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Abstract  14 

 15 

The characterization of rock masses is an essential component for the planning and 16 

development of engineering designs in rock mechanics and rock engineering. The Rock 17 

Quality Designation (RQD) is a widely used rock mass characterization system that is 18 

direction-dependent, i.e., the measurement of a core sample depends not only on the sample 19 

position but also on its orientation. This paper outlines the critical aspects of the 20 

determination of RQD and proposes a physically-based upscaling strategy from borehole 21 

samples to large blocks, based on block-averaging the RQD values corresponding to the 22 

same direction, then calculating the minimum value over all the directions. An anisotropy 23 

index indicating how much RQD varies between one direction and another is also derived. 24 

Using geostatistical simulation, our proposal allows interpolating and upscaling direction-25 

dependent geotechnical variables like RQD at any place in the geographical space for any 26 
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direction, avoiding directional biases. We illustrate this proposal by predicting RQD in a 27 

polymetallic deposit, achieving geotechnical zoning and comparing the results with those of 28 

the traditional approach where the directional dependence of RQD is ignored. 29 

 30 

Keywords: RQD; geostatistical simulation; geotechnical zoning; directional dependence; 31 

upscaling. 32 

1. Introduction 33 

 34 

Proper zoning or domaining of areas presenting similarities in the lithological, 35 

structural, hydrogeological and rock quality components is of utmost importance for 36 

successful geotechnical designs in mining, geological and geotechnical engineering. The 37 

strength and deformability parameters of rock masses and the nature of the discontinuity 38 

network constitute complex information whose incorporation into the definition of different 39 

geotechnical domains is challenging and still a subject of significant uncertainties (Barton, 40 

1990; Hudson, 2012; Chowdhury et al., 2012) that do not evade to the well-known RQD 41 

(Rock Quality Designation; Deere et al., 1967) classification system. 42 

 43 

The RQD values are sensitive to the direction in which the core sample is collected 44 

(Palmström, 1982; Elsayed and Sen, 1991; Choi and Park, 2004; Emery and Séguret, 2020) 45 

and cannot be extrapolated straightforwardly to a more voluminous support, e.g., a three-46 

dimensional block or the entire rock mass (Hoek and Brown,1980; Sen and Kazi, 1984; 47 

Cunha, 1990) without a proper management of the directional nature of the measurements. 48 

The directional dependence and the change of volumetric support (upscaling) are two critical 49 

aspects overlooked today by many practitioners, preventing a correct understanding of the 50 

spatial behavior of the rock mass and leading to inaccurate predictions. 51 

 52 
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 The widely accepted practice of scaling the mechanical properties from a small piece 53 

of rock (e.g., a cylindrical borehole core, idealized as a 'line' support) to a three-dimensional 54 

'block' support implies an assumption of isotropy (i.e., no directional dependence) of these 55 

properties at the working scale. Nevertheless, the geological materials often present spatial 56 

heterogeneities exhibiting a high contrast of the mechanical properties measured at two 57 

different locations, even at small distances (e.g., Cai, 2011; Song et al., 2011; Matonti et al., 58 

2015; Pinheiro et al., 2016; Vatcher et al., 2016; Gao et al., 2018). Such a contrast may also 59 

vary with the relative angle between the measurements, being less when comparing two 60 

parallel borehole cores than when comparing two perpendicular cores. The integration of 61 

these subsurface variabilities into models to simulate the behavior of the rock masses would 62 

be theoretically the right way to go. Therefore, the predictive reliability of any model applied 63 

to rock engineering is strongly dependent on an accurate representation of the spatial and 64 

directional variability of the modeled variable(s). In this context, we propose to use a 65 

geostatistical model taking account of the directional sensitiveness of RQD to facilitate the 66 

upscaling from line-supports to block-supports and to obtain a better representation of the 67 

degree of jointing or fracturing of rock masses. 68 

 69 

Geostatistical tools allow integrating spatial variability into the modeling of the rock 70 

mass. The application of geostatistics in geotechnics is not a new topic (e.g., Oh et al., 2004; 71 

Stavropoulou et al., 2007; Exadaktylos and Stavropoulou, 2008; Choi et al., 2009; Ferrari et 72 

al., 2014; Pinheiro et al., 2016; Chen et al., 2017; Hekmatnejad et al., 2017; Boyd et al., 73 

2019). However, the traditional geostatistical modeling applied to RQD for characterizing 74 

rock masses (Ozturk and Nasuf, 2002; Ozturk and Simdi, 2014; Madani and Asghari, 2013) 75 

only considers its variability in the three-dimensional geographical space, disregarding its 76 

directional dependence, e.g., when there is a predominant joint set, such as foliation and 77 

schistosity joints in metamorphic rocks. This work aims to compare the traditional approach 78 

(ignoring directional dependence) with a new proposed approach considering the directional 79 
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dependence of RQD, illustrated with a case study of a polymetallic deposit. The results will 80 

highlight the advantages of the latter approach in the geotechnical zoning, knowledge of the 81 

spatial behavior of rock masses, and management of uncertainties in underground projects. 82 

The background and details of the proposed methodology are explained in Sections 2 and 3 83 

and Appendix A, whereas the case study is presented in Section 4. A discussion, 84 

conclusions, and perspectives for future work follow in Sections 5 and 6. 85 

2. Background: directional dependence and upscaling of RQD 86 

 87 

The RQD rating (Deere et al., 1967) provides a quantitative measure of the degree of 88 

jointing or fracturing of rock mass from boreholes, consisting of 100 times the ratio between 89 

the total length of core pieces larger than 100 millimeters and the total core run length. The 90 

RQD classification system uses a continuous scale ranging from 0 to 100 to assign the rock 91 

mass quality and position it within one of five classes (excellent, good, fair, poor, very poor). 92 

In addition to the direct RQD calculation method, indirect methods have also been developed 93 

to estimate RQD considering different input data (Priest and Hudson, 1976; Palmström, 94 

1982, 2005; Zheng et al., 2018) and to incorporate it into rock classification schemes 95 

(Bieniawski, 1973; Barton et al., 1974; Hoek et al., 2013). However, already since its 96 

conception, there is an awareness of one of its most obvious shortcomings: its directional 97 

dependence (e.g., Deere, 1989; Choi and Park, 2004). In the following, the directional 98 

dependence and upscaling will be described, providing details on how previous researchers 99 

have tackled them and how we will deal with them in our geostatistical model. 100 

2.1 Directional dependence 101 

 102 

The RQD values vary in space and according to the angle between the direction of 103 

the sample (borehole or scanline) and the discontinuities present in a rock mass. Since this 104 
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directional dependence cannot be fixed, it is impossible to directly assess joint spacing 105 

conditions unless they do not depend on the direction (isotropic discontinuity network, whose 106 

properties are invariant under a rotation). Some attempts to minimize the biases caused by 107 

the directional dependence focused on drilling as many boreholes with different directions as 108 

possible (Deere, 1989), modifying the original RQD concept, such as estimating RQD from 109 

the volumetric joint count Jv (Palmström, 2005), considering Terzaghi's correction and a 110 

fractured zone effect (Haftani et al., 2016), or performing the calculation based on weak 111 

zones (core washed, crushed zones, karst cavities) and joint orientation (Azimian, 2016). 112 

However, an alternative definition of RQD is unknown to most engineers, practitioners, and 113 

researchers. Moreover, these new RQD conceptualizations lose their most potent and 114 

engaging property: simplicity. On the other hand, cost-efficiency and other practical 115 

considerations limit the number of boreholes drilled for an underground exploratory 116 

campaign.  117 

 118 

An alternative solution to deal with RQD directional dependence has been proposed 119 

by Séguret and Guajardo (2015), who classified the borehole samples according to their 120 

sampling directions. However, this proposal does not circumvent all the limitations since 121 

RQD values can be predicted only in the directions that have been drilled, lacking any proper 122 

interpolation between them. Recently, Zheng et al. (2018) provide a new perspective about 123 

the directional dependence of RQD, considering this property as an advantage and 124 

proposing to estimate an anisotropy index of the jointing degree. The latter authors suggest 125 

selecting the minimum RQD value and its corresponding direction as the most representative 126 

of a specific rock mass, which potentially reflects its real jointing degree and directly 127 

compares with other rock masses. However, this approach only applies to scanlines (in 128 

outcrops or excavation faces) with different orientations for the same location, in relatively 129 

intact rock masses (from medium weathered to fresh hard), and statistically homogeneous 130 

regions. Except for the case of an isotropic discontinuity network, the selection of a 131 
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representative direction (here, the one corresponding to the minimum RQD) implies a loss of 132 

information on the directional behavior of RQD. 133 

 134 

We build on the best of each previous attempt to propose an alternative solution that 135 

considers the real regionalization space of RQD as the usual geographical 3D space crossed 136 

by the 2D space of dip and azimuth. Specifically, the RQD for one composite sample 137 

depends on the geographical position x (x1, y1, z1) of its gravity center and the direction u 138 

(�, �) of the sample, with u a point of the unit sphere S2 of R3 characterized by its azimuth � 139 

and dip �, see Fig. 1 and Appendix A. This approach leads to the RQD measurements being 140 

assigned to five coordinates, which will allow evaluating the correlation between RQD values 141 

observed at different locations of this five-dimensional space (thus, depending not only on 142 

the geographical coordinates of the measurements but also on their angular coordinates). 143 

2.2 Upscaling  144 

 145 

The dependence of the mechanical properties of a rock mass with the geometric 146 

dimensions of the sample is known as the scale or support effect (Bieniawski, 1968; Pratt et 147 

al., 1972; Bandis et al., 1981; Barton, 1990; Cunha, 1990; Cuisiat and Haimson, 1992). This 148 

effect is a potential drawback for the spatial interpolation of mechanical properties observed 149 

at a limited (in size) sample to the overall rock mass. Considering that RQD in line supports 150 

(at borehole core or scanline scale) has a directional dependence, this dependence should 151 

remain in any subsequent change of support. In particular, such a change of support should 152 

not mix RQD values measured along different directions unless the discontinuity network in 153 

the rock mass is isotropic, in which case directional dependence does not arise.  154 

 155 

In practice, the support effect can be overlooked when a particular rock mass consists 156 

of purely intact rock or individual jointed block pieces are too small compared to the overall 157 
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size of the engineering structure being considered. Hoek and Brown's criterion can thus be 158 

applied at the excavation/pit scale (Edelbro, 2004, Marinos and Carter, 2018). In such a 159 

situation, rock masses can be assumed as a continuum and isotropic medium, and the 160 

calculation of arithmetic averages from boreholes or scanlines (line-supports) to rock mass 161 

(block-supports) is justifiable (Marinos et al., 2005; Hoek, 2006). Then, when comparing the 162 

construction scale of rock excavations with the block size of intact rock, one can assume the 163 

rock mass is closely jointed and be treated as a homogeneous continuous equivalent whose 164 

discontinuities are implicit. However, such an assumption is not always possible and rarely 165 

occurs due to the nature of geological materials affected by tectonism, weathering, and 166 

alteration processes. 167 

 168 

Our approach to addressing the support effect is twofold. On the one hand, it is 169 

proposed to define a direction-dependent upscaled RQD value in a given block by averaging 170 

the RQD values measured along the same direction at different points discretizing the block, 171 

without mixing values measured in different directions. In this way, it is possible to know the 172 

directional variability of RQD in each block, accounting for the anisotropy of the rock mass 173 

and giving insights into the geometry of the fragments formed by the intersection of joints in a 174 

rock mass. On the other hand, in addition to this 'directional' block-support RQD, we will also 175 

propose a 'non-directional' block-support RQD by selecting the minimum RQD value (not the 176 

average) across all the directions of the two-dimensional angular space represented by a unit 177 

sphere, which is deemed the most representative value of the real jointing degree of the 178 

block. Accordingly, the 'directional' block-support RQD will be regionalized in the five-179 

dimensional (geographical × angular) space, as is the RQD measured on core samples, 180 

while the 'non-directional' one will be regionalized only in the 3D geographical space. 181 

3. Methodology: geostatistical modeling and simulation 182 

 183 
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Since it is defined on a continuous quantitative scale, RQD can be transformed into a 184 

variable (hereafter, denoted as Z) with a standard Gaussian distribution, a process known as 185 

Gaussian anamorphosis or normal-scores transformation (Chilès and Delfiner, 2012). Such a 186 

transformation is the first stage for geostatistical modeling, where the transformed variable 187 

(Z) is viewed as a Gaussian random field. In practice, the characterization of such a random 188 

field reduces to that of its mean value (here, the mean is set to zero) and its autocovariance 189 

function or, equivalently, its variogram. 190 

 191 

To simulate RQD, the following steps should be accomplished (details in Appendix 192 

A): 193 

I. The original RQD data are transformed into Gaussian data (normal scores), and an 194 

anamorphosis function that maps the RQD data into normal scores is defined. 195 

II. A variogram analysis of the normal scores data is performed, consisting in computing 196 

an experimental variogram that measures half the variance of the increment between 197 

two measurements based on their geographical and angular separations when RQD 198 

is regionalized in a 5D space or just on their geographical separation when RQD is 199 

regionalized in the 3D space. Subsequently, the experimental variogram is fitted with 200 

a theoretical model. 201 

III. A Gaussian random field is simulated at all the target locations and conditioned to the 202 

available data. The latter implies that the simulated values at locations with data must 203 

coincide with the data values. Here, we use the turning bands algorithm (Matheron, 204 

1973) for the random field simulation and a post-processing kriging (Chilès and 205 

Delfiner, 2012) for conditioning the simulated outcomes to the sampling data. 206 

IV. The Gaussian simulation is back-transformed to the RQD original scale by using the 207 

anamorphosis function defined at step I. 208 
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4. Case study: jointed rock mass in a polymetallic deposit 209 

 210 

To illustrate the proposed methodology and compare it with the traditional approach, 211 

we present a case study corresponding to an underground mining operation. The aims are to 212 

simulate RQD within the deposit, considering its directional dependence and a change of 213 

support that can adequately characterize a volumetric support and be used for geotechnical 214 

zoning.  215 

4.1. Geological setting and data preparation 216 

 217 

The case study corresponds to a polymetallic deposit, the name and location of which 218 

will not be disclosed for confidentiality reasons. In an irregular tubular body, the 219 

mineralization is of the distal skarn type, related to intrusives of intermediate composition, 220 

where the most frequent alterations are chloritization and skarn type. The ore zone mainly 221 

comprises skarn and limestones. 222 

 223 

The deposit is located along a deformed belt composed of back-arc siliciclastic and 224 

carbonates rocks, unconformably covered with volcanic rocks, intruded by intermediate 225 

granodiorite and quartz-monzonite stocks and sills, the emplacement of which is structurally 226 

controlled by north-to-south-oriented faults. The structural evolution involves compressional 227 

reactivation of pre-existing extensional faults and strike-slip episodes of deformation. Two 228 

main structural domains have been identified: an ENE-vergent fold-and-thrust system with 229 

steep dip angles (75° SE), while the second one is linked to dextral strike-slip movements 230 

with variable strikes and steep dips angles (60-80° SE). The discontinuities identified from 231 

geotechnical boreholes can be grouped into three main families, two sub-vertical and one 232 

sub-horizontal, the orientations of which corroborate the influence of the regional structural 233 
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background at the ore deposit scale rock mass (Fig. 2). Locally, sub-vertical and mid-dip 234 

secondary discontinuity systems also arise. 235 

 236 

The rock mass is stratified with a moderate weathering, the spacing of the strata 237 

being  between 6 and 20 cm, with a persistence greater than 20 m, opening less than 1 mm 238 

without filling, except for a slime patina. The metamorphosed limestone rock mass is more 239 

competent than rocks of similar composition, but is more brittle, with a higher Hoek-Brown 240 

modulus value (mi = 14) compared with their unmetamorphosed parent carbonate rocks (mi 241 

= 12). The ore zone and its environment have rock mass qualities that generally range from 242 

fair to good (RMR between 50 and 75), except for localized fault zones where the rock mass 243 

quality is poor (RMR between 25 and 35). The water condition is humid and adversely 244 

influences the stability of the underground excavations, and can vary to wet due to water 245 

seepage in fault areas.  246 

 247 

Boreholes have been drilled from the surface and from underground galleries, along 248 

which geologists have measured RQD and other geotechnical variables on intervals of 249 

lengths varying between 1 and 4 m. To model RQD, we calculated average values for 3 m 250 

long composites along the boreholes. The resulting database contains 3800 composited data 251 

with their locations (easting, northing, elevation, azimuth, dip) and rock quality designations. 252 

The sampled volume is about 350 × 500 × 700 m3.  253 

4.2. RQD modeling  254 

 255 

As the distribution of RQD differs significantly from a Gaussian distribution (Fig. 3), a 256 

normal score transformation (anamorphosis) is performed before variogram analysis and 257 

simulation. The transformation accounts for declustering weights calculated with the cell 258 
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method (Journel, 1983), giving more importance to isolated data and downweighting 259 

clustered data to correct the effects caused by the irregularities of the sampling mesh. 260 

 261 

We performed variogram calculations according to the parameters listed in Table 1 to 262 

identify preferential directions of continuity in the geographical space. The calculated 263 

variograms (Fig. 4) show that no significant anisotropy in the geographical space exists for 264 

the normal scores data, be they regionalized in the 3D or the 5D space. The latter owes to 265 

experimental variograms calculated along different directions of the 3D space (with a fixed 266 

angular separation between paired data in the 5D approach) overlap to a great extent. Thus, 267 

henceforth, only omnidirectional variograms are calculated in the geographical space (Fig. 268 

5). The discontinuity observed at the origin ('nugget effect') is interpreted as a consequence 269 

of the small-scale variability of RQD, where continuity is not perceptible. On the other hand, it 270 

is also seen that the experimental variogram increases with the geographical separation 271 

distance and with the angular separation of the paired data until it reaches a sill at 272 

geographical separations of about 60 to 100 m. The better continuity of RQD (slower 273 

increase and lower sill) occurs when the angular separation between the measurements is 274 

low. 275 

 276 

These experimental variograms of the 5D regionalized data are fitted by basic nesting 277 

models, each being the product of two components: a stationary geographical correlation 278 

and an isotropic angular correlation. The fitted variogram model is the following:  279 

 280 

����(	, δ) = (0.19)������(	) + (0.20)��ℎ��,�(	, δ) + (0.35)��ℎ��,�(	, δ)281 

+ (0.14)��ℎ!"�,�(	, δ) + (0.10)��ℎ!"�,�(	, δ) + (0.14)��ℎ∞,�(	, δ) 282 

 283 

with h and δ being the geographical and angular separations between two measurements 284 

(Fig. 4e), and sphLa,n(h,δ) being one minus the product of an isotropic spherical correlation 285 
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with a range a evaluated at h, and a Legendre polynomial of degree n evaluated at cos(δ), 286 

see Eq. (A.4) in Appendix A.  287 

 288 

The variogram model for the 5D regionalized data fits quite well the calculated 289 

experimental points for all the different geographical and angular separations between paired 290 

data (Fig. 5). The first milestone on the ordinate axis corresponds to the nugget effect, with a 291 

partial sill of 0.19. After that, one uses three nested structures corresponding to the product 292 

of a spherical covariance with a range of 20, 40, or 130 m and a zero-degree Legendre 293 

polynomial. The latter is identically equal to 1, so that the three nested structures exclusively 294 

depend on the geographical separation. Finally, two nested structures consider the product 295 

of long-range spherical covariances with a second-degree Legendre polynomial, varying with 296 

the angular separation. The use of a zonal anisotropy (spherical structure with an infinite 297 

range) and the fact that the second-degree Legendre polynomial changes from positive to 298 

negative values as the angular separation increases allow modeling the increase in the 299 

variogram sill with the angular separation.  300 

 301 

For the traditional approach (3D regionalized data), we consider only the basic nested 302 

structures that depend on the geographical coordinates, and the variogram model remains 303 

as follows: 304 

 305 

����(	) = (0.19)������(	) + (0.20)��ℎ��,�(	) + (0.35)��ℎ��,�(	) + (0.24)��ℎ!"�,�(	) 306 

 307 

The proposed variogram models (for both the traditional and directional approaches) 308 

are validated using leave-one-out cross-validation techniques (Fig. 6). The RQD at each data 309 

location is simulated 500 times conditionally to the neighboring data in a radius of 200 m, 310 

excluding the five adjacent composites from either side of the same borehole to avoid 311 

considering data too close to the target location. The outcomes of the 500 simulations are 312 
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then averaged to obtain a prediction at the data location, which is compared against the true 313 

RQD value. The dispersion diagram between predicted and true RQD values for both 314 

approaches has a regression line that matches the first bisector (Figs. 6a, c), proving that the 315 

simulations are conditionally unbiased (Chilès and Delfiner, 2012). Furthermore, accuracy 316 

plots (Goovaerts, 2001) allow evaluating the capability of the 500 simulations to measure the 317 

uncertainty associated with the true values: the fraction of true values belonging to the p-318 

probability interval is practically equal to p, whatever this probability is in [0,1] (Figs. 6b, d). 319 

4.3. Conditional simulation 320 

 321 

Simulation is performed in the geographical space on a regular grid with a mesh of 2 322 

m x 2 m x 20 m covering part of the sampled region, for three directions in the angular space: 323 

north, east and vertical. Five hundred simulations of RQD are constructed at each target grid 324 

node and direction. The maps plotted in Figs. 7 and 8 show a horizontal slice (43,750 nodes) 325 

at elevation 350 m above the mean sea level of the geographical space. The borehole data 326 

distant less than 10 m from the target grid (Fig. 7) or less than 10 m from the target grid and 327 

45° from the target direction (Fig. 8) are superimposed, together with envelopes delimitating 328 

'confidence regions' inside which the kriging error variance is less than 90% of the data 329 

variance (i.e., the borehole data are informative and significantly reduce the uncertainty 330 

inside the envelope). In the maps of the average of the 500 simulations, the most remarkable 331 

contrast in RQD is observed in areas where the borehole data are present for both the 332 

traditional (Fig. 7b) and directional (Figs. 8b, d, f) approaches. This contrast is consistent with 333 

field information, according to which the rock mass quality is good (RQD > 75) in the eastern 334 

side of the sampled area, corresponding to the ore zone, and becomes regular (RQD < 50) in 335 

the western side. 336 

 337 
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For both approaches, the simulated RQD values vary from a poor (RQD ~40%) to an 338 

excellent (RQD >90%) rock quality in just a few tens of meters apart (Figs. 7a, 8a, 8c, 8e). 339 

The map for the average of the 500 simulations using the traditional approach (Fig. 7b) 340 

shows a more significant similarity with the average map of the directional approach when 341 

RQD is simulated along the north direction (Fig. 8b). This coincidence is an artifact since 342 

most of the boreholes in the study area are oriented sub-horizontally and mainly in a north-343 

southeast direction, as corroborated by the superimposed borehole data on the maps. 344 

 345 

Geologists and mining engineers could interpret very favorable conditions towards the 346 

east of the study area only based on Fig. 7b (traditional approach), corroborating the 347 

influence of the major structural domains (ENE-vergent fold-and-thrust system with dip angle 348 

75° SE, and dextral strike-slip movements with dips angles 60-80° SE). Even though it is true 349 

that a better rock quality is present in that sub-area, this interpretation is conditioned by the 350 

RQD values measured along a specific sampling direction, which is likely to be biased with 351 

respect to the RQD measured in other directions for the same area. The risk of bias is 352 

minimized when RQD is simulated along different directions using the directional approach, 353 

and one can be aware of the variations of RQD in the geographical space and the angular 354 

space. The good rock quality towards the east, evidenced in all the maps, above all along the 355 

vertical and north directions (Figs. 8b, d, f), can be confidently interpreted as the real 356 

behavior of the rock mass. The comparison between the simulation results in the absence or 357 

presence of a directional component allows visualizing the spatial variability to be expected 358 

in the field for a given direction. The latter is helpful in quantitatively define favorable 359 

conditions for the advance of the excavation from a quantitatively and non-qualitatively point 360 

of view, as is currently done in Bieniaswski's RMR classification. 361 

4.4. Change of support (upscaling) 362 

 363 
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The change from the sample support (cylindrical borehole composite) to block 364 

support implies averaging simulated RQD values in the geographical space. However, it 365 

does not make sense to average RQD values associated with different directions. For the 366 

change of support to be meaningful, a single direction has to be chosen, and all the RQD 367 

values being averaged should correspond to this direction. In the traditional approach, the 368 

selection of an appropriate direction to conduct a change of support is a challenge, insofar as 369 

it is necessary to find a 'representative' direction for (a) measuring RQD and (b) averaging 370 

the RQD values on the block: otherwise, one calculates a non-directional block-support RQD 371 

value that mixes different directions (Fig. 9, right panel). In the proposed (directional) 372 

approach, the problem is solved straightforwardly by defining as many block-support RQD as 373 

directions of interest, with no need for the data to be measured along the same direction 374 

because RQD can be simulated for each geographical coordinate and each direction (Fig. 9, 375 

top left). The regionalization in a 5D space (left panel) therefore allows calculating a 376 

directional RQD. All the calculations can be made on each simulation separately or averaged 377 

over the 500 simulations to obtain a prediction. 378 

 379 

If a block has to be characterized by a single RQD value, the minimum RQD over all 380 

the directions should be considered, which leads to a 'non-directional' block-support RQD 381 

(Fig. 9, middle left). In such a case, the change of support is essentially non-additive as it 382 

relies on a minimum and not an average over the directions. Since the use of a single RQD 383 

value to represent the degree of jointing or fracturing in a block is less informative than a 384 

direction-dependent RQD (given the high variability in the angular space), we propose to 385 

complement the non-directional (minimum) RQD with an anisotropy index (AI) of jointing 386 

degree for rock masses, following Zhen et al. (2018). The AI measures the spread or 387 

dispersion of the RQD for each block within the angular space. In this work, the AI of the 388 

jointing degree is defined for each block and each simulation as one hundred times the 389 
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difference between the maximum and minimum RQD values across all the directions, divided 390 

by the maximum RQD value (Fig. 9, bottom left): 391 

 392 

#$ = 100 %&'()*+ − &'()-.
&'()*+

/. 393 

 394 

Figure 10  shows that the anisotropy index is between 30% to 80%, with a marked 395 

contrast in the eastern part of the map close to the sampled area. This anisotropy of the 396 

jointing degree for the rock mass (directional variability of RQD) is not negligible and cannot 397 

be detected when RQD is regionalized in the three-dimensional geographical space and the 398 

directional component is discarded (i.e., using the traditional approach).  399 

 400 

In addition to the minimal RQD over all the directions (as the representative value of a 401 

block) and the anisotropy index (indicating how much RQD varies from one direction to 402 

another), one can identify the direction for which the minimal RQD is reached. This direction 403 

sheds light on the anisotropy of the discontinuity network in the rock mass and on the 404 

existence of preferential fracturing directions, as in the Terzaghi concept (Zhen et al., 2018) 405 

(the minimum RQD is expected to occur along the direction perpendicular to the fracture 406 

planes). Such an analysis can be made locally (for a single block) or for a group of blocks. As 407 

an illustration, Fig. 11 is an azimuthal projection of the upper hemisphere of an equal-angle 408 

polar net (Priest, 1985) showing the directional concentration for the minimum simulated 409 

RQD at a regular grid of the geographical space (1,750 blocks) and 100 directions spanning 410 

the space at intervals of 36° and 18° in azimuth and dip, respectively, where the gray dots 411 

represent the sampling directions. On average, the RQD rating decreases by 20.66% when 412 

considering the direction of the minimum value per block due to its directional dependence. 413 

The minimum RQD is more frequently reached along directions of azimuth between 330° to 414 

350° and dip between 30° and 45°, or directions with azimuth between 285° and 315° and 415 
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dip between 30° and 45°. The latter suggests that the fracture planes tend to be sub-416 

horizontal to oblique with a northwest-north direction, similar to the orientation of the parallel 417 

structural domain (NW-SE). 418 

 419 

RQD can be predicted at the block support by averaging the simulated RQD over 420 

many scenarios, as shown in Figs. 7 and 8 for the composite support. When the results of 421 

the 3D traditional approach (Fig. 12a) are compared with those using the directional 422 

approach (Fig. 12b-f), several differences arise, highlighting the influence of the directional 423 

dependence of RQD in the geomechanical zoning of the rock mass. In essence, Fig. 12a  424 

bears more resemblance to Fig. 12e, where RQD is simulated along the north direction, than 425 

to Fig. 12e and 12f corresponding to RQD simulated along the east and vertical directions. 426 

This reveals a bias of the RQD predicted with the traditional approach, conditioned to 427 

particular sampling directions, and cannot be extrapolated to other directions. In contrast, the 428 

directional block-support RQD (Fig. 12d-f) is more informative and helpful for geotechnical 429 

designs and rock mass rating or geotechnical zoning. Since it is an unbiased representation 430 

for a specific direction, it can evaluate the impact of the advance of the rock excavation in 431 

this direction in rock mass mechanical behavior. 432 

 433 

To exemplify the impact of directional RQD modeling in engineering decision-making, 434 

consider a tunnel bored along the north-south direction with a width of 30 ft (9.4 m) in an 435 

igneous/metamorphic rock, typical in the study area, where real rock pressures or 436 

swelling/squeezing ground do not exist. According to the rock support classification system 437 

based on RQD for tunnels of varying widths (Deere, 1989), either steel sets or reinforced 438 

shotcrete or RIB is compulsory almost everywhere if one relies on the RQD corresponding to 439 

the worst-case scenario for each block (Fig 12c), which may be too pessimistic. In contrast, 440 

based on the directional block-support RQD associated with the tunnel direction (north-441 

south) (Fig 12d), only a pattern bolting (4-6 ft centers) or a 4-6 cm shotcrete is required in the 442 
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eastern side of the area under study. On the other hand, considering the RQD models 443 

obtained with the traditional approach (Fig. 12a) or with the average scenario (Fig 12b) 444 

(average RQD over all the directions and all the simulations) gives a misleading 445 

representation of the actual rock quality in the eastern part, with a minimal requirement (no 446 

support or local bolts, which is too optimistic). 447 

4.5. Geotechnical zoning  448 

 449 

The lithological characteristics and the degree of alteration are homogeneous in the 450 

studied area; therefore, the rock mass quality is the most relevant criterion for its 451 

geotechnical zoning. Our results on the upscaled RQD may conveniently be integrated into 452 

widely used rock mass classification systems, such as the RMR and its modifications 453 

(Bieniawski, 1973, 1989; Hoek et al., 2013; Bertuzzi et al. 2016), the Tunneling Quality Index 454 

(Q; Barton et al., 1974) and the Geological Strenght Index (GSI; Marinos and Carter, 2018). 455 

Following Deere et al. (1967), we relate our simulated block-averaged RQD value with the 456 

engineering rock mass quality and implement a geotechnical zoning map (Fig. 13). For each 457 

block and each simulation, the simulated block-support RQD is assigned one of five classes 458 

(excellent, good, fair, poor, very poor), then the class that most frequently appears across the 459 

500 simulations is retained as the final classification of the block.  460 

 461 

The zoning maps so obtained strongly differ, depending on whether one considers 462 

the non-directional RQD calculated with the traditional approach (Fig. 13a), or the average 463 

(Fig. 13b) or the minimum (Fig. 13c) RQD over all the directions calculated with the proposed 464 

approach. The former approach ignores the directional dependence of RQD and mixes 465 

measurements made in different drilling directions. Therefore, the map in Fig. 13a lacks 466 

physical sense, where the primary class is a fair quality rock, with 85% of the blocks, 467 

followed by a good quality rock with 8%. The remaining are between poor (3.7%) and 468 
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excellent (3.3%). A similar mixing arises with the map in Fig. 13b: although RQD is 469 

regionalized in a 5D space, the simulated values are then averaged over all the directions, 470 

yielding zoning similar to the traditional approach (poor 0.3%, fair 88.1%, good 11.5%, and 471 

excellent 0.1%). In contrast, the map in Fig. 13c only considers the 'worst' direction for each 472 

block (the one associated with the lowest RQD) and yields a more conservative definition of 473 

the geotechnical domains, where almost three-quarters of the blocks are classified as poor to 474 

fair rock (73.4%) and the rest as very poor. This is the price to pay to get geotechnical zoning 475 

that is non-directional and, at the same time, physically meaningful. 476 

5. Discussion  477 

 478 

Contribution of our work. Like all types of one-dimensional measurements (borehole 479 

cores and scanlines), RQD depends not only on the geographical position of the sample but 480 

also on its direction, precluding a direct averaging that mixes different directions as a proper 481 

upscaling strategy. Upscaling must appropriately address the directional dependence to 482 

reduce uncertainties in geotechnical projects. Our proposal considers regionalizing the RQD 483 

data in a five-dimensional space corresponding to the three-dimensional geographical space 484 

crossed with the two-dimensional sphere, allowing RQD to be interpolated at any place in the 485 

geographical space and for any direction. Knowing the rock mass quality in specific 486 

directions is beneficial to evaluate the impact of the discontinuity orientations for tunnels, 487 

slopes, or foundation designs. The latter becomes critical, bearing in mind that the rock mass 488 

behavior is influenced by the regional geological structures rather than by the strength of 489 

intact rock, as shown, for instance, by the coincidence of the orientation of minimum RQD 490 

values (Fig. 11) with regional structural faults. 491 

 492 

 Applicability. The 5D geostatistical approach requires sampling data with information 493 

on RQD and on the borehole positions and orientations, information that should always be 494 
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logged and readily available in any good geotechnical database. The spatial and directional 495 

behaviors of RQD can be modeled in a flexible manner, using basic nested structures to fit 496 

the experimental variogram of the RQD data. This makes the proposal applicable to an 497 

extensive range of rock masses and conditions, including both weak and complex situations, 498 

such as tectonized (disturbed and broken by structural dislocation, shearing, folding, or 499 

compression) or heterogeneous (flysch formations or molassic formations) rock masses. 500 

 501 

Practical limitations. If all the boreholes have the same or almost the same orientation 502 

(e.g., vertical), then it can be challenging to infer the directional behavior of RQD and to 503 

apply the 5D geostatistics approach. Other practical limitations of this approach are the 504 

assumptions of stationarity in the geographical space and isotropy on the sphere (see 505 

Appendix). The former assumption is often sensible after partitioning the deposit into areas 506 

(‘geotechnical domains’) with similar structural and mechanical characteristics, and 507 

performing the geostatistical analysis within each domain separately. As for the latter 508 

assumption of isotropy, it may be questionable when there is only one network of parallel 509 

fractures, in which case it would make sense to work with anisotropic variogram models on 510 

the sphere. 511 

 512 

3D vs. 5D modeling. The traditional (three-dimensional, non-directional) and 513 

proposed (five-dimensional, directional) approaches to modeling RQD in rock engineering 514 

applications have been cross-validated, providing a good fit in terms of prediction and 515 

uncertainty assessment. Each approach has its pros and cons. For lower computational 516 

requirements and pre-processing time, the traditional approach achieves a globally good 517 

prediction of RQD but is locally biased as per the drilling direction. The directional approach 518 

is more demanding in terms of modeling and computational capacity but provides information 519 

on the directional RQD behavior, which is valuable for geotechnical zoning and decision-520 

making as it reflects the inherent nature of the geotechnical parameters (their directional 521 
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dependence) and can give an insight into the geometry of the rock fragments when 522 

combined with other direction-dependent parameters such as the fracture frequency. This 523 

approach accounts for the fact that, in the presented case study, one measurement of RQD 524 

provides much information about values at surrounding locations along the same or nearly 525 

parallel directions, as indicated by low variogram values at short separation distances and 526 

small separation angles (Fig. 5). However, an RQD measurement provides less information 527 

in a perpendicular direction. Therefore, it constitutes good practice to account for the 528 

directional dependence of RQD in any geostatistical modeling and upscaling analysis. 529 

6. Conclusions and perspectives 530 

 531 

The common practice in geotechnical modeling overlooks the directional dependence 532 

of geotechnical variables and characterizes volumetric support assuming rock masses as a 533 

continuum and isotropic medium and extrapolating or averaging sample-support information 534 

(from boreholes or scanlines) to a three-dimensional block support or to the rock mass. 535 

However, rock masses are seldom isotropic and are generally heterogeneous, hence our 536 

proposal to tackle the change of support problem by accounting for the inherent directional 537 

dependence of RQD (5D regionalization) and for its uncertainty at unsampled locations (use 538 

of geostatistical simulations). This change of support is performed by averaging the RQD 539 

simulated along a specific direction on a grid, discretizing each block in the geographical 540 

space. The upscaled directional RQD is practical, simple, and does not modify the original 541 

concept of RQD, making it suitable and serviceable in engineering applications, e.g., to 542 

determine required tunnel support. The directional approach better reproduces the 543 

geographical and directional heterogeneity and real nature of the rock mass. A non-544 

directional upscaled RQD can also be derived from this approach by considering the 545 

minimum value obtained over all the directions (corresponding to the most unfavorable 546 

direction of fracturing, i.e., the worst case scenario) and complemented with an anisotropy 547 
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index of jointing degree (sensu Zheng et al., 2018). Both the directional and non-directional 548 

RQD so obtained directly impact the prediction of safety factors and control measures in rock 549 

engineering projects.  550 

 551 

Our directional approach can be used for geotechnical zoning (Fig. 13), i.e., 552 

classifying the rock mass into similar design areas. Besides helping determine fault zones, 553 

and by applying empirical formulas, it is also possible to calculate other mechanical 554 

parameters such as the modulus of elasticity or the unconfined compressive strength (Zhang 555 

and Einstein, 2004, Zhang, 2016). This approach is helpful in any stage of a geotechnical 556 

project. At the exploratory or early stages, it is suggested to use adaptive geometries in the 557 

block model: the size of the block will depend on the variability of the geotechnical parameter 558 

in the sector and the available information, i.e., the less amount of available information (and 559 

the more variability of RQD), the larger the block size. At the development and production 560 

stages, it is possible to model the geotechnical parameters, whether in a parallel or 561 

perpendicular direction, to advance the construction of the excavation in rock. 562 

 563 

One way to optimize the analysis is to use adaptive geometries in the block model in 564 

further developments, giving a higher resolution (smaller block size) in areas with a higher 565 

anisotropy index or vice versa. Moreover, for upscaling directional variables such as RQD, it 566 

is interesting to analyze the relationship between strength and stiffness versus block size to 567 

determine the Representative Volume Element size, REV (Zhang et al., 2017).  568 

 569 

To broaden the scope of application of the presented proposal, future works in the 5D 570 

geostatistical modeling should include the design of variogram models and simulation 571 

algorithms using non-separable covariance functions or anisotropic covariances on the 572 

sphere, together with exploratory tools to identify preferred directions of anisotropy on the 573 

sphere based on sampling information. 574 
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Appendix A 750 

A.1. Traditional approach: modeling RQD in the 3D Euclidean space 751 

 752 
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This approach considers that RQD varies only with the geographical coordinates 753 

(easting, northing, and elevation), i.e., regionalized in the Euclidean space R3. A common 754 

practice for geostatistical modeling is to assume second-order stationarity, i.e., the mean 755 

value and the covariance function or the variogram are invariant under a translation in space, 756 

which allows their inference from a set of sampling data (Chilès and Delfiner, 2012). A 757 

convenient way to model the experimental covariance (or experimental variogram) is through 758 

a positive linear combination of basic nested structures: 759 

                                  1(	) = 23456(7 + 	), 6(7)8 = 9 :;
<)*+

;=!
>;(	)                                                        (#. 1) 760 

where Z is the Gaussian random field associated with RQD, x and x+h are two points in the 761 

geographical space separated by vector h and, for s = 1,… Smax, bs is a nonnegative real 762 

value, and >s is an autocorrelation function (positive semi-definite function taking the value 1 763 

at h = 0).  764 

 The Gaussian random field can then be simulated as a sum of Smax components, 765 

each associated with a particular nested structure: 766 

                                                                          6(<)(7) = 9 ?:;
<)*+

;=!
6;

(<)(7)                                                 (#. 2) 767 

where the superscript (S) stands for 'simulated'. The reader is referred to Emery and 768 

Lantuéjoul (2006) for algorithmic details on the simulation process for the nested structures 769 

commonly used in geostatistical applications. 770 

A.2. Directional approach: modeling in a 5D product space 771 

 772 

To account for the fact that RQD is direction-dependent, the associated random field 773 

Z is now defined in a five-dimensional space (R3 × S2, with S2 the unit sphere), i.e., Z = 774 
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{Z(x,u): x ∈ R3 and u ∈ S2}, where x represents the geographical coordinates of the 775 

measurement, and u the direction (azimuth and dip) of this measurement.  776 

 777 

The simplest way to model the spatial correlation of regionalized data in such a 5D 778 

space is to consider second-order stationarity in the geographical space and second-order 779 

isotropy on the sphere. These assumptions imply that the mean value is constant and that 780 

the covariance function or the variogram between the two random variables located at (x,u) 781 

and (x′,u′) in R3 × S2 only depends on the separation vector h = x′-x and on the geodesic 782 

distance or angular separation δ(u,u′) = arcos(<u,u′>), with < , > the inner product. The 783 

modeling can be extended as follows: 784 

 785 

                 1(	, @) = 9 :;1;(	, @)
<ABC

;=!
                                                   (#. 3) 786 

 787 

where, bs ≥ 0 for s = 1,… Smax and Cs is a basic autocorrelation (positive semi-definite) 788 

function defined on R3 × [0, π]. In this work, separable basic autocorrelation functions are 789 

used: 790 

 791 

1;(	, @) = >;(	)D.(;)(cos @)                                                     (#. 4) 792 

 793 

where >s is an autocorrelation function in R3 and D. the Legendre polynomial of degree �. 794 

Schoenberg (1942) showed that the mapping @ ⟼ D.(cos @) is an isotropic correlation 795 

function on the sphere. Because the Legendre polynomial D. has the same parity as �, and 796 

because the RQD measurement along a direction u is the same as along the opposite 797 

direction -u, the covariance should remain the same when changing δ(u,u′) into π-δ(u,u′), 798 
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i.e., when changing Pn(cos δ) into Pn(-cos δ). Accordingly, only even degrees �(�) should be 799 

considered in Eq. (A.4). 800 

As for the previous approach, the Gaussian random field can be simulated as a sum 801 

of Smax components. Each component is associated with a particular nested structure and 802 

separates into the product of a geographical component and a directional component 803 

(Sanchez et al., 2019): 804 

                                                  6(<)(7, I) = 9 ?:;
<)*+

;=!
6;

(<)(7)J;
(<)(I)                                              (#. 5) 805 

 806 

with 6;
(<)(7) a zero-mean random field in the Euclidean space with autocorrelation >;(	), and 807 

J;
(<)(I) a zero-mean random field on the sphere with autocorrelation D.(;)(cos @), see Emery 808 

and Porcu (2019) or Lantuéjoul et al. (2019) for examples on how to simulate random fields 809 

on the sphere.  810 
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Tables 811 

 812 

  Horizontal variograms Vertical variograms 

Azimuth (°) 0, 90, 0 0, 0, 0 

Dip (°) 0, 0, 45 90, 0, 135 

Lag separation (m) 10 10 

Number of lags 45 45 

Angular separation between data (°) 0, 30, 60, 90 0, 30, 60, 90 

Azimuth tolerance (°) 90, 20, 90 90, 20, 90 

Dip tolerance (°) 20 20, 90, 20 

Lag tolerance (m) 5.0 5.0 

Angular separation tolerance (°) 15 15 

 813 

Table 1. Parameters for experimental variogram calculations 814 

 815 

  816 
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Figure captions 817 

 818 

Figure 1. Geographical and angular spaces. Each core sample (blue cylinder) is indexed by the easting, northing 819 

and vertical coordinates of its gravity center in the geographical space, as well as its azimuth and dip in the 820 

angular space, totaling 5 coordinates. The measured RQD values depend on both the geographical and angular 821 

coordinates.  822 

 823 

Figure 2. Block modeling of rock mass class (based on rock quality designation observed at 3800 core samples) 824 

in a volume of 350 m along the east direction, 500 m along the north direction, and 700 m along the vertical 825 

direction (polymetallic deposit). The classes can be associated with lithological and structural characteristics of 826 

the deposit. 827 

 828 

Figure 3. Experimental histogram of Rock Quality Designation (RQD) of borehole data composited at a length of 829 

3 m. 830 

 831 

Figure 4. Experimental variograms of normal scores data in horizontal, vertical, and oblique directions, for 832 

geographical separations ranging from 0 to 500 m and angular separations equal to (a) 0°, (b) 30°, (c) 60°, and 833 

(d) 90°. The geographical separation measures the distance between the gravity centers of the paired samples, 834 

while the angular separation measures the difference between their orientations (e).  835 

 836 

Figure 5. Experimental (asterisks) and modeled (solid lines) variograms of the normal scores data for 837 

geographical separation distances ranging from 0 to 150 m and angular separations between paired data ranging 838 

from 0° to 90°. 839 

 840 

Figure 6. Leave-one-out cross-validation results: (a, c) scatter plots between true RQD (vertical axis) at the 841 

sampling locations and the average of 500 simulations (horizontal axis) conditioned to the data in a neighborhood 842 

of the target location (excluding the five nearest composites on either side of the same borehole), and (b, d) 843 

accuracy plots showing the proportion of data belonging to a probability interval as a function of the interval 844 

probability, (a, b) for traditional and (c, d) directional approaches. 845 

 846 
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Figure 7.  Simulation of RQD using the traditional approach (ignoring directional dependence and regionalizing 847 

RQD in the 3D geographical space only). (a) Map of the first simulation. (b) Map of the average of 500 848 

simulations. Black dots correspond to the borehole data distant less than 10 m from the grid, and the contour 849 

represents the envelope of the kriging variance equal to 0.9 times the data variance.  850 

 851 

Figure 8.  Simulation of RQD using the directional approach (regionalizing RQD in the 3D geographical space 852 

crossed with the 2D angular space). (a, c, e) Maps of the first simulation for (a) north, (c) east, and (e) vertical 853 

target directions. (b, d, f) Maps of the average by direction of 500 simulations for (b) north, (d) east, and (f) vertical 854 

target directions. Black dots correspond to the borehole data distant less than 10 m from the grid and 45° from the 855 

target direction. The contour represents the envelope of the kriging variance equal to 0.9 times the data variance. 856 

 857 

Figure 9. A synthesis of the different upscaling proposals. Ns stands for the number of samples per block, Nb for 858 

the number of blocks in the geographical space, Nk for the number of simulations, and Nj for the number of 859 

directions in the angular space. 860 

 861 

Figure 10. Map of anisotropy index (AI) of jointing degree using the directional approach (average index over 500 862 

simulations). The blue contour represents the envelope inside which the kriging variance in all the directions is 863 

less than 0.9 times the data variance (intersection of the directional envelopes as defined in Fig. 8). The black 864 

contour represents the envelope inside which the kriging variance in at least one direction is less than 0.9 times 865 

the data variance (union of the directional envelopes as defined in Fig. 8). Both envelopes enclose 'confidence 866 

regions' in which the borehole data are informative.  867 

 868 

Figure 11. Upper hemispherical equal angle polar projection net or regionalized azimuthal projection showing the 869 

concentration of the directions for which the minimum block-support RQD is reached. Calculations consider 500 870 

simulations and 1,750 blocks of 10 × 10 × 20 m in a horizontal section of the geographical space. The sphere is 871 

discretized into 100 directions. Concentric circles represent the dip/plunge each 30°, increasing from outside and 872 

azimuths measured clockwise in degrees from north indicated in the out end the projection. The grey dots 873 

correspond to the sampling directions of the borehole data. 874 

 875 

Figure 12. Map of the average of 500 simulations of block-support RQD obtained with the (a) 3D traditional 876 

approach and with the directional approach; (b) average block-support RQD over all the directions; (c) minimum 877 

block-support RQD over all the directions; directional block-support RQD along the (d) north, (e) east and (f) 878 
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vertical directions. The maps in (a) and (b) mix different directions and do not have a clear physical meaning, 879 

while the maps in (c-f) only refer to a single direction per block (most conservative direction in (c), which may vary 880 

from block to block, and fixed direction in the other maps). 881 

 882 

Figure 13.  Geotechnical zoning map using block-support (upscaled) RQD. (a) The most probable class is based 883 

on 500 simulations obtained with the traditional 3D approach. (b) and (c) Most probable class based on 500 884 

simulations obtained with the 5D directional approach: average over all the directions (b) and minimum RQD over 885 

all the directions (c).  886 






























