ [
xi
zi

]
− δ(1⊤ ln(si) + 1⊤ ln(vi) + 1⊤ ln(wi))

+ γ⊤i

([
Ax

i Ay
i

][
x⊤i z⊤i

]⊤− bi)+ µ⊤i (
[
Bx

i By
i

][
x⊤i z⊤i

]⊤
+ si − di)

+ λ̄1⊤(vi + wi) + χ⊤
i (y − zi − vi + wi).

20

Hence, the KKT conditions require

T δ,λ̄
i (u⋆i , y)

.
=



Hxx
i x⋆i +Hxy

i z⋆i + hxi +Ax⊤
i γ⋆i +Bx⊤

i µ⋆i
Hyy

i z⋆i +Hxy⊤
i x⋆i + hyi − χ⋆

i +Ay⊤
i γ⋆i +By⊤

i µ⋆i
−S−1

i δ1+ µ⋆i
−δV −1

i 1+ (λ̄1− χ⋆
i)

−δW−1
i 1+ (λ̄1+ χ⋆

i)[
Ax

i Ay
i

] [
x⋆⊤i z⋆⊤i

]⊤ − bi[
Bx

i By
i

] [
x⋆⊤i z⋆⊤i

]⊤
+ s⋆i − di

y − z⋆i − v⋆i + w⋆
i


!
= 0,

where u⊤i
.
=

[
x⊤i , z

⊤
i , s

⊤
i , v

⊤
i , w

⊤
i , γ

⊤
i , µ

⊤
i , χ

⊤
i

]
. Thus,

∇uiT
δ,λ̄
i (ui, y) =



Hxx
i Hxy

i 0 0 0 Ax⊤
i Bx⊤

i 0

Hxy⊤
i Hyy

i 0 0 0 Ay⊤
i By⊤

i −I
0 0 S−1

i Mi 0 0 0 I 0

0 0 0 V −1
i (λ̄I −Xi) 0 0 0 −I

0 0 0 0 W−1
i (λ̄I +Xi) 0 0 I

Ax
i Ay

i 0 0 0 0 0 0
Bx

i By
i I 0 0 0 0 0

0 −I 0 −I I 0 0 0


, (26)

where Vi = diag(vi), Wi = diag(wi), and Xi = diag(χi). Moreover,

∇yT
δ,λ̄
i (ui, y) = [0 0 0 0 0 0 0 I]⊤. (27)

Furthermore, ∇yΦ
δ,λ̄
i (y) = ∇yLi = χi, ∇yyLi = 0, and ∇yu⋆

i
Li = [0 0 0 0 0 0 0 I].

Thus, by (11),

∇yyΦ
δ,λ̄
i (y) = ∇yχ

⋆
i (y). (28)

B. Proof of Lemma 1

First, we will show that Z⊤(ZCZ⊤)−1Z = Z⊤ZC−1Z⊤Z for a regular, symmetric C ∈
Rn×n, Z ∈ Rm×n with m < n. Consider a re-ordered eigendecomposition C = QΛQ⊤

and partition Q = [Q1 Q2], Λi = blkdiag(Λ1,Λ2) such that Q2 is a nullspace-basis of
Z, i.e. ZQ2 = 0. Hence, we have ZCZ⊤ = Z[Q1 Q2] blkdiag(Λ1,Λ2)[Q1 Q2]

⊤Z⊤
i =

ZQ1Λ1Q1Z
⊤ since ZQ2 = 0. Thus, Z⊤(ZCZ⊤)−1Z =Z⊤ZQ1Λ

−1
1 Q⊤

1 Z
⊤Z. Again, since

ZQ2 = 0, we can expand this expression to Z⊤Z[Q1 Q2] blkdiag (Λ
−1
1 ,Λ−1

2)[Q1 Q2]
⊤

Z⊤Z = Z⊤ZC−1Z⊤Z.
Proof of a): By (21), we need ∇yq

⋆
i (y) for computing ∇yyΦ

δ,ρ
i , where ∇yq

⋆
i (y) is

defined by (22). Define Ci
.
= blkdiag(Hxx

i , ρI, S−1
i Mi)), Di

.
=

[
Ax

i Ay
i 0

Bx
i By

i I

]
, and Ei

.
=

[Hxy⊤
i −ρI 0]⊤. Consider (20) and parametrize (∇yx

⋆⊤
i ,∇yz

⋆⊤
i ,∇ys

⋆⊤
i)⊤

.
= ZiPi, where

21

Zi is a nullspace matrix to Di, i.e., the columns of Zi form an orthogonal basis of
the nullspace of Di and Pi ∈ R(nxi+ny−nr(Ax

i))×ny is an auxiliary matrix. Using the
above parametrization in (22) and multiplying with Z⊤

i yields Z⊤
i CiZiPi = −Z⊤

i Ei by
Z⊤
i D

⊤
i = 0. Since si, µi > 0 and Assumption 1 holds, we have Ci ≻ 0 and thus Z⊤

i CiZi

is invertible by full rank of Zi. Hence, by (21) and the above derivation, ∇yyΦ
δ,ρ
i (y) =

Hyy
i +ρI−E⊤

i Zi(Z
⊤
i CiZi)

−1Z⊤
i Ei = Hyy

i +ρI−E⊤
i ZiZ

⊤
i C

−1
i ZiZ

⊤
i Ei. Notice that ZiZ

⊤
i

is a diagonal matrix with rank(Zi) ones and dim(Ci)− rank(Zi) zeros. Hence, since Ci is

positive definite, it suffices to show that ∇yyΦ
δ,ρ
i (y) ≻ 0 for the worst case, i.e. ZiZ

⊤
i = I

(no constraints). In this case we have ∇yyΦ
δ,ρ
i (y) = Hyy

i −H
xy⊤
i (Hxx

i)−1Hxy
i ≻ 0 by the

definition of Ei, Ci, by Assumption 1 a) and the Schur-complement Lemma [36, A.14].
Proof of b): By (28), we need to show that∇yχ

⋆
i (y) ≻ 0, which can be computed by the

system of linear equations (26), (27). Define Fi = blkdiag

([
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

]
, S−1

i Mi, V
−1
i (λ̄−

Xi),W
−1
i (λ̄+Xi)

)
and Gi

.
=

Ax
i Ay

i 0 0 0
Bx

i By
i I 0 0

0 −I 0 −I I

 . By Assumption 1, si, vi, wi, µi >

0, and λ̄ > maxj |[χi]j |, we have that Fi ≻ 0. Hence,
(
∇yx

⋆⊤
i ,∇yz

⋆⊤
i ,∇ys

⋆⊤
i ,∇yv

⋆⊤
i ,

∇yw
⋆⊤
i

)⊤
= −F−1

i Gi(∇yγ
⋆⊤
i ,∇yµ

⋆⊤
i ,∇yχ

⋆⊤
i). Thus, G⊤

i F
−1
i Gi(∇yγ

⋆⊤
i ,∇yµ

⋆⊤
i ,∇yχ

⋆⊤
i) =

[0 0 I]⊤. Since F−1
i ≻ 0 and by full rank of Gi from Assumption 1, G⊤

i F
−1
i Gi ≻ 0 and

thus (∇yγ
⋆⊤
i ,∇yµ

⋆⊤
i ,∇yχ

⋆⊤
i) = (G⊤

i F
−1
i Gi)

−1[0 0 I]⊤. Since (G⊤
i F

−1
i Gi)

−1 ≻ 0, all
leading principle minors of this matrix must be positive definite by Sylvester’s criterion
[37, Col 7.1.5]. By variable reordering, the assertion follows.

C. Solution of (1) via ADMM

We derive a distributed ADMM version for (1) as a baseline for numerical comparison.
Consider (1), introduce auxiliary variables zi ∈ Rny and consensus constraints y = z1 =
· · · = zS | λ1, . . . , λS . This yields

min
x,y,z

∑
i∈S

1

2

[
xi
zi

]⊤[
Hxx

i Hxy
i

Hxy⊤
i Hyy

i

][
xi
zi

]
+

[
hxi
hyi

]⊤[
xi
zi

]
(29a)

subject to
[
Ax

i Ay
i

] [
x⊤i z⊤i

]⊤ − bi = 0, i ∈ S, (29b)[
Bx

i By
i

] [
x⊤i z⊤i

]⊤ − di ≤ 0, i ∈ S, (29c)

Ayy − by = 0, Byy − dy ≤ 0 (29d)

zi = y, i ∈ S. (29e)

The augmented Lagrangian with respect to y − zi = 0 reads

Lρ =
∑
i∈S

ϕxi (xi, zi) + ϕy(y) + λk⊤i (y − zi) +
ρ

2
∥y − zi∥2,

22

where ϕxi are defined by (29a)-(29c) and ϕy is the indicator function for (29d). Minimiz-
ing Lρ w.r.t. (xi, zi) for fixed (yk, λki) yields for all i ∈ S

(xk+1
i , zk+1

i) =

argmin
xi,zi

1

2

[
xi
zi

]⊤[
Hxx

i Hxy
i

Hxy⊤
i Hyy

i + ρI

][
xi
zi

]
+

[
hxi

hyi−λki−ρyk
]⊤[

xi
zi

]
subject to

[
Ax

i Ay
i

] [
x⊤i z⊤i

]⊤ − bi = 0,[
Bx

i By
i

] [
x⊤i z⊤i

]⊤ − di ≤ 0.
(30)

Minimising Lρ w.r.t. y for fixed (xk+1
i , zk+1

i , λki) yields

yk+1 = argmin
y

∑
i∈S

ρ

2
y⊤y + (λki − ρzk+1

i)⊤y (31)

subject to Ayy − by = 0, Byy − dy ≤ 0.

Finally, the Lagrange multiplier update reads

λk+1
i = λki + ρ(yk+1 − zk+1

i), i ∈ S. (32)

The update rules (30)-(32) define the ADMM iterations. Note that (30) and (32) can
be executed locally for all i ∈ S, whereas (31) defines the global coordination step.

References

[1] F. Capitanescu, “TSO–DSO interaction: Active distribution network power chart
for TSO ancillary services provision,” Electric Power Systems Research, vol. 163,
pp. 226–230, 2018.

[2] M. Kalantar-Neyestanaki, F. Sossan, M. Bozorg, and R. Cherkaoui, “Character-
izing the Reserve Provision Capability Area of Active Distribution Networks: A
Linear Robust Optimization Method,” IEEE Transactions on Smart Grid, vol. 11,
no. 3, pp. 2464–2475, 2020.

[3] H. Everett, “Generalized Lagrange multiplier method for solving problems of op-
timum allocation of resources,” Operations research, vol. 11, no. 3, pp. 399–417,
1963.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization
and Statistical Learning via the Alternating Direction Method of Multipliers,”
Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods. Prentice Hall Englewood Cliffs, NJ, 1989, vol. 23.

[6] T. Erseghe, “Distributed Optimal Power Flow Using ADMM,” IEEE Transactions
on Power Systems, vol. 29, no. 5, pp. 2370–2380, 2014.

23

[7] B. Kim and R. Baldick, “A comparison of distributed optimal power flow algo-
rithms,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 599–604, 2000.

[8] S. Shin, C. Coffrin, K. Sundar, and V. M. Zavala, “Graph-Based Modeling and
Decomposition of Energy Infrastructures,” IFAC-PapersOnLine, 16th IFAC Sym-
posium on Advanced Control of Chemical Processes ADCHEM 2021, vol. 54, no. 3,
pp. 693–698, 2021.

[9] J. Huang, Z. Li, and Q. H. Wu, “Coordinated dispatch of electric power and district
heating networks: A decentralized solution using optimality condition decomposi-
tion,” Applied Energy, vol. 206, pp. 1508–1522, 2017.

[10] Y. Cao, W. Wei, L. Wu, S. Mei, M. Shahidehpour, and Z. Li, “Decentralized
Operation of Interdependent Power Distribution Network and District Heating
Network: A Market-Driven Approach,” IEEE Transactions on Smart Grid, vol. 10,
no. 5, pp. 5374–5385, 2019.

[11] B. Coulbeck, M. Brdyś, C. H. Orr, and J. P. Rance, “A hierarchical approach to
optimized control of water distribution systems: Part I decomposition,” Optimal
Control Applications and Methods, vol. 9, no. 1, pp. 51–61, 1988.

[12] N. Chiang, C. G. Petra, and V. M. Zavala, “Structured nonconvex optimization of
large-scale energy systems using PIPS-NLP,” in 2014 Power Systems Computation
Conference, 2014, pp. 1–7.

[13] V. M. Zavala, C. D. Laird, and L. T. Biegler, “Interior-point decomposition ap-
proaches for parallel solution of large-scale nonlinear parameter estimation prob-
lems,” Chemical Engineering Science, vol. 63, no. 19, pp. 4834–4845, 2008.

[14] D. K. Varvarezos, L. T. Biegler, and I. E. Grossmann, “Multiperiod design op-
timization with SQP decomposition,” Computers & Chemical Engineering, An
International Journal of Computer Applications in Chemical Engineering, vol. 18,
no. 7, pp. 579–595, 1994.

[15] A. Engelmann, Y. Jiang, T. Mühlpfordt, B. Houska, and T. Faulwasser, “Toward
Distributed OPF Using ALADIN,” IEEE Transactions on Power Systems, vol. 34,
no. 1, pp. 584–594, 2019.

[16] B. Houska, J. Frasch, and M. Diehl, “An Augmented Lagrangian Based Algo-
rithm for Distributed NonConvex Optimization,” SIAM Journal on Optimization,
vol. 26, no. 2, pp. 1101–1127, 2016.

[17] A. Engelmann, Y. Jiang, B. Houska, and T. Faulwasser, “Decomposition of Non-
convex Optimization via Bi-Level Distributed ALADIN,” IEEE Transactions on
Control of Network Systems, vol. 7, no. 4, pp. 1848–1858, 2020.

[18] A. Engelmann, G. Stomberg, and T. Faulwasser, “An essentially decentralized
interior point method for control,” in 2021 60th IEEE Conference on Decision
and Control (CDC), 2021, pp. 2414–2420.

24

[19] G. Stomberg, A. Engelmann, and T. Faulwasser, “Decentralized non-convex opti-
mization via bi-level SQP and ADMM,” IEEE 61st Annual Conference on Decision
and Control (CDC), 2022. arXiv: 2204.08786.

[20] A. M. Geoffrion, “Primal Resource-Directive Approaches for Optimizing Nonlinear
Decomposable Systems,” Operations Research, vol. 18, no. 3, pp. 375–403, 1970.

[21] V. DeMiguel and W. Murray, “A local convergence analysis of bilevel decomposi-
tion algorithms,” Optimization and Engineering, vol. 7, no. 2, pp. 99–133, 2006.

[22] V. DeMiguel and F. J. Nogales, “On Decomposition Methods for a Class of Par-
tially Separable Nonlinear Programs,”Mathematics of Operations Research, vol. 33,
no. 1, pp. 119–139, 2008.

[23] V. M. Zavala, C. D. Laird, and L. T. Biegler, “A fast moving horizon estimation al-
gorithm based on nonlinear programming sensitivity,” Journal of Process Control,
Selected Papers From Two Joint Conferences: 8th International Symposium on
Dynamics and Control of Process Systems and the 10th Conference Applications
in Biotechnology, vol. 18, no. 9, pp. 876–884, 2008.

[24] N. Yoshio and L. T. Biegler, “A Nested Schur decomposition approach for multi-
period optimization of chemical processes,” Computers & Chemical Engineering,
vol. 155, p. 107 509, 2021.

[25] S. Tu, A. Wächter, and E. Wei, “A Two-Stage Decomposition Approach for AC Op-
timal Power Flow,” IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 303–
312, 2021.

[26] C. G. Petra and I. Aravena, Solving realistic security-constrained optimal power
flow problems, 2021. arXiv: 2110.01669.

[27] F. E. Curtis, D. K. Molzahn, S. Tu, A. Wächter, E. Wei, and E. Wong, A Decom-
position Algorithm for Large-Scale Security-Constrained AC Optimal Power Flow,
2021. arXiv: 2110.01737.

[28] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, Belmont, 1999.

[29] J. Nocedal and S. Wright, Numerical Optimization. Springer Science & Business
Media, New York, 2006.

[30] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press, 1982.

[31] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming,” Mathematical Pro-
gramming, vol. 106, no. 1, pp. 25–57, 2006.

[32] R. H. Byrd, G. Liu, and J. Nocedal, On the Local Behavior of an Interior Point
Method for Nonlinear Programming. 1998.

[33] J. B. Rawlings, N. R. Patel, M. J. Risbeck, C. T. Maravelias, M. J. Wenzel, and
R. D. Turney, “Economic MPC and real-time decision making with application to
large-scale HVAC energy systems,” Computers & Chemical Engineering, vol. 114,
pp. 89–98, 2018.

25

https://arxiv.org/abs/2204.08786
https://arxiv.org/abs/2110.01669
https://arxiv.org/abs/2110.01737

[34] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An oper-
ator splitting solver for quadratic programs,” Mathematical Programming Compu-
tation, 2020.

[35] F. Pacaud, D. A. Maldonado, S. Shin, M. Schanen, and M. Anitescu, A Feasible
Reduced Space Method for Real-Time Optimal Power Flow, 2021. arXiv: 2110.
02590.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[37] R. A. Horn and C. R. Johnson,Matrix Analysis, 2nd edition. Cambridge University
Press, 2013.

26

https://arxiv.org/abs/2110.02590
https://arxiv.org/abs/2110.02590

	Introduction
	Problem Formulation
	Primal Decomposition Schemes
	Computing sensitivities
	Solving the Master Problem and Globalization
	Implementation Aspects
	Numerical Case Studies
	Conclusion and Outlook
	Sensitivities and Precomputation for Augmented Lagrangians
	Proof of Lemma 1
	Solution of (1) via ADMM

