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Enabling safe walking rehabilitation on the exoskeleton Atalante:
experimental results

Maxime Brunet, Marine Pétriaux, Florent Di Meglio and Nicolas Petit

Abstract— This paper exposes a control architecture enabling
rehabilitation of walking impaired patients with the lower-limb
exoskeleton Atalante. Atalante’s control system is modified to
allow the patient to contribute to the walking motion through
their efforts. Only the swing leg degree of freedom along the
nominal path is relaxed. An online trajectory optimization
checks that the muscle forces do not jeopardize stability.
The optimization generates reference trajectories that satisfy
several key constraints from the current point to the end of
the step. One of the constraints requires that the center or
pressure remains inside the support polygon, which ensures
that the support leg subsystem successfully tracks the reference
trajectory. As a result of the presented works, the robot provides
a non-zero force in the direction of motion only when required,
helping the patient go fast enough to maintain balance (or
preventing him from going too fast). Experimental results
are reported. They illustrate that variations of ±50% of the
duration of the step can be achieved in response to the patient’s
efforts and that many steps are achieved without falling.

I. INTRODUCTION

Patients suffering from walking impairments are unable to
produce the efforts required to achieve regular walk patterns.
High-dosage walking rehabilitation has many benefits but
is laborious for physiotherapists, particularly for the most
impaired patients who struggle maintaining their balance.
From these observations, the concept of robotic-assisted
gait training has emerged. This concept involves motorized
devices (in this paper a robotic exoskeleton) and aims at
teaching patients how to produce the appropriate efforts to
walk, following either a nominal gait pattern, ideally, or
custom gait patterns tailored to their specific disabilities. All
robotic-rehabilitation control laws [1]–[4] introduce a certain
level of freedom given to the patients. For exoskeletons, this
constitutes a challenge because the patient muscle forces may
jeopardize walk stability in unpredictable ways.

In this paper, we present control system updates enabling
the use of the self-balanced lower-limb exoskeleton Atalante
for rehabilitation. We choose to let the patient physically
contribute to the motion of the swing leg and, consequently,
we allow a modulation of the velocity at which a predefined
gait is traveled. Because this directly impacts stability, a
new reference trajectory has to be computed for the low-
level controllers of the whole system. This is done online
by an optimization-based trajectory planning algorithm. This
methodology is presented in the article and tested experi-
mentally. The two legs of Atalante are the subjects of very
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distinct changes.
On the swing leg we proceed as follows. The nominal

gait for the two-legged system, generated as in [5], serves to
define a geometric path for the swing leg. The exoskeleton
efforts in the longitudinal direction of the path are nullified
and left for the patient to produce, while the robot motion
is strictly controlled in the hyperplane orthogonal to the
path. To this end, we rely on the Virtual Guides (VG)
methodology [6], [7]. Resembling [8], our VG approach
maps the high-dimensional user efforts to a one-dimensional
quantity: the velocity at which the swing leg’s geometric path
is followed. Implicitly, this defines a new schedule for the
path, the patient schedule, which we aim to follow as long
as safety is not threatened.

On the support leg the control structure is also changed.
The Atalante control system uses admittance [9] to generate
the contact forces that ensure the stabilization of the Center-
of-Mass (CoM) dynamics around a reference trajectory. The
reference trajectory tracked must satisfy the unilateral contact
constraints (as a consequence, the Center of Pressure (CoP)
must remain in the support polygon). Because the swing leg
degrees of freedom (DoF) are used for the rehabilitation task,
only the support leg can be used for the admittance controller.

To define this reference trajectory consistently with the
patient schedule, a simple time rescaling of the nominal gait
is possible but may violate of the aforementioned constraints.
Therefore, combining VG and admittance control entails
defining a more careful approach. We chose to adopt an
online planning strategy. This approach is similar in spirit
to [10], as we optimize the trajectory to best satisfy the
patient’s input, with the difference that we adapt the tra-
jectory at a higher frequency, to maximize responsiveness to
the patient efforts

The online planning strategy we implement solves an
optimal control problem (OCP) over an unspecified hori-
zon for a Linear Inverted Pendulum (LIP) model, which
represents the overall balance dynamics of the system. The
patient schedule is treated as a penalty on the final time.
The unilateral contact constraints is a constraint on the CoP.
To ensure the feasibility of the next step, it is sufficient
(see [11]) to require that the trajectory endpoint satisfies
some geometric constraints. These are included in the OCP.
Similar online trajectory generation can be found in many
related works for quadrupeds [12]–[18], humanoids [19],
[20], or manipulators [21]. It is worth noting that of all these
schemes, only [21], [22] solves a non-linear MPC problem
at 1kHz as we do (with a CPU twice as fast as Atalante
onboard computer). The simplicity of the LIP model allows

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 12652

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n 
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

61
23

5

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on January 22,2024 at 17:31:06 UTC from IEEE Xplore.  Restrictions apply. 



us to use a fast resolution method for this nonlinear OCP,
relying on the theoretical study of [23].

The methodology has been experimentally tested. During
the experiments, the optimization algorithm finds a CoM
trajectory. As long as the duration of this trajectory matches
the patient schedule, the user is allowed to drive the swing
leg velocity. Otherwise, the patient schedule is considered
non-feasible (i.e. it jeopardizes the balance of the system).
It is overridden and the swing leg velocity is modified.
Consequently, the swing leg actuators generate non-zero
forces in the direction of motion, helping the patient go fast
enough to maintain balance (or preventing him from going
too fast). In all cases, the support leg controls the robot
balance. As a result of the methodology, the robot assists
the swing leg motion only when required.

The main contribution of the article is the detailed exposi-
tion of this control methodology, along with its experimental
validation. In particular, we report an experiment consisting
of a succession of 10 steps with a user-driven velocity
variation of more than 50% of the baseline velocity.

The paper is organized as follows. In Section II we
describe the dynamical models used for control design, the
swing leg Virtual Guides controller, and the support leg
admittance controller. In Section III, we describe the online
planning strategy generating the controllers’ reference trajec-
tories and compare it with a naive approach. In Section IV
we perform experiments to illustrate quantitatively the safety
increase provided by the online planning strategy, and the
performance of the overall approach.

II. FEEDBACK CONTROLLERS: A SPLIT-LEG DESIGN

In this section, we describe the Virtual Guide controller
used to regulate the swing leg DoF and the admittance
controller regulating the contact forces through the support
leg actuators. First, we recall the equations of motion on
which we rely throughout the article.

A. Dynamics of the patient-exoskeleton system

Consider the exoskeleton depicted in Fig. 1. The fastening
system of the exoskeleton completely assigns the positions
of the lower limbs of the patient with respect to the robot.
Their torso is less firmly attached, but we consider it rigidly
fixed to the exoskeleton. These positions define the major
part of the patient’s weight distribution, hence we neglect all
the other DoF of the patient. However, the mass distribution
of patients cannot be easily measured. As a surrogate, we
assume they follow a normal distribution, which can be found
in [24]. Under these assumptions, the patient-exoskeleton
system can be modeled as an articulated rigid-body system
of total mass m with 12 actuated DoF (the joints of the
exoskeleton) and 6 unactuated DoF (the position and ori-
entation of the exoskeleton pelvis in the world frame). In
details, the Lagrangian dynamics of the system write [11]

M(q)q̈ + C(q, q̇) =

τsw + τswu
τsp + τspu

0

+
∑
i

Ji(q)
⊤fi (1)

Fig. 1: Atalante’s kinematics (revolute joints in blue)-left. An
able-bodied user performs a rehabilitation exercise-right.

with q =
(
qsw, qsp, qun

)⊤ ∈ R18 the generalized coordinate
vector, composed of the actuated positions vector qsw of
the swing leg, qsp the actuated positions of the support
leg, and the unactuated degrees of freedom qun, M(q)
the generalized inertia matrix of the system, C(q, q̇) the
combined gravity and inertia effects vector, (τsw, τsp) the
vectors of exoskeleton swing and support joint torques to
be chosen by the controllers, (τswu , τspu ) the vector of swing
and support joint torques created by the patient, fi ∈ R3 the
external forces and Ji(q) the associated Jacobian matrices at
each contact point pi.

The dynamics of the system, in an inertial reference frame,
taken as a whole, give the Newton and Euler equations [11]

m(c̈+ g) =
∑
i

fi, L̇ =
∑
i

(pi − c)× fi (2)

with c =
(
cx,y, cz

)
∈ R3 the CoM of the system and L the

angular momentum of the system with respect to its CoM.

B. Virtual guides controller on the swing leg

The methodology of Virtual Guides [6] allows a paramet-
ric curve P to be followed at a velocity prescribed by the
patient’s efforts on the robot. We propose to use it to estimate
the user intent.

1) Constructing the parametric curve: The parametric
curve used by the controller is built from a nominal gait tra-
jectory T : t ∈ [0, Tf ] 7→ T (t) ∈ R12, readily computed as
in [25], from which we extract the swing leg trajectory Tsw :
t 7→ Tsw(t) ∈ R6. The latter can be reparametrized with
respect to its curvilinear abscissa s : τ 7→

∫ τ

0
|| ˙Tsw(t)||2dt ∈

[0, Lmax], with Lmax the total length (in the articular space)
of the swing leg trajectory. By this formula, the curvilinear
abscissa s is monotonous, therefore, assuming further that
the Euclidean norm || ˙Tsw(t)||2 is non-zero for all t, s can be
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inverted. Then, we can define the parametric curve as

P ≜ Tsw ◦ s−1

2) Virtual guides low-level controller: In the following

σ : t 7→ σ(t) ∈ [0, Lmax]

is a freely chosen control variable which defines the current
set-point P (σ(t)) for the swing leg.

The Virtual Guides methodology minimizes the interacting
force between the robot and the user while constraining the
robot to the parametric path P . Defining the parametric path
in joint-space, by constrast with Cartesian space, enforces
inter-joint coordination. At the current point P (σ(t)), the
Frenet-Serret unit tangent vector to the curve P , pointing in
the direction of motion is

T (σ) ≜
dP

dσ
(σ)

To provide contraction property in the direction orthogonal
to T , the joint torques of the swing leg are computed using
a high-gain proportional-derivative controller

τsw(σ, σ̇) = Ksw
p (P (σ)− qsw) +Ksw

d (T (σ)σ̇ − q̇sw) (3)

with Ksw
p ,Ksw

d ≻ 0 constant gain matrices.
3) Estimation of the target velocity: Following the Virtual

Guides approach, we define the estimate of the user desired
velocity σ̇t such that the projection of the efforts τsw(σ, σ̇t)
along the path P is nullified, which reads

T (σ)⊤τsw(σ, σ̇t) = 0 (4)

This yields [7]

σ̇t ≜
T (σ)⊤

[
Ksw

p (qsw − P (σ)) +Ksw
d q̇sw

]
T (σ)⊤Ksw

d T (σ)
(5)

For the rest of the article, we consider that satisfying the user
desire by imposing σ̇ = σ̇t is the rehabilitation objective. We
now call σ̇t the target velocity. The design of a safe σ such
that σ̇ is as close to σ̇t as possible is the subject in Section III.

C. Admittance controller on the support leg

The only terms yet to be defined in Eq. (1) are the torques
of the support leg τsp, this is addressed below.

The Newton-Euler equations (2) can be simplified into
the Linear Inverted Pendulum (LIP) dynamics to ease the
stability analysis and the design of controllers. Indeed, along
gait patterns of moderate velocity, the angular momentum
variations are small and can be neglected. Assuming the
robot walks on horizontal ground and the CoM remains at
a constant height cz , Eq. (2) simplifies to the following LIP
dynamics [11]

c̈x,y = ω2(cx,y − u) (6)

where ω ≜
√

g
cz is the angular-frequency, and the CoP u ≜∑

px,y
i fz

i∑
fz
i

lies inside the support polygon (rectangle) U by
definition. We note x the state of the LIP

x(t) ≜ (c(t), ċ(t))

Reference trajectory
computation

Swing leg ctrl. (3)

Support leg ctrl. (8)

Exoskeleton-patient

Patient schedule estimator (5)

(qsw, q̇sw)

σ∗

(x∗, u∗)

τsw

τsp

(x, u)

(qsw, q̇sw)σ̇t

Fig. 2: Proposed control architecture for rehabilitation.

Eq. (6) reproduces the unstable nature of the system. For
stabilization, a State-of-the-art admittance controller such as
the one detailed in [9] is used

ud = u∗−(1+
kp
ω
)(ξ∗−ξ)− ki

ω

∫
(ξ∗−ξ)+kd(ξ̇∗− ξ̇) (7)

with ξ ≜ c + ċ
ω ∈ R2 the Divergent Component of Motion

(DCM), readily computed from the LIP state x, the DCM
reference trajectory ξ∗, computed from the state reference
trajectory x∗, and the associated CoP reference trajectory
u∗, and kp, kd, ki ≻ 0 three diagonal matrices. The choice
of the reference and feedforward trajectories (x∗, u∗) is the
topic of Section III.

For implementation, ud ∈ R2 is converted into articular
targets (qsw∗, qsp∗) ∈ R6 × R6 using inverse kinematics
and admittance tasks inspired from [9]. Finally, the sup-
port leg joint torques τsp are computed using a high-gain
proportional-derivative controller

τsp = Ksp
p (qsp∗ − qsp) +Ksp

d (q̇sp
∗
− q̇sp) (8)

with Ksw
p ,Ksw

d ≻ 0 constant gain matrices. More details on
this admittance scheme can be found in Appendix A.

D. Summary of low-level controller updates

The updates of the control law that we propose are
schematically depicted on Fig. 2. They consist in separated
calculations of τsw and τsp, during single support phases.
Classically, the admittance methodology is used on both legs
during double support phases (see Appendix A for more
details). On the one hand, a new calculation of τsw is
proposed according to the VG law Eq. (3). On the other
hand, τsp is calculated according to the admittance control
law Eq. (8). These controllers require a reference trajectory
(x∗, u∗), satisfying unilateral contact constraints (the CoP
should remain in the support polygon U), and a schedule σ∗,
taking into account the patient input σ̇t. Their design is the
topic of the next section.

III. REFERENCE TRAJECTORY DESIGN

In this section, we first expose a Time Rescaling (TR)
strategy for the choice of the reference variables (σ∗, x∗, u∗).
As will appear, it is not sufficient as it does not enforce
the unilateral contact constraint. Then, we expose an Online
Planning (OP) strategy which explicitly takes the constraints
into account. We illustrate its benefits on an example. A more
thorough experimental investigation of the stability benefits
is provided in Section IV-A.
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Fig. 3: Reference CoP uTR
y , CoM cTR

y and measured CoM
cy positions along the Y axis of the inertial frame. Reference
quantities computed using the TR strategy and a simulated
target velocity as low as 60%. Black horizontal lines repre-
sent the support polygon limits.

A. Time Rescaling (TR) strategy: a naive approach

A natural way to define the reference control variable σ∗

is to simply integrate the target velocity

σ∗(t) =

∫ t

0

σ̇t(τ)dτ (9)

where σ̇t is given by Eq. (5). Then, from the articular
nominal gait T , and Eq. (9), the state reference trajectory
x∗ can be computed using the time-rescaled nominal gait
trajectory and Forward Kinematics (FK), see [26]

x∗ = FK ◦ T ◦ s−1 ◦ σ∗ (10)

Finally, the corresponding input u∗ can be readily computed
from x∗ using Eq. (6).

However, this TR strategy does not take the unilateral
contact constraints into account. As a result, the feedforward
trajectory u∗ is not confined to the support polygon U (and
the state reference trajectory x∗ does not respect the input-
constrained LIP dynamics).

This shortcoming is illustrated by a simulation in Fig. 3.
The reference CoP, in green, is not contained in the sup-
port polygon when modulating the trajectory at 60% of
the nominal velocity. The final state (the endpoint of the
red line) obtained by forward integration of the full-state
dynamics (1), using the open-source simulator Jiminy [27],
is different from the nominal final state xf ≜ FK ◦ T (Tf )
(the endpoint of the blue line). The eight-centimeter resulting
error is sufficient to make the robot fall at the end of the step.

B. Online Planning (OP) strategy

Instead of the previous naive approach, we consider a joint
optimization of the variables σ∗ and (x∗, u∗) taking into
account the constraints U and a next-step LIP-feasibility [11]
constraint xf .

The target velocity σ̇t (saturated to be strictly positive) is
converted into a target time T t to the end of the current step

T t =
Lmax − σ

σ̇t
(11)

min max mean
CPU time 0.039 ms 0.22 ms 0.11 ms

Fig. 4: CPU time of the OP strategy (running on a i7-
1185G7E at fixed 1.8GHz frequency).

This equation does not exploit any behavioral description of
the patient [28], but solely assumes that the patient’s desire
is to keep the velocity constant until the end of the step.
A bi-level trajectory optimization problem for the input-
constrained LIP dynamics is formulated from the current
state x0 as follows

Problem 1: Given (x0, xf ) and T t find uopt and T opt as

T opt = argmin
T∈T(x0,xf )

|T − T t|

s.t. uopt = argmin
u∈Ω(x0,xf ,T )

∫ T

0

u2dt

where T(x0, xf ) ⊂ R is the set of times for which Ω is
not empty, Ω is the set of feasible commands respecting the
boundary conditions (x0, xf )

Ω(x0, xf , T ) ≜ {u ∈ Uad(T ), xu(0) = x0, xu(T ) = xf}

with xu the solution of Eq. (6) from x0 and Uad(T ) ≜
{u s.t. ∀t ∈ [0, T ], u(t) ∈ U} is the set of admissible con-
trols.

Problem 1 is in fact a minimal time problem for an
input-constrained linear dynamics of dimension 4. Its phase
plane analysis, decoupling the X and Y directions, has been
performed in [23], covering all possible cases of initial and
final conditions. The main finding of [23] is that T is the
union of at most two intervals, such that the solutions T opt

and uopt can be easily determined using a bisection method,
granting high-numerical efficiency. Computation times are
reported in table Fig. 4. They allow a 1 kHz update of
the reference trajectory. This is consistent with our aim to
maximize responsiveness to the patient efforts.

Then, the reference control variable σ∗ is computed from
the optimal time T opt as follows

σ∗ =

∫ t

0

(
σ̇opt ≜

Lmax − σ(τ)

T opt(τ)

)
dτ

The reference trajectories (x∗, u∗) are obtained from the
optimal command uopt as follows

x∗ = xuopt

, u∗ = uopt

The effect of this OP strategy is illustrated on Fig. 5,
where, as opposed to Fig. 3, the CoP reference trajectory
(green) is entirely contained in the support polygon (black
horizontal lines) and offset towards the y = 0.0 line. As a
result, the endpoint of the forward integration of the full-
state dynamics (1) (the endpoint of the red line) is close
to the nominal final state (the blue cross): the state is
successfully driven to the final state using the stabilization
controlled Section II-C. This recursively ensures the success
of the walk. To further illustrate the merits of this approach,
we report experimental results in the next section.
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Fig. 5: Reference CoP uopt
y , CoM copty and measured CoM

cy positions along the Y axis of the inertial frame. Reference
quantities computed using the OP strategy and a simulated
target velocity as low as 60%. Black horizontal lines repre-
sent the support polygon limits.

IV. EXPERIMENTAL RESULTS

Two types of experiments are conducted. First, we com-
pare the stability properties of the two strategies and con-
clude on the vast superiority of the OP strategy. Then, we
explore the performance of the OP strategy in terms of
compliance to the patient schedule.

A. Stability comparison

We perform several stability comparisons replacing the
patient with a dummy. To simulate the behavior of the pa-
tient, we consider pre-recorded1 piecewise constant velocity
signals σ̇t(t) consisting of a square wave whose duration and
magnitude are varied. An experiment consists of a 10 steps
walk in straight line. A practitioner keeps hold of the two
lateral exoskeleton handles and is allowed to create an effort
with one finger on each hand only. This creates a very low
upper-bound on the external forces.

The reported results on Fig. 6 show a great safety im-
provement offered by the OP strategy in the low-velocity
range, below 90% of nominal velocity, compared to the
TR strategy. They stress that, using the OP strategy, the
proposed controller is completely preserving the balance of
the system for velocities about as low as 70% of the nominal
velocity, and velocities as low as 50% of the nominal velocity
provided the change duration is lower or equal to 300ms.
These results are in complete alignment with the previous
stability results obtained in simulation and reported in [23].

B. Rehabilitation: experiment with an able-bodied user

We report below the results of a 10-steps walking experi-
ment with an able-bodied user using the proposed controller
with the OP strategy. We first report a single step velocity
(on Fig. 7) and CoM trajectory (on Fig. 8). Figure 7 reveals
how the OP strategy accounts for the unilateral contact
constraints. In detail, during the first 450ms of the single

1i.e. replacing Eq. (5) with a predefined function of time
2The white spaces in this figure corresponds to unfeasible values of the

parameters violating the constraint σ∗ ≤ Lmax.

Fig. 6: Comparison of experimental stability for velocity
variations having various durations and magnitudes2. Green:
stable without external help. Orange: stable with practitioner
help. Red: unstable. Left: TR strategy. Right: OP strategy.

Fig. 7: Effective velocity σ̇opt and target velocity σ̇t over
a step with an able-bodied user (step 6 of Fig. 9). Black
curves: lower and upper limits of the feasible velocities set.

support phase, the OP strategy leaves the target velocity
unchanged because the solution of Problem 1 is T opt = T t

(σ̇opt in green completely overlaps σ̇t in blue). Hence, the
patient’s schedule is fully respected. During the remaining
500ms, the OP strategy starts filtering the target velocity to
preserve the balance of the system, σopt ̸= σ̇t. Gradually,
σopt is constrained around 71% normalized velocity.

The OP strategy also wisely chooses the CoM reference
trajectory and satisfies the final state constraint. Figure 8
shows the final constraint is satisfied as the replanned (OP)
and time-rescaled (TR) CoM trajectories’ endpoints are
identical. The CoM trajectory computed with OP strategy
is very different from the one with TR strategy, and, in
particular, exhibits a minimum on the Y axis 2.5 cm closer
to the support foot (centered at 0.0 cm) than the nominal
trajectory: the exoskeleton sways its hip toward the support
foot to accommodate for the user’s low-velocity desire. This
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Fig. 8: CoM from TR and OP strategies over a step with
an able-bodied user (step 6 of Fig. 9). Grey areas: double
support phases. White areas: single support phases. Left: X
axis. Right: Y axis.

Fig. 9: Effective velocity σ̇opt over a 10-steps experiment
with an able-bodied user. Grey areas: double support phases.
White areas: single support phases.

is consistent with human behavior.
Finally, Fig. 9 shows σ̇opt over the whole experiment, with

double support areas in grey. During this experiment, the user
varies the level of efforts produced by their legs during the
single support phases. Note that Eq. (5) is only used during
these phases while the user’s desire is ignored during double
support phases3.

V. CONCLUSION

The control architecture proposed in this article extends
the functionalities of Atalante and enables rehabilitation tasks
for walking impaired patients. Since stability of the walk is
handled by the self-balanced exoskeleton, the physiotherapist
is relieved from this tedious but critical task.

The quantitative evaluation on physical health improve-
ment remains to be done. In particular, the evaluation of
the controller from a medical perspective will certainly be
insightful to guide future developments.

In anticipation, several points in the methodology could
be improved further. The new controller is not active during
the double support phases of the walk. However, the CoM
transfer during double support is a question of interest for

3More precisely, the reference trajectory used during double support is
computed once, at the beginning of the step. For this, we use the OP strategy
and the mean velocity of the previous step, for sake of continuity

walking rehabilitation and could be addressed with further
developments of the presented method. It would also be
interesting to consider adapting the step length to the patient
efforts. This is a very natural extension to be addressed in the
online planning strategy. For this, a library of predefined gaits
could be used. Finally, the LIP model could be enhanced
to address more dynamical gait patterns where the angular
momentum variations can not be neglected.

APPENDIX

A. CoP control using admittance on the support leg

The admittance scheme is adapted from [9] by reorga-
nizing the so-called Stack-of-Tasks (SoT) [29]. The original
SoT1 reads, in decreasing order of priority as follows

Level 0: support and swing foot position and velocity
tracking;

Level 1: CoM acceleration tracking;
Level 2: pelvis roll and pitch tracking;
Level 3: static standing articular configuration tracking.
We use SoT1 during double support phases, and the SoT2,

described below, during single support phases in order to
account for the swing leg effect on the CoM acceleration

Level 0: support foot and swing leg articular position
P (σ∗) and velocity σ̇∗T (σ∗) tracking;

Level 1: CoM acceleration tracking;
Level 2: pelvis roll and pitch tracking;
Level 3: static standing articular configuration tracking.
SoT1 and SoT2 are Hierarchical Quadratic Programs.

They are solved for the articular target acceleration q̈t that
best satisfy their objectives. Numerical integration from the
previous articular position and velocity targets yields the
support leg target position and velocity (qsp∗, q̇sp

∗
) tracked

using (8). Set-points for Level 2 and 3 of both SoT1 and
SoT2 are computed from the nominal gait T .

We validated this custom SoT2 by performing a perfor-
mance comparison with SoT1, both experimentally and in
simulation, and found no noticeable impact on the overall
stability of the walk (their transient responses differ in shape
but not in error magnitude).
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