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A B S T R A C T

With the development of sophisticated water quality models and the advances in computational power, data
assimilation (DA) techniques, especially ensemble-based methods (the ensemble Kalman filter and particle
filter), are attracting considerable attention in water quality modeling for improving the estimation of state
variables and parameters in water quality models. The ensemble Kalman filter (EnKF) has become the
most popular DA method while the particle filter (PF), which does not rely on Gaussian or quasi-linearity
assumptions, is seldom applied in water quality modeling. Here, we present a comparison between the PF and
EnKF for the update of model parameters related to river metabolism. The two filters are implemented in ProSe-
PA, a hydro-biogeochemical software, and their performance is assessed on two synthetic case studies. The
results indicate that PF and EnKF can estimate dissolved oxygen concentrations and the posterior probability
distribution function of the associated parameters, either precisely for both filters in the case of a slightly
nonlinear system (reaeration at the air–water interface) or more precisely for the PF in the case of a strongly
nonlinear system (organic matter degradation) dominated by heterotrophic bacterial activities. Since the PF
is more accurate, its usage is recommended for water quality modeling and guidelines are provided for its
set-up.
1. Introduction

With the development of sophisticated water quality models (Warn,
1987; Hamrick, 1992; Billen et al., 1994; Whitehead et al., 1997; Even
et al., 1998; Pelletier et al., 2006), complete and complex biogeochem-
ical processes of an aquatic system can be simulated to understand its
biogeochemical functioning (Flipo et al., 2004; Vilmin et al., 2015a,
2016; Bae and Seo, 2018; Sadeghian et al., 2018; Marescaux et al.,
2020). However, a large number of model parameters are incorpo-
rated into these models to describe exhaustively the biogeochemical
processes. This raises the question of prediction uncertainty (Beven,
1989; Polus et al., 2011; Cho et al., 2020). The model parameters need
to be determined experimentally in the laboratory or calibrated by
minimizing a loss function, which leads to problems of model validation
and extrapolation (Arhonditsis and Brett, 2004; Polus et al., 2011).

To improve model performance, data assimilation techniques have
been applied successfully in geosciences (Carrassi et al., 2018) and
more specifically in water quality modeling (Wang et al., 2022; Cho
et al., 2020). Evensen et al. (2022) also dedicated a book to the problem
of state and parameter estimation in data assimilation. The data assimi-
lation method combines ongoing observation data and model forecasts
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to obtain the optimal estimates of state variables and parameters of
water quality models (Wikle and Berliner, 2007). Although numerous
data assimilation methods exist in the literature (variational methods,
Kalman filter, extended Kalman filter, ensemble Kalman filter, particle
filter) and have been widely applied in meteorology and hydrology
modeling (Courtier et al., 1994; Kalnay et al., 1996; Gauthier et al.,
2007; Moradkhani et al., 2005a; Plaza et al., 2012; Abbaszadeh et al.,
2018; Piazzi et al., 2021), few applications of data assimilation can
be found in surface water quality modeling (Cho et al., 2020). The
first application of data assimilation was published by Beck and Young
(1976) using the extended Kalman filter (EKF). The EKF was then used
as the main data assimilation technique in water quality modeling
until 2009 (Mao et al., 2009). With the advances in computational
power, the ensemble Kalman filter (EnKF) has become the most popular
data assimilation method in surface water quality modeling (Huang
et al., 2013; Kim et al., 2014; Huang and Gao, 2017; Page et al.,
2018; Chen et al., 2019; Loos et al., 2020; Park et al., 2020). Most of
the cited studies focused on the simulation of harmful algal blooms.
The first implementation of a particle filter (PF) for water quality
modeling was released very recently by Wang et al. (2019) and offers
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promising perspectives that should favor its usage across the freshwater
community.

The EnKF is based on the assumption that the forecasts of water
quality states and model parameters are normally distributed and it
updates them by linear formulas (Evensen, 2003). In nonlinear systems
such as the modeling of an aquatic system, the Gaussian assumption
cannot hold all the time and therefore EnKF yields biased samples and
estimates (Wikle and Berliner, 2007). This assumption has been ques-
tioned also in the modeling of hydrologic systems and phytoplankton
dynamics (Plaza et al., 2012; Pasetto et al., 2012; Huang et al., 2013).
These authors recommended testing the PF, a more advanced method,
in order to overcome this problem. Nonetheless, the PF has been
applied only by Wang et al. (2022) for assimilating dissolved oxygen
(DO) concentrations in the Seine River system, seemingly because the
scientific community believes that the PF is more computationally
demanding and is not easy to implement. In addition, no comparison
between the PF and EnKF can be found in surface water quality
modeling, specifically in DO data assimilation and model parameter
estimation, which may be one of the reasons that the application of
PFs in water quality modeling is so rare.

The aim of this paper is therefore to carry out a comparison of the
PF and EnKF for DO data assimilation and for the estimation of model
parameters. The performances of the PF and EnKF are evaluated on the
basis of synthetic case studies using the hydro-biogeochemical program
ProSe-PA (Wang et al., 2019). First, the recovery of DO concentrations
by reaeration in a river system is built to model a slightly nonlinear
system (Section 2.4.1). The computational time, the simulated DO con-
centrations, and the posterior distributions of the reaeration coefficient
using different ensemble sizes are assessed (Section 3.1). Second, the
PF and EnKF are applied in a strongly nonlinear system represented
by heterotrophic bacterial activities in the river (Section 2.4.2). The
uncertainties in parameter estimation and the PF set-up are finally
discussed (Sections 4.2 and 4.3).

2. Material and methods

2.1. ProSe-PA software

The ProSe-PA (ProSe for Parallel computing and data Assimilation
– Wang et al. (2019)) software couples the ProSe model (Even et al.,
1998, 2004; Flipo et al., 2004; Vilmin et al., 2015a), which is the histor-
ical model widely used to investigate the biogeochemical functioning
of the Seine River system (Even et al., 1998, 2004, 2007; Flipo et al.,
2007; Polus et al., 2011; Raimonet et al., 2015; Vilmin et al., 2015b,
2018), with data assimilation frameworks (Fig. 1).

ProSe-PA is composed of three independent C-libraries: hydrody-
namic, transport and biogeochemistry (Fig. 1). The hydrodynamic li-
brary calculates water heights and discharges by solving the 1D shal-
low water equations. Advection and dispersion are modeled using the
hydraulic data calculated by the hydrodynamic library. The biogeo-
chemistry library, C-RIVE, is based on the community-centered RIVE
model (Billen et al., 1994; Garnier et al., 1995). The RIVE model
imulates biogeochemical processes such as the cycles of nutrients,
arbon, and DO in the water column and in an unconsolidated sediment
ayer.

To assimilate high-frequency oxygen concentration and to estimate
odel parameters, a PF was first implemented in ProSe-PA (Wang et al.,
019, 2022) and more recently an EnKF filter as well.

.2. Sequential data assimilation frameworks in ProSe-PA: Particle filter
nd ensemble Kalman filter

Before describing each data assimilation framework, we introduce
2

he state-space model on which each framework depends.
2.2.1. State-space model
A state-space model is a mathematical representation of the evo-

lution of a system over time as a set of input, output, and state
variables (Kalman, 1960). In our case, three equations are used to
describe the evolution of DO concentrations (state variable in terms of
physics). Let X be the random variable representing the model parame-
ters and let Y represent the simulated DO concentrations. The random
variables X and Y are characterized by their probability distribution
function (pdf).

𝐱𝐭 = 𝐱𝐭−𝟏 + η𝐭 (1)

𝐲𝐭 = 𝑀(𝐲𝐭−𝟏,µ𝐭 , 𝐱𝐭 ) + ν𝐭 (2)
∗𝐭 = 𝐇𝐲𝐭 + ϵ𝐭 (3)

Lower case x and y correspond to realizations of the random vari-
bles X and Y. The observation vector y∗ denotes a realization of the
andom variable Y∗. The variables 𝜈𝑡 and 𝜖𝑡 stand for the unknown
odel errors and observation errors at time 𝑡 (Eqs. (2) and (3)). The

relative errors of the model are of the order 10−5 or 10−6. This is far
elow observation errors. Therefore, no model errors are considered
𝜈𝑡 = 0) in our case. The evolution of parameter values is described

by a random walk (𝜂𝑡), which concurs with the prior knowledge of the
parameters (Eq. (1)). H is the linear observation operator that maps
simulations to observations.

2.2.2. Particle filter
A PF was implemented in ProSe-PA software and its efficiency

was demonstrated in a synthetic case study (Wang et al., 2019) and
in a real system (Wang et al., 2022). The PF is a method based on
the Bayes theorem (Bayes, 1763) and the Markov property (Markov,
1906). It integrates observations y∗ at each time step into the forward
model (ProSe-PA) in order to approximate the posterior pdf 𝑓 (𝐱|𝐲∗)
by a set of particles each associated with a weight (ω). For each
particle, the weight is calculated using the Bayes theorem and Markov
property (Doucet and Johansen, 2011; Wang et al., 2019), as stated by
Eq. (4):

𝜔𝑡 ∝ 𝑓 (𝐲∗𝐭 |𝐱)𝜔𝑡−1 (4)

where 𝑓 (𝐲∗𝐭 |𝐱) is the likelihood, that is, the probability to observe 𝐲∗𝐭
given x at time 𝑡. 𝜔𝑡−1 denotes the posterior weight at time 𝑡 − 1 that
gives the prior knowledge at time 𝑡. 𝜔𝑡 is then the posterior weight at
time 𝑡.

To approximate the filtering distribution 𝑓 (𝐱𝐭 |𝐲∗𝟏∶𝐭 ), the normalized
weights 𝜔̂𝑖

𝑡 =
𝜔𝑖
𝑡

∑

𝜔𝑖
𝑡

are computed. The 𝑓 (𝐱𝐭 |𝐲∗𝟏∶𝐭 ) can be approximated
by the ensemble particles (Doucet et al., 2001):

𝑓 (𝐱𝐭 |𝐲∗𝟏∶𝐭 ) ≈
𝑁
∑

𝑖=1
ω̂𝑖

𝑡𝛿𝐱𝑖𝑡 (5)

where 𝑁 is the ensemble size and 𝛿 the Dirac measure.
Assuming that the observation errors (Eq. (3), 𝜖𝑡) are Gaussian

and mutually independent at each observation station, we compute
the likelihood 𝑓 (𝐲∗𝐭 |𝐱

𝑖) using the probability density function of the
multivariate normal distribution (Eq. (6)).

ln𝐿(𝐲∗𝑡 |𝐱
𝑖
𝑡) = −𝑚

2
ln(2𝜋) − 1

2
ln(|𝛴|) − 1

2
(𝐲∗𝑡 −𝐇𝐲𝑖𝑡)

T𝛴−1(𝐲∗𝑡 −𝐇𝐲𝑖𝑡) (6)

(𝐲∗𝑡 |𝐱
𝑖
𝑡) =

𝐿(𝐲∗𝑡 |𝐱
𝑖
𝑡)

∑𝑁
𝑖=1 𝐿(𝐲

∗
𝑡 |𝐱

𝑖
𝑡)

where 𝑚 is the number of monitoring stations and 𝑖 represents the
particle 𝑖. The linear observation operator (H) maps the simulated DO
concentrations at the monitoring sites (H𝐲𝑖𝑡). 𝛴 corresponds to the error
covariance matrix of the observations. Since the set of observation
errors is mutually independent, 𝛴 is a diagonal matrix and the diagonal
terms correspond to the variance of the measurement errors at each
monitoring station.
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Fig. 1. (a) Schematic description of ProSe with the hydraulic, transport, and biogeochemistry modules. (b) Schematic description of ProSe-PA with a flowchart of the data
ssimilation framework (particles or ensemble member p1, p2, . . . , pN).
ource: Modified from Wang et al. (2022).
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A common problem when applying the PF is the degeneracy of
he particles. This means that almost all the particles get a near-zero
eight and only a few particles or none has a high weight after a given

imulation time. In such case, the posterior pdf 𝑓 (𝐱𝑡|𝐲∗1∶𝑡) cannot be
approximated adequately by the ensemble particles (Eq. (5)). To reduce
the degeneracy effect, a resampling procedure is used. The resampling
procedure roughly duplicates particles with high weights while elimi-
nating particles with near-zero weights. A series of resampling methods
were proposed in the literature and reviewed by Li et al. (2015). The
systematic resampling technique (Kitagawa, 1996; Moradkhani et al.,
2005a; Li et al., 2015) was chosen for the ProSe-PA software.

It is not necessary to resample the particles at each time step, but
nly when the particles show some signs of degeneracy. The criterion
or performing the resampling is based on the variance of the weights,
hich indicates the degree of degeneracy. Kong et al. (1994) defined

he effective sample size (𝑁𝑒𝑓𝑓 ) to monitor the degree of degeneracy.
he effective sample size can be approximated as follows, from the
ormalized weights:

𝑒̂𝑓𝑓 = 1
∑𝑁

𝑖=1(𝜔̂
𝑖
𝑡)2

(7)

The particle resampling is carried out once 𝑁𝑒𝑓𝑓 falls below a user-
efined threshold (𝑁𝑡ℎ𝑟𝑒𝑠 = 𝛼 ⋅ 𝑁). The 𝑁𝑒𝑓𝑓 itself has a maximum
alue of 𝑁 (number of particles) and a minimum value of 1. Since the
ystematic resampling technique is used in ProSe-PA, the weights are
eset to 1∕𝑁 after resampling.

In particle filtering, we consider posterior parameter values at time
−1 as prior parameter values at time 𝑡, which means that the random
ariable 𝜂𝑡 in Eq. (1) equals 0 (𝐱𝐭 = 𝐱𝐭−𝟏). The posterior distribution
(𝐱𝑡|𝐲∗1∶𝑡) evolves with the particle weights. However, the particles that
ave high weights may be duplicated many times during resampling,
hich results in sample impoverishment. To restore the diversity of the
articles, a random perturbation is added to the parameter values after
article resampling (Eq. (8)):
𝑖
𝑡+1 = 𝐱𝑖𝑡,𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + η

𝑖
𝑡 η

𝑖
𝑡 ∼ 𝑁(0, (𝑠 ⋅Φ)2) (8)

here 𝑠 is a user-defined parameter and Φ is the range space of
arameters.

.2.3. Ensemble Kalman filter
The EnKF algorithm (Evensen, 1994, 2003), like the traditional

alman filter, consists of two sequential steps: forecast and analysis.
3

uring the forecast step, the model ensemble is propagated forward
n time using the prior model state and parameter values (Eq. (2)).
hen the model state and parameter values are updated using the linear
alman filter analysis formula (Eq. (9)). In our case, only the parameter
alues are updated during the analysis step to ensure the continuity of
ass balance, which is crucial for water quality modeling.
𝑎
𝑡 = 𝐱𝑓𝑡 +𝐊𝑡(𝐲∗𝑡 −𝐇𝐲𝑡) (9)
𝑓
𝑡 = 𝐱𝑎𝑡−1 + 𝜂𝑡 (10)

here 𝐱𝑎𝑡 ∈ R𝑝×𝑁 are the analysis values of the parameters (posterior)
ith 𝑝 the number of parameters. 𝐱𝑓𝑡 ∈ R𝑝×𝑁 denotes the forecast

parameter values (prior) and 𝐊𝑡 ∈ R𝑝×𝑁 represents the Kalman gain
matrix. The forecast parameter values (𝐱𝑓𝑡 ∈ R𝑝×𝑁 ) are obtained by
adding the random values to the analyzed parameter values (𝐱𝑎𝑡 ∈ R𝑝×𝑁 ,
q. (10)). The ensemble random values, with ensemble mean equal to
, are noted as 𝜂𝑡 ∼ 𝑁(0, (𝑠 ⋅𝛷)2).

The Kalman gain matrix is calculated as follows (Burgers et al.,
998; Evensen et al., 2022):

𝑡 = 𝐏𝑓
𝑡 𝐇

T(𝐇𝐏𝑓
𝑡 𝐇

T + 𝐑𝑡)−1 (11)

here 𝐏𝑓
𝑡 and 𝐑𝑡 represent the error covariance matrices of forecast

nd observation at time 𝑡.
For parameter estimation, the above form of Kalman gain can be

ewritten (Moradkhani et al., 2005b; Huang et al., 2013):

𝑡 = Σ
𝐱𝐲
𝒕 (Σ𝐲𝐲

𝒕 +Σ
𝐲∗𝐲∗
𝒕 )−1 (12)

here Σ
𝐱𝐲
𝒕 ∈ R𝑝×𝑚 is the cross-covariance matrix of the parameter

nsemble 𝐱𝑡 ∈ R𝑝×𝑁 and the forecast ensemble state at monitoring
tations 𝐇𝐲𝑡 ∈ R𝑚×𝑁 . Σ𝐲𝐲

𝒕 ∈ R𝑚×𝑚 denotes the error covariance matrix
f the prediction at monitoring stations (𝐇𝐲𝑡) and Σ

𝐲∗𝐲∗
𝑡 ∈ R𝑚×𝑚 is the

bservation error covariance matrix.
In EnKF, the error statistics are represented using an ensemble

odel state (Evensen, 1994; Burgers et al., 1998; Evensen, 2003;
vensen et al., 2022). The true state is generally unknown and esti-
ated by the ensemble mean. Consequently, the unknown error covari-

nce matrix of the forecast state (Σ𝐲𝐲
𝐭 ) can be estimated as follows:

𝐲𝐲
𝑡 = 1

𝑁 − 1

𝑁
∑

𝑖=1
(𝐇𝑦𝑖𝑡 −𝐇𝐲𝑡)(𝐇𝑦𝑖𝑡 −𝐇𝐲𝑡)𝐓

= 1
𝑁 − 1

(𝐇𝐲𝑡 −𝐇𝐲𝑡)(𝐇𝐲𝑡 −𝐇𝐲𝑡)𝐓 (13)
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Fig. 2. a. Cross section of the trapezoid-shaped river channel; Light blue area represents water body with a height of about 5 m. b. Location of monitoring and validation stations;
PK: kilometric point. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where Σ
𝐲𝐲
𝐭 has dimension 𝑚×𝑚, where 𝑚 is the number of monitoring

stations. 𝑁 is the ensemble size and 𝐇𝑦𝑖𝑡 ∈ R𝑚×1 corresponds to the
predicted states of the ensemble member 𝑖 at 𝑚 monitoring stations.
The ensemble mean is calculated as 𝐇𝐲𝑡 ∈ R𝑚×1 = 1

𝑁
∑𝑁

𝑖=1 𝐇𝑦𝑖𝑡.
The observation errors defined in Eq. (3) can be obtained by per-

urbing the observation values (𝑦∗,𝑖𝑡 = 𝑦∗𝑡 + 𝜖𝑖𝑡 ∈ R𝑚×1). The ensemble
f perturbations, with ensemble mean equal to 0, can be noted as
𝑡 ∈ R𝑚×𝑁 . An estimator of the observation error covariance ma-
rix (Σ𝐲∗𝐲∗

𝑡 ∈ R𝑚×𝑚) can then be constructed using the ensemble
erturbations (Evensen, 2003; Evensen et al., 2022):

𝐲∗𝐲∗
𝐭 = 𝟏

𝐍 − 𝟏

𝐍
∑

𝐢=𝟏
𝜖𝑖𝑡 (𝜖

𝑖
𝑡 )
𝐓 (14)

= 𝟏
𝐍 − 𝟏

ϵ𝑡ϵ
𝐓
𝑡 (15)

Similarly, the cross-covariance matrix of parameter ensembles and
forecast state ensembles (Σ𝐱𝐲

𝐭 ∈ R𝑝×𝑚) is estimated as (Evensen, 2003;
Evensen et al., 2022):

Σ
𝐱𝐲
𝐭 = 1

𝑁 − 1

𝑁
∑

𝑖=1
(𝑥𝑖𝑡 − 𝐱𝐭 )(𝐇𝑦𝑖𝑡 −𝐇𝐲𝐭 )𝐓

= 𝟏
𝐍 − 𝟏

(𝐱𝐭 − 𝐱𝐭 )(𝐇𝐲𝐭 −𝐇𝐲𝐭 )𝐓 (16)

where 𝐱𝐭 ∈ R𝑝×1 = 1
𝑁

∑𝑁
𝑖=1 𝑥

𝑖
𝑡.

The above three covariance matrix estimates are then plugged into
(12) to compute (an approximation of) the Kalman gain.

2.3. Description of the case study: Geometric and hydraulic data

A trapezoid-shaped river channel, which is 100 km long (Fig. 2b),
is conceptualized to mimic the Seine River. The trapezoid-shaped cross
section has a bottom base of 100 m and top base of 120 m (Fig. 2a).
A discharge of 95 m3 s−1 corresponding to a water velocity of 0.17 m
s−1 is imposed upstream. The river bed slope and water height corre-
sponding to these values are 10−6 and 5 m, respectively. No inflows
nd dams are considered in the case study. The concept of kilometric
oint (PK) is used in ProSe-PA to represent the location of a point in
he river channel. The downstream and upstream points have PKs of
00 and 0, respectively (Fig. 2b).
4

2.4. Data assimilation scenarios: from oxygen reaeration to bacterial activ-
ities

2.4.1. Recovery of DO by reaeration
The physical oxygen reaeration is modeled as:

𝑑[O2]
𝑑𝑡

=
𝐾𝑟𝑒𝑎
ℎ

([O2]𝑠𝑎𝑡(𝑇 ) − [O2]) (17)

𝑟𝑒𝑎 =
√

𝐷𝑚 × 𝑉𝑤
ℎ

+ (𝐾𝑤𝑖𝑛𝑑 × 𝑉 2.23
𝑤𝑖𝑛𝑑 × (𝐷𝑚 × 104)

2
3 +𝐾𝑛𝑎𝑣𝑖𝑔) (18)

with,
𝐾𝑟𝑒𝑎: Reaeration coefficient, [m s−1]
[O2]𝑠𝑎𝑡(𝑇 ): Saturation concentration of DO at temperature T, [mgO2

−1]
[O2]: DO concentration, [mgO2 L−1]
ℎ: Water height, [m]
𝐷𝑚: Molecular diffusivity of dissolved oxygen, [m2 s−1]
𝑉𝑤 and 𝑉𝑤𝑖𝑛𝑑 : Water velocity and wind speed, [m s−1]
𝐾𝑤𝑖𝑛𝑑 and 𝐾𝑛𝑎𝑣𝑖𝑔 : Reaeration coefficients related to wind and navi-

gation, [m s−1]
The oxygen reaeration coefficient (𝐾𝑟𝑒𝑎) is composed of three terms:

molecular diffusion (𝐷𝑚), wind turbulence (𝐾𝑤𝑖𝑛𝑑), and navigation
urbulence (𝐾𝑛𝑎𝑣𝑖𝑔). Only 𝐾𝑛𝑎𝑣𝑖𝑔 , which was identified as the most
nfluential parameter in DO concentrations in winter (Wang et al.,
018), is estimated using PF and EnKF in this case. The wind speed
t 10 m elevation is considered null. A 𝐾𝑛𝑎𝑣𝑖𝑔 value of 0.015 m h−1, as
he reference parameter value, is used to generate observation data.

A period of 15 days is simulated with ProSe-PA. To simulate varying
xygen saturation concentrations, the water temperature is set to 10 ◦C

([O2]𝑠𝑎𝑡 = 11.29 mgO2 L−1) from day 0 to day 5 and then increases to
20 ◦C ([O2]𝑠𝑎𝑡 = 9.11 mgO2 L−1) on day 15. The initial and upstream
oxygen concentrations are set to 3.80 mgO2 L−1 (Table 1), which
enables a simulation of the recovery of DO by reaeration.

2.4.2. Bacterial activities
The RIVE model simulates explicitly the heterotrophic bacterial ac-

tivities: growth, respiration, and mortality. A Monod function (Monod,
1949) is used to describe the growth of heterotrophic bacteria limited
by small monomeric substrate concentration ([𝑆𝑀𝑆]). The bacterial
respiration is expressed as,
𝑑[O2] = −𝜏(1 − 𝑌 )𝑢𝑝𝑡 (19)

𝑑𝑡
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Table 1
Initial and boundary conditions of the simulations.
Oxygen reaeration

Species Description 𝐶𝑖𝑛𝑖 𝐶𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 Unit Temperature

[O2] Dissolved oxygen 3.80 3.80 mgO2 L−1 10 ◦C – 20 ◦C

Bacterial activities

[O2] Dissolved oxygen 9.11 9.11 mgO2 L−1

[𝑆𝑀𝑆] Small monomeric substrate 1.22 1.22 mgC L−1 20 ◦C
[𝐻𝐵] Heterotrophic bacteria 0.01 0.01 mgC L−1
Table 2
Parameters considered in PF and EnKF.

Oxygen reaeration

Parameters Description Min Max Reference Unit

𝐾𝑛𝑎𝑣𝑖𝑔 Reaeration coefficient due to navigation 0.0 0.05 0.015 [m h−1]

Bacterial activities

𝜇𝑚𝑎𝑥 Maximum growth rate of bacteria 0.01 0.13 0.04 [h−1]
𝑌 Growth yield of bacteria 0.03 0.5 0.15 [–]

‘‘Reference’’: Parameter values used to generated virtual observation data.
w

d
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e
d
u
2
p
t
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3

3

1
o
2

𝑝𝑡 = 1
𝑌
𝜇𝑚𝑎𝑥𝑒

(𝑇−𝑇𝑜𝑝𝑡)2

𝜎2
[𝑆𝑀𝑆]

[𝑆𝑀𝑆] +𝐾𝑆𝑀𝑆
[𝐻𝐵]

with,
𝜏: 32

12 , when considering the full oxidation of organic matter by the
espiration process, [mgO2/mgC]

𝑌 : Bacteria growth yield, [–]
𝑢𝑝𝑡: Uptake of small monomeric substrate for bacteria growth, [mgC

−1 h−1]
𝜇𝑚𝑎𝑥: Maximum growth rate, [h−1]
𝑇 and 𝑇𝑜𝑝𝑡: Water temperature and optimal water temperature for

acteria growth, [◦C]
𝐾𝑆𝑀𝑆 : Half-saturation constant for small monomeric substrate,

mgC L−1]
[𝐻𝐵]: Heterotrophic bacterial biomass, [mgC L−1]
The DO concentrations are most sensitive to 𝜇𝑚𝑎𝑥 and 𝑌 when

bacterial activities drive the river metabolism during low-flow peri-
ods (Wang et al., 2018). Therefore, only 𝜇𝑚𝑎𝑥 and 𝑌 are considered
when evaluating the performances of PF and EnKF.

To simulate the strong bacterial activities, the water temperature
is the same as the optimal temperature for the growth of bacteria
(𝑇𝑜𝑝𝑡 = 20 ◦C) during the simulation. The DO concentrations are initially
saturated in the system (9.11 mgO2 L−1). The upstream DO concentra-
tions are constant and saturated during the simulation ( Table 1). The
initial and upstream conditions of small monomeric substrate ([𝑆𝑀𝑆])
and bacteria ([𝐻𝐵]) are listed in Table 1. A maximum growth rate of
0.04 h−1 and a growth yield of 0.15 are used to generate observation
data.

2.4.3. Mimicking oxygen monitoring
As mentioned above, only 𝐾𝑛𝑎𝑣𝑖𝑔 is considered for oxygen reaeration

simulation while 𝜇𝑚𝑎𝑥 and 𝑌 are considered for the simulation of
bacterial activities. Reference values of those parameters (Table 2) are
used to generate reference oxygen data, [O2]𝑟𝑒𝑓 , every 15 min (Fig. 2b)
in all model cells with a forward simulation of ProSe-PA. A random
noise is added to those reference data at locations PK60 and PK90, in
order to mimic data acquired by monitoring systems, [O2]𝑜𝑏𝑠, which are
entailed by observational errors. The observational errors are defined
in Eq. (20).

[O2]𝑜𝑏𝑠 = [O2]𝑟𝑒𝑓 + 𝜃, 𝜃 ∼ 𝑁(0, (0.01 × [O2]𝑟𝑒𝑓 )2) (20)

2.5. Statistical criteria for evaluating the performances of PF and EnKF in
DO simulation

Two monitoring stations of DO (PK60 and PK90) and two validation
stations (PK50 and PK75) are modeled (Fig. 2). The data from the
5

s

monitoring stations are assimilated by ProSe-PA either by a PF or
an EnKF. The performances of PF and EnKF in the simulation of DO
concentrations are evaluated through RMSE (root mean square error)
and KGE (Kling–Gupta efficiency, (Kling et al., 2012)) at the validation
stations (PK50, PK75). For completeness, the values of the criteria
are also provided at the monitoring stations. RMSE is the standard
deviation of the simulation errors (Eq. (21)). The KGE is based on
the decomposition of the Nash–Sutcliffe efficiency, which provides
the analysis of the relative importance of its different components
(correlation, bias, and variability). KGE ranges from -Inf to 1. The closer
to 1, the more accurate the model.

RMSE =

√

√

√

√

∑𝑁𝑜𝑏𝑠
𝑘=1 ([O2]𝑠𝑖𝑚,𝑘 − [O2]𝑜𝑏𝑠,𝑘)2

𝑁𝑜𝑏𝑠
(21)

KGE = 1 −
√

(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (22)

here
𝑁𝑜𝑏𝑠: Number of observations
[O2]𝑠𝑖𝑚,𝑘 and [O2]𝑜𝑏𝑠,𝑘: Simulated and observed DO concentrations
𝑟: Correlation coefficient
𝛽: Model bias. 𝛽 = 𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
, with 𝜇 the mean of the DO concentrations

𝛾: Coefficient of variation. 𝛾 = 𝜎𝑠𝑖𝑚∕𝜇𝑠𝑖𝑚
𝜎𝑜𝑏𝑠∕𝜇𝑜𝑏𝑠

, with 𝜎 the standard
eviation of the DO concentrations

.6. Visualization of the filtering distributions of the considered parameters

To visualize the filtering distributions (Eq. (5)), kernel density
stimation is used to determine the results of PF while a normal
istribution is assumed for the results of EnKF, which can be calculated
sing the ensemble mean and standard deviation (Wikle and Berliner,
007). To compare the results of PF obtained using different random
erturbations given the ensemble size, a identical bandwidth is used in
he kernel density estimation.

. Results

.1. Oxygen reaeration due to navigation (slightly nonlinear system)

.1.1. Calculation time
Nine simulations with different ensemble sizes (10, 30, 50, 100,

50, 200, 300, 400, 500) are realized to compare the calculation time
f PF and EnKF (Fig. 3). Both PF and EnKF simulations are run with
0 threads (Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz) and a time
tep of 15 min for a simulation period of 15 days.
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Fig. 3. Calculation time using PF and EnKF. Simulations are run with 20 threads
(Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz). A time step of 15 min is used for a
15-day period.

No significant differences in the calculation time between PF and
EnKF can be observed when the ensemble size is smaller than 100
(Fig. 3). However, the calculation time using PF is lower by 25%
compared to the calculation time using EnKF when the ensemble size
is greater than 100. When the ensemble size increases, more time is
indeed needed to compute the error covariance matrices Σ

𝐱𝐲
𝑡 and Σ

𝐲𝐲
𝑡

and solve the related linear systems.

3.1.2. Simulated DO concentrations
All simulations with PF can retrieve the DO concentrations very

accurately at all stations, even with an ensemble size of 10. Given the
remarkable similarity of the results obtained across all stations and
ensemble sizes, only the results at station PK75 are shown here (Fig. 5).
For PF, a maximum RMSE of 0.02 mgO2 L−1 is estimated at station
PK50 (Fig. 4), which is rather small compared to the observation errors
(standard deviations between 0.038 mgO2 L−1 and 0.08 mgO2 L−1,
Eq. (20)). All KGEs are over 0.99 for PF.

The RMSE for EnKF first decreases and then increases with the
ensemble size. Its minimum value (around 0.10 mgO2 L−1) is obtained
with the ensemble sizes of 200 and 300 (Fig. 4), while being rela-
tively close to the observation errors. With the ensemble size of 300,
maximum values of KGE are obtained for EnKF.

Even though the PF is remarkably accurate, the two filters capture
the recovery of DO by reaeration and obtain satisfactory results (Fig. 5).

3.1.3. Estimated posterior distributions of 𝐾𝑛𝑎𝑣𝑖𝑔
With an ensemble size of 300, both PF and EnKF produce satis-

factory posterior distributions of 𝐾𝑛𝑎𝑣𝑖𝑔 (Fig. 6). The reference value
of 𝐾𝑛𝑎𝑣𝑖𝑔 (0.015 m h−1) is well characterized by the modes of the
distributions. However, the distributions estimated by PF are much
narrower than those estimated by EnKF, which are relatively broad
(Fig. 6).

The simulated oxygen concentrations and posterior distributions of
𝐾𝑛𝑎𝑣𝑖𝑔 show that PF and EnKF work well for a slightly nonlinear system
(oxygen recovery by reaeration) even though PF estimates carry less
uncertainty.

3.2. Heterotrophic bacterial activities (strongly nonlinear system)

In this case, a series of simulations are carried out with different
ensemble sizes (100, 300, 400, 500, 800 and 1000). A minimum
ensemble size of 500 is deemed imperative for obtaining desirable
results. Only the results with the ensemble size of 500 are presented
6

Table 3
Statistical criteria in the case of bacterial activities.

Criteria PK50 PK60 PK75 PK90 Unit

RMSE (PF) 0.014 0.014 0.016 0.015 mgO2 L−1

KGE (PF) 0.991 0.991 0.988 0.992 [–]
RMSE (EnKF) 0.202 0.230 0.241 0.182 mgO2 L−1

KGE (EnKF) 0.715 0.817 0.885 0.975 [–]

in this section. A perturbation of 𝑠 = 0.01 (Eq. (8)) yield satisfactory
results for PF while a perturbation of 𝑠 = 0.03 is needed for EnKF.
The results show that PF performs much better than EnKF when the
bacterial activities control the river metabolism (strongly nonlinear
system), both in the identification of parameter values and in the
retrieval of DO concentrations.

3.2.1. Simulated oxygen concentrations
The simulated oxygen concentrations (ensemble mean) show that

PF performs better than EnKF under conditions of strong bacterial
activities (Fig. 7). All RMSEs are smaller than 0.02 mgO2 L−1 (Table 3)
for PF while all RMSEs are over 0.18 mgO2 L−1 (Table 3), which
is higher than the observation errors (around 0.08 mgO2 L−1). The
analysis of the KGEs confirms the fact that the PF outperforms the EnKF.
The results indicate that EnKF can capture the depletion of oxygen
trend, but it struggles to retrieve the DO concentrations correctly.

3.2.2. Estimated posterior distributions
The estimated posterior distribution of 𝜇𝑚𝑎𝑥 and 𝑌 confirms the

efficiency of PF for estimating parameters in a water quality model,
which is usually a strongly nonlinear system. The parameter values
of 𝜇𝑚𝑎𝑥 and 𝑌 (0.04 h−1 and 0.015, respectively) used to generate
observation data are very well identified by the PF (Fig. 8) while the
EnKF fails to identify the bacterial yield 𝑌 and slightly overestimates
the value of 𝜇𝑚𝑎𝑥 (0.04 h−1) with a much broader pdf than the PF
(Fig. 8).

4. Discussion

4.1. Recommendations for data assimilation in water quality modeling

Although the ensemble Kalman filter (EnKF) has become the most
popular data assimilation method for updates of state variables and
model parameters in surface water quality modeling (Cho et al., 2020),
the results of this research show that the particle filter (PF) outperforms
the EnKF for parameter inference and oxygen concentration estimation,
especially in a strongly nonlinear system as for heterotrophic bacteria
activity which is one of the main drivers of river metabolism (Odum,
1956; Escoffier et al., 2018). Also in ocean biogeochemical model-
ing, Gharamti et al. (2017) indicate that the uncertainty associated with
the state estimates using two EnKF-based methods increases during the
spring blooms (strongly nonlinear behavior). That is because the EnKF
assumes Gaussian errors for forecast states and parameters, which is not
realistic for the functioning of an aquatic system (lake, river) (Huang
et al., 2013; Wang et al., 2022). Evensen et al. (2022, p. 95) also
stated that ‘‘Commonly-used ensemble data-assimilation methods, like
the EnKF ..., only sample the posterior pdf correctly in the Gauss-
linear case and typically fail in cases with strong nonlinearity’’. The
PF overcomes the Gaussian assumption of EnKF. The implementation
of PF into a complex hydro-biogeochemical program (ProSe-PA) has
been proved to be realistic (Wang et al., 2019) and its performance
(calculation cost, DO concentration updates, parameter estimation) has
been recently evaluated for the Seine River system, France (Wang et al.,
2022). Therefore, the authors recommend the use of PF for the update
of biogeochemical state variables and model parameters in surface
water quality modeling.
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Fig. 4. Performances of PF and EnKF in DO reaeration evaluated by RMSE and KGE.
Fig. 5. Simulated DO concentrations (ensemble mean) at station PK75 with different ensemble size. The PF simulation overlaps the reference data.
Fig. 6. Estimated posterior distributions of 𝐾𝑛𝑎𝑣𝑖𝑔 by PF and EnKF. Black line represents the reference value of 𝐾𝑛𝑎𝑣𝑖𝑔 (0.015 m h−1) that is used to generate observation data.
4.2. Uncertainties in parameter estimation: PF vs. EnKF

Both PF and EnKF are able to quantify the parameter uncertainties
in a slightly nonlinear system (oxygen reaeration). These uncertainties
are characterized by the posterior pdfs of the parameters. With a
random perturbation of 𝑠 = 0.10 (Eqs. (10) and (8)), the distributions
estimated by EnKF are broader than those estimated by PF (Fig. 6)
and thus depict larger uncertainties. That is because the ensemble
members in EnKF are equally weighted and the posterior distribution
is assumed to be Gaussian and characterized by its first two mo-
ments (mean and variance) (Wikle and Berliner, 2007). Compared with
7

weighted ensemble members in PF (Eq. (5)), the assumption of equally
weighted samples in EnKF is generally not valid and results in biased
samples (Wikle and Berliner, 2007).

The uncertainties in parameter estimation result from multiple rea-
sons for PF, such as observation error or perturbation after resampling
(Eq. (8)). A sensitivity assessment of the perturbation parameter after
resampling (𝑠, Eq. (8)) for the case of oxygen recovery is realized.
To compare the estimated distributions with different random walks,
a fixed bandwidth (0.00011) is used in the kernel density estimation
(Fig. 9). The results show that a perturbation of 𝑠 = 0.01 enables a
perfect estimation of 𝐾 (Fig. 9). The posterior distributions of 𝐾
𝑛𝑎𝑣𝑖𝑔 𝑛𝑎𝑣𝑖𝑔
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Fig. 7. Simulated DO concentrations (ensemble mean) by PF and EnKF with an ensemble size of 500.
Fig. 8. Daily posterior distributions of 𝜇𝑚𝑎𝑥 and 𝑌 estimated by PF and EnKF with an ensemble size of 500.
Fig. 9. Daily posterior distributions of 𝐾𝑛𝑎𝑣𝑖𝑔 estimated by PF with 𝑠 = 0.01, 𝑠 = 0.02, 𝑠 = 0.05, and 𝑠 = 0.10 for an ensemble size of 30 (bandwidth = 0.00011).
are narrow, which depicts small estimation uncertainties. However,
when increasing the random walk (𝑠 = 0.02, 𝑠 = 0.05, and 𝑠 = 0.10),
the posterior distributions become increasingly spread out (Fig. 9),
which corresponds to an increase in parameter uncertainties with larger
perturbations.

4.3. Impact of random walk: precision and capacity of PF

As shown above, a small perturbation (𝑠 = 0.01) enables a perfect
estimation of oxygen concentration and parameters both in slightly
nonlinear systems and strongly nonlinear systems. In other words, the
precision of the results is high. That is because the parameter values
8

are stationary during the simulation. Once the posterior distribution
(Eq. (5)) is well approximated by the ensemble, it is no longer necessary
to explore the parameter space. However, the capacity of the filter
with a small random walk perturbation parameter to respond to fast
changes in the parameters remains questionable. A change of parameter
values was reported in the evolution of microorganism communities,
especially in the development of phytoplankton (Mao et al., 2009;
Huang et al., 2013; Wang et al., 2022).

To illustrate a time-varying parameter, an extreme scenario mim-
icking the shift of 𝐾𝑛𝑎𝑣𝑖𝑔 value from 0.015 m h−1 to 0.03 m h−1 on
day 5 is designed (Fig. 10). With a small random walk (𝑠 = 0.01),
the filter needs 9 days to capture the change in 𝐾𝑛𝑎𝑣𝑖𝑔 value, and
large discrepancies between simulated and reference DO concentrations
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Fig. 10. Simulated DO concentrations (ensemble mean) at station PK50 and daily posterior distributions of 𝐾𝑛𝑎𝑣𝑖𝑔 with 𝑠 = 0.01 and 𝑠 = 0.05 (bandwidth = 0.00092). PF: particle
ilter; Reference: DO concentrations with reference parameters; Varying of the 𝐾𝑛𝑎𝑣𝑖𝑔 value from 0.015 m h−1 to 0.03 m h−1 (black lines) on day 5.
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re obtained during this period. When increasing the random walk
𝑠 = 0.05), the filter takes 3 days to respond to the fast change in
𝑛𝑎𝑣𝑖𝑔 value, and the simulated DO concentrations (ensemble mean)
re satisfactory. Once the filter is stabilized, the precision with a small
andom walk is higher than that with a large random walk.

Nevertheless, the small random walk may stay stuck in a local
aximum in the case of multimodal posterior distribution. In this case,

he ensemble cannot characterize the posterior distribution adequately
nd larger random walks are recommended to allow for a maximum
earch of the posterior distribution (Moradkhani et al., 2012). It should
e also noted that a larger random walk after the resampling step
ould result in an overspread ensemble (biased samples), which cannot
ccount adequately for the prior distribution. Therefore, it is crucial to
ind a good balance between the precision and the ability of parameter
pace exploration in the PF.

Further studies can focus on improving the resampling/perturbation
rocedure using more advanced techniques, such as the auxiliary parti-
le filter (Pitt and Shephard, 1999; Johansen and Doucet, 2008), which
erforms the resampling at time step 𝑡−1 using the available measure-
ent at time step 𝑡, or the MCMC moves with the metropolis acceptance

atio to determine whether to accept a proposed sample (Metropolis
t al., 1953; Hastings, 1970; Gilks and Berzuini, 2001; Doucet and
ohansen, 2011; Moradkhani et al., 2012).

. Conclusions

To compare the performances of PF and EnKF for the updates of wa-
er quality states and model parameters, the PF and EnKF implemented
n the hydro-biogeochemical program ProSe-PA were assessed via two
ynthetic case studies. The main conclusions are given below.

• PF is recommended for the updates of DO concentrations and
model parameters in surface water quality modeling.

• For quasi-linear oxygen reaeration inference, both PF and EnKF
can capture the recovery of DO by reaeration and identify the
reaeration coefficient. But the uncertainty associated with oxygen
and parameter estimates obtained using EnKF is larger than that
obtained using PF.

• The calculation time using PF is lower by 25% compared to EnKF
when the ensemble size is more than 100.

• For nonlinear bacterial activities inference, PF shows a high ef-
ficiency for both the simulation of DO concentrations and the
estimation of bacteria-related parameters, while it is difficult to
retrieve the DO concentrations and estimate the parameter values
properly with the EnKF.

• The small random walk after the resampling procedure in PF
yields high precision of oxygen and parameter estimates, while
a larger random walk is necessary to capture efficiently the
9

fast change in the parameters. It is thus important to find a
good balance between precision and the ability of the parameter
search.
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