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Abstract

Grading precancerous lesions on whole slide images is a challenging task: the continuous
space of morphological phenotypes makes clear-cut decisions between different grades often
difficult, leading to low inter- and intra-rater agreements. More and more Artificial Intel-
ligence (AI) algorithms are developed to help pathologists perform and standardize their
diagnosis. However, those models can render their prediction without consideration of the
ambiguity of the classes and can fail without notice which prevent their wider acceptance
in a clinical context. In this paper, we propose a new score to measure the confidence of
AI models in grading tasks. Our confidence score is specifically adapted to ordinal output
variables, is versatile and does not require extra training or additional inferences nor par-
ticular architecture changes. Comparison to other popular techniques such as Monte Carlo
Dropout and deep ensembles shows that our method provides state-of-the art results, while
being simpler, more versatile and less computationally intensive. The score is also easily
interpretable and consistent with real life hesitations of pathologists. We show that the
score is capable of accurately identifying mispredicted slides and that accuracy for high
confidence decisions is significantly higher than for low-confidence decisions (gap in AUC
of 17.1% on the test set). We believe that the proposed confidence score could be leveraged
by pathologists directly in their workflow and assist them on difficult tasks such as grading
precancerous lesions.

Keywords: Uncertainty estimation, confidence score, grading, multiple instance learning,
whole slide images.

∗ Contributed equally

© 2023 M. Lubrano, Y.B.-H. , R. Fick, C. Badoual & T. Walter.

ar
X

iv
:2

30
3.

04
60

4v
1 

 [
ee

ss
.I

V
] 

 8
 M

ar
 2

02
3



Lubrano Fick Badoual Walter

1. Introduction

Cancer diagnosis usually implies the assessment of biological tissue samples by pathologists.
For some cancer types, samples need to be graded according to histological patterns to as-
sess the severity of the disease. This grading task is crucial since it affects the choices in
patient’s care and follow-up. For head and neck cancers, precancerous lesions (or dyspla-
sia) are graded according to the extent of abnormality detected in the tissue (Gale et al.,
2014). However, grading morphological patterns according to their degree of abnormality
is a difficult task: WHO nomenclatures try to impose sharp boundaries on a continuous
spectrum of lesions, which often leads to poor inter- and intra-grader-reproducibility (Gale
et al., 2020; Mehlum et al., 2018).

In the past years, Artificial Intelligence (AI) has been successfully applied to pathology:
to detect metastasis (Bejnordi et al., 2017), to determine cancer subtype (Coudray et al.,
2018) or to estimate patient prognosis (Courtiol et al., 2019). Several studies even showed
the positive benefit that AI tools can have when combined with manual examinations (Kiani
et al., 2020; Ba et al., 2022). However, these algorithms are not yet widely accepted for use
in clinical practice as standalone diagnostic tools (Van der Laak et al., 2021; Dwivedi et al.,
2021) due to concerns about their instability on external cohorts, sensitivity to domain
shifts, and lack of interpretability. AI models also deliver their predictions regardless of
histologic ambiguity, without providing information about the confidence of the decision,
even if the sample is difficult to grade for the pathologist himself. On such ambiguous cases,
a pathologist may ask for a second opinion or additional analysis, while AI would not flag
the uncertainty.

Measuring Neural Network’s (NN) confidence could bring additional information on
these difficult cases. Confidence (or equivalently ‘uncertainty‘) of AI models have been
explored in the past years (Gal and Ghahramani, 2016; Osband, 2016), and applied to
medical context. Still, very little work focused on histopathology applications: its first
use was to boost model performances for segmentation tasks (Nair et al., 2020; Camarasa
et al., 2020), for active learning (Lubrano di Scandalea et al., 2019) or detection of Out Of
Distribution (OOD) samples (Linmans et al., 2020).

Benchmark of the most popular confidence measures were recently conducted: Pocevi-
ciute et al. (2022) compared their capacity to identify misclassified patches, and Thagaard
et al. (2020) to detect OOD samples at inference. Dolezal et al. (2022) proposed an un-
certainty measure robust to domain shift and tested it on cancer subtyping tasks (binary
classification of LUAD vs LUSC 1). However, none of these methods were designed for mul-
ticlass problems or grading tasks (ordinal output) and all focused on binary classification
of whole slides. In addition, these studies used tile-based methods requiring either local
annotation or tile level information (if the disease is uniformly spread on the slide for in-
stance). This paradigm is not suitable for grading tasks because multiple grades of lesions
can co-exist on the same slide.

Most of all, AI models for WSI classification are difficult to train due to the large size
of pathology datasets. Yet, the most common methods benchmarked in these studies are
computationally intensive (relying on generation of a distribution of predictions) and thus
not suitable for such datasets containing thousands of slides and millions of tiles.

1. LUAD = Lung Adenocarcinoma, LUSC = Lung Squamous Cell Carcinoma
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Uncertainty for Grading Task

In this work we propose a measure of uncertainty designed for grading tasks, that
does not require extra training or inferences nor particular architecture changes. This
uncertainty measure is easily interpretable as it quantifies how much a model hesitates
between two classes, and thus particularly suitable for grading tasks. We compared our
grade sensitive confidence score with popular ones and showed that our method manages
to accurately separate high confidence from low confidence slides and matches the behavior
of pathologists. We believe that measuring the confidence of AI models can provide useful
information to pathologists, helping them to standardize their diagnoses and increase their
trust in AI.

2. Related Work

Multiple methods have been proposed to quantify models’ confidence. The simplest one con-
sists in considering the softmax output of the model as a direct measure of confidence. This
was argued against in (Gal and Ghahramani, 2016) who proposed the Monte Carlo (MC)
dropout method as an approximation of a variational Bayes estimator. In MC dropout, mul-
tiple forward inferences are generated while keeping the dropout active. The uncertainty
is quantified by the variability between the MC samples and measured by the standard
deviation of this distribution. Recently, deep ensembles have proven to be better estimates
of uncertainty (Dolezal et al., 2022; Poceviciute et al., 2022): multiple networks are trained
from different random initializations. Again the uncertainty measure is derived from the
distribution of predictions generated. Other techniques have been explored such as Test
Time Augmentation (TTA) which consist in applying random transformation to an input
image, generating a distribution of predictions. However, the size of histological datasets
make such techniques hardly feasible in practice in the field of computational pathology.

3. Methods

3.1. Weakly-supervised WSI classification

3.1.1. Grading of head and neck precancerous lesions

Grading WSI is a difficult task: often, the borders between each grade are blurry and related
histologic patterns overlap. Additionally, several grades of lesions can co-exist on the same
WSI. In this study we focused on grading head and neck precancerous and cancerous lesions
with respect to their gravity. Such lesions are graded by assessing several morphological and
cytological abnormalities of the tissue according to the WHO recommendations (El-Naggar
et al., 2017). Head and neck epithelium can be either normal/benign (0), or present a low
grade lesion (1), a high grade lesion (2) or have infiltrative carcinoma (3). (See Appendix
A.1 for examples).

3.1.2. Dataset

To assess the benefit of our confidence measure in the context of a grading task we used
an in-house dataset of head and neck precancerous and cancerous tissue samples obtained
from the HEGP pathology department. The dataset was composed of 2121 Hematoxylin and
Eosin (H&E) slides. Each slide was labeled with the most severe lesion it contained (grade
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0 to 3). Considering the inherent ambiguity of these histologic patterns, a gold standard
test set of 128 slides was blindly reviewed by 2 pathologists and consensus diagnosis was
found. An extensive description of the dataset can be found in (Lubrano et al., 2022).

3.1.3. Attention MIL Architecture

We used an architecture derived from the Attention MIL model proposed by (Ilse et al.,
2018). Each WSI is cut into small tiles and fed to a NN. A global label associated with the
WSI is used to train the model. An attention mechanism allows to detect the most relevant
tiles for the classification. Details of the architecture can be found in Appendix A.2.

3.1.4. Cost sensitive training

To leverage the ordinal nature of the class we used the cost aware classification loss intro-
duced in (Chung et al., 2015): the Smooth One Sided Regression (SOSR) loss. The output
of the network is a class specific risk Ĉ rather than a posterior probability. No softmax is
used. The predicted class corresponds to the class minimizing this risk. The loss is defined
as follows:

LSOSR =
∑
i

∑
j

ln(1 + exp(2i,j · (ĉi − Ci,j))) (1)

With 2i,j = −1i 6=j + 1i=j , ĉi the i-th coordinate of the network output and C the error
table. The use of ordinal risk predictions is a crucial requirement for pathologists as it
penalizes errors with high medical impact. In contrast, if we used a normal classification
setting with cross-entropy, severe misclassifications would be likely to be more frequent.
In this paper, we defined the error table as the one proposed by the TissueNet Challenge
(Loménie et al., 2022). It can be found in the Appendix A.3.

3.2. Confidence measures

3.2.1. Our method: grade sensitive confidence score

Our confidence score was derived from the risk estimation vector outputted by the last
layer of the network. The softmax of the inverted risk (- risk vector) was computed, turning
cost estimation into probabilities. This makes the score easier to interpret and to compare,
while not changing the ordering of values. The confidence score was defined as the difference
between the two highest risk probabilities: if the probabilities were close, the network was
hesitating between two classes, if they were far, the network was considered more confident
(see Algorithm 1).

Algorithm 1: Grade sensitive confidence score (ours)

Input: Y ∈ Rn, with n the number of classes
Output: u, the confidence score
Y ← softmax(−Y );
Y ← sort(Y, ascending = False);
U ← Y0 − Y1;

4



Uncertainty for Grading Task

We benchmarked our method against the most popular ones in medical image analysis
(MC Dropout and Deep Ensembles). As a baseline we considered the raw output vector of
the NN as a confidence measure.

3.2.2. MC Dropout

Our model was trained with dropout layers with rate r. At inference, M forward passes with
dropout layers enabled were performed as described in (Gal and Ghahramani, 2016). The
confidence was derived from the standard deviation of the generated Monte-Carlo samples
according to the equation 2. The standard deviation was inverted and normalized between
0 and 1 to be compared with the grade sensitive confidence measure.

Uunormalized =

√∑M
m=0(Ym − Ȳ )

M − 1
(2)

With Y ∈ Rn the output vector, n the number of classes, M the number of MC samples.

3.2.3. Deep ensembles

D networks were initialized with different seeds and trained independently from each other.
The confidence score was computed from the standard deviation of the D predictions made
from the different networks similarly as Equation (2). Again, for comparison purposes, the
standard deviation is inverted and normalized between 0 and 1.

3.3. Implementation and training details

The dataset was split in 5 training and validation sets in a stratified way to perform a 5-
folds cross validation. The folds were used for training and hyper-parameter optimization.
The gold standard test was only used for evaluation purposes. WSI were cut in tiles of
224x224 pixels without overlap at resolution of 10X (1µm/pixel) and background tiles were
removed, resulting in a total of 3.9 million of tiles (from 2121 slides). DenseNet121 was
used to extract features from the tiles. This convolutional part of the network was frozen
and initialized with pre-trained weights obtained from self-supervised learning. The self-
supervised architecture relied on SimCLR method (Chen et al., 2020) and is described in
Appendix A.4. Dropout rates were set to 0.5. Deep Ensembles were obtained by training
5 models (D = 5) with different seeds for the 5 data folds. 50 MC samples were generated
(M = 50) for the MC dropout method. Predictions were made on the gold standard test
set by averaging the output vectors of the D inferences (for deep ensembles) or the M
inferences (for MC dropout) and then averaged on the 5 folds. Models were trained for
100 epochs with early stopping on the validation sets. RMSProp optimizer was used with
a momentum of 0.5 and a learning rate of 1e-4. At each training step, all the tiles of the
randomly sampled slide were used. The implementation was done with Tensorflow (TF
2.8).
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4. Experiments and results

4.1. Capacity to detect difficult slides

To compare the confidence measures capacity to detect the most ambiguous slides, we eval-
uated the classification performances on the gold standard test set for a range of confidence
thresholds. As the threshold increased, more slides were considered uncertain by the model
and removed from the test set. Metrics were then computed on the remaining slides. The
baseline consisted in the raw risk estimates obtained when training with the SOSR loss. It
was compared with the deep ensembles, the MC dropout, and our proposed grade sensi-
tive measure. Comparison was also made with the evolution of the AUC when slides were
picked randomly (Figure 1). We observed that the grade sensitive measure, raw risk and
deep ensembles have similar behaviors: they consistently identify more difficult slides on
which the model has more chance to make a misprediction. On the contrary, MC dropout
fails to identify the most uncertain samples: the AUC is flat when removing the first slides
(the most uncertain according to the MC Dropout measure), similar to random removal of
slides.

.

Figure 1: Overall AUC evolution on the Gold Standard Test set as we remove the most
uncertain slides. We measured the overall AUC (average on the 4 classes) on
the same number of slides, after removing the most uncertain slides of the test
set. The faster the AUC increases, the better the selected slides are. Per class
performances can be visualized in Appendix B.4. Evolution with respect to the
confidence score threshold is available in Appendix B.2

4.2. Classification performances at a particular confidence level - Screening
use case

In the setting of a screening use-case (e.g. to use AI help only if the prediction is reliable),
a confidence threshold has to be set. In real life cases the threshold would be set on the
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validation sets, based on clinical constraints: to reach a Negative Predictive Value (NPV)
on the abnormal (dysplasia + carcinoma) class > 0.95 for instance. Here, to compare
the metrics on the same amount of slides and ensure a fair comparison between sets and
methods, we defined the threshold as the median of the confidence level. The distribution
of confidence scores across classes revealed that confidence levels were always high for the
classes 0 and 3, that are indeed the most simple classes to detect for pathologists. On the
other hand, confidence levels are often lower on intermediary classes (1 and 2) which are
more difficult to grade and the criteria for each class are difficult to assess (Appendix B.3).
In Table 1, we observe that the grade sensitive measure leads to the larger gaps between
the low and high confidence subsets of slides.

Table 1: AUC for the stratified gold standard test set in high confidence and low confidence
slides. Predictions on the test set are obtained by averaging the predicted proba-
bilities from the 5 trainings on the different folds (ensembling) and bootstraping
was conducted to compute final metrics. Other metrics and confidence intervals
are available in Appendix B.5

threshold= median AUC (Average on 4 classes) NPV Carcinoma (3) NPV Abnormal (1+2+3)

1000 bootstraps
Low

Confidence
High

Confidence
Gap

Low
Confidence

High
Confidence

Gap
Low

Confidence
High

Confidence
Gap

MC-Dropout 0.842 0.884 4,2% 0.950 0.936 -1,4% 0.664 0.733 6,90%
Raw risk (SOSR) 0,797 0,934 13,70% 0,920 1.0 8,0% 0,621 0,742 12,10%
Deep Ensembling 0.790 0.928 13,8% 0.938 1.0 6,2% 0.540 0.809 26,90%

Grade Sensitive (Ours) 0.770 0.941 17,1% 0.920 1.0 8,0% 0.496 0.867 37,10%

4.3. Correlation with histologic ambiguity

We compared the level of confidence with the results of the dual blind review of the gold
standard test set. Confidences were measured for slides on which pathologist agreed in first
place and slides on which pathologist disagreed during the blind review. Confidence scores
for deep ensembles and grade sensitive methods were significantly correlated with the review:
higher confidence were associated with slides easier for pathologists (the one they agreed on)
and lower confidence on more difficult slides (the one they disagreed on). Figure 2 suggests
that the confidence level of the model correlates with the risk of disagreement between
reviewers. We note that the high variability of confidence scores are expected. Indeed, if
the grading of a slide was so difficult that the assignment was random, there would still be
a 25% chance that the reviewers agree. If in this case the slide was given a low confidence
by the score, it would lead to a low confidence score for a slide the reviewers agreed on.
As the confidence scores are measuring different aspects of the prediction process (distance
measure, variance measure, risk measure), they are expected to behave differently and vary
on different ranges, but this has no negative impact on the quality of the score.

5. Discussion and Conclusion

We benchmarked our grade sensitive confidence score with popular uncertainty measures for
the difficult task of grading precancerous lesions on histopathological samples. We showed
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Figure 2: Confidence score distributions compared to pathologist agreements

that the grade sensitive score, as well as deep ensembles scores allowed us to accurately
detect poor confidence samples while MC dropout measure was actually not performing
well in the grading setting (Fig. 1). This observation corresponds to what is found in
the literature (Thagaard et al., 2020; Poceviciute et al., 2022). Additionally, our method
led to larger gains in classification performance between low and high confidence scores
(Table 1), demonstrating that it is the most appropriate method for clinical practice among
the techniques tested.

Our grade sensitive method is computationally efficient and is suitable to be used in
weakly supervised workflows as it does not requires any annotations. In contrast to deep
ensembles that require the training of an extra 4 models to assess the confidence, multiplying
by such the training and prediction time. Given that WSI classification typically relies
on large datasets and requires long training times, this is an important advantage of our
method. Surprisingly, the raw risk estimates were a good assessment of the confidence,
managing to stratify the test set between high and low confidence subsets almost as well as
deep ensembles. This goes against accepted theory that softmax output of a network is not
a good uncertainty estimate (Gal and Ghahramani, 2016; Pearce et al., 2021). We believe
this contradictory behavior can be caused by the grading setting. Indeed, in other studies,
uncertainty estimates were always computed for binary tasks. In such setting, the softmax
layer inevitably tends to force extreme decisions, the subtleties needed to stratify the data
according to their confidence are erased by this excessive behavior. On the other hand, in
the context of grading, softmax can have more difficulties forcing a class to a probability of
1, leading to a better distribution of probabilities that can thus be used more efficiently to
measure a model’s confidence.

We identified that the most uncertain slides according to our measure were mostly low
grade (1) and high grade lesions (2), ie. intermediate classes. This observation corresponds
to what pathologists experiment in practice. Indeed, the grading system of head and neck
precancerous lesions has always been controversial (Gale et al., 2020; Mehlum et al., 2018),
and no less than 4 grading nomenclature have been proposed in the last decades. This
illustrates the inherent difficulty of the grading task, where borders between classes are
subject to noise and pathologists’ own calibration.

Finally, we showed that grade sensitive, raw risks and deep ensembles measures were
significantly correlated with pathologists slides agreements (Figure 2). This interesting
finding demonstrates the portability of such measures to clinical practice. Indeed, the
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confidence is able to detect slides on which pathologists will also struggle, and probably
disagree. This can be of great help for detecting more difficult slides and either filter them
out or directly ask for a second opinion.

In conclusion, we proposed new approach for evaluating the reliability of AI models for
WSI grading. This approach is easy to understand, cost-effective, and takes into account the
inherent uncertainty of histological samples. We believe this contribution is an interesting
step toward more reliable AI model to be used in clinical practice, especially for subjective
tasks such as grading precancerous lesions.
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Thomas Kjaergaard, Sören Möller, and Christian Godballe. Laryngeal precursor lesions:
Interrater and intrarater reliability of histopathological assessment. The Laryngoscope,
128(10):2375–2379, 2018. Publisher: Wiley Online Library.

Tanya Nair, Doina Precup, Douglas L Arnold, and Tal Arbel. Exploring uncertainty mea-
sures in deep networks for multiple sclerosis lesion detection and segmentation. Medical
image analysis, 59:101557, 2020. Publisher: Elsevier.

Ian Osband. Risk versus uncertainty in deep learning: Bayes, bootstrap and the dangers of
dropout. In NIPS workshop on bayesian deep learning, volume 192, 2016.

Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding softmax confidence and
uncertainty. arXiv preprint arXiv:2106.04972, 2021.

Milda Poceviciute, Gabriel Eilertsen, Sofia Jarkman, and Claes Lundström. Generalisa-
tion effects of predictive uncertainty estimation in deep learning for digital pathology.
Scientific Reports, 12(1):1–15, 2022. Publisher: Nature Publishing Group.

Jeppe Thagaard, Søren Hauberg, Bert van der Vegt, Thomas Ebstrup, Johan D Hansen, and
Anders B Dahl. Can you trust predictive uncertainty under real dataset shifts in digital
pathology? In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 824–833. Springer, 2020.

Jeroen Van der Laak, Geert Litjens, and Francesco Ciompi. Deep learning in histopathol-
ogy: the path to the clinic. Nature medicine, 27(5):775–784, 2021. Publisher: Nature
Publishing Group.

11

http://biorxiv.org/lookup/doi/10.1101/2022.12.21.521392


Lubrano Fick Badoual Walter

Appendix A. Methods

A.1. Grading of head and neck precancerous lesions

WSI - with global label: 
Carcinoma (3)

Benign (0) Low Grade (1) High Grade (2) Carcinoma (3)

Example of patterns:

Figure 3: Examples of WSI and lesions according to the grade (20X): the lesions affects the
surface epithelium. The lesion grade is deternmined taking into account (but not
exclusively) the thickness of epithelium affected by dysplastic patterns.

A.2. Architecture Details

12
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Table 2: Whole Slide Classification - Summary Table
Layers Type

Feature Extractor DenseNet121 [1024]

Attention-MIL

Dimensionality Reduction
FC [128] + tanh

Dropout
Tile Scoring

FC [128] + softmax
Dropout

Classification
FC [200] + relu

Dropout
FC [100] + relu

Dropout
FC [4]

A.3. Cost Matrix

Misclassification errors do not lead to equally serious consequences. Accordingly, a panel of
pathologists established a grading of each of these errors i.e they attributed to each pair of
possible outcome (i, j) ∈ {0, 1, 2, 3}2 a severity score 0 6 Ci,j 6 1 (Table 3).

Table 3: Weighted Accuracy Error Table - Error table to ponderate misclassification ac-
cording to their gap with the ground truth

Ground Truth Benign (pred) Low-grade (pred) High-grade (pred) Carcinoma (pred)

Benign 0.0 0.1 0.7 1.0
Low-grade 0.1 0.0 0.3 0.7
High-grade 0.7 0.3 0.0 0.3
Carcinoma 1.0 0.7 0.3 0.0

A.4. Self-supervised Implementation Details

Our Self-supervised model relied on SimCLR architecture. It consisted of a feature extractor
(DenseNet121) and a projection head (3 dense layers). The model was trained on 3.5 million
tiles of 336x336 pixels from the dataset, using a batch size of 864, a temperature of 0.1, and
a learning rate of 10e-4. The feature extractor was initialized with ImageNet pretrained
weights and trained for 5 epochs with the feature extractor frozen. After this, the model
was trained for a total of 300 hours (143 epochs) using augmentations such as cropping and
resizing the tiles to 224x224 pixels, random rotations of 90 degrees, flipping, custom stain
augmentation, and color jittering to adjust brightness, hue, contrast, and saturation.
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Appendix B. Additional Results

B.1. Capacity to detect difficult slides

Figure 4: Evolution of various metrics on the Gold Standard Test set as we remove the
most uncertain slides

14
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B.2. Overall AUC evolution with respect the confidence threshold

Figure 5: Evolution of the Overall AUC and the number of slides removed with respect
to the confidence score threshold. Dashed line are link to the right axis (%
slides remaining in the test set), et full lines are linked to the left axis (Overall
AUC). This representation allows us to verify that not all the slides are removed
immediately when increasing the threshold.
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B.3. Confusion Matrices and Confidence score distributions

Figure 6: Confusion Matrices on high and low confidence (threshold=median) based on
grade sensitive measure (left) and distribution of confidence scores for each class
(right)

Figure 7: Confidence level per class for grade sensitive and deep ensembles methods. The
confidence is lower for intermediary classes 1 and 2.

Table 4: Average Confidence values per slides for each method
Classes Grade Sensitive (ours) Deep Ensembles MC Dropout Raw Risk

Benign (0) 0.74 0.79 0.47 0.25
Low Grade (1) 0.42 0.66 0.45 0.08
High Grade (2) 0.66 0.63 0.47 0.13
Carcinoma (3) 0.89 0.82 0.50 0.46
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B.4. ROC Curves

Figure 8: ROC AUC on the Gold Standard Test set after dichotomized between High Con-
fidence slides and low confidence slides (threshold = median, 10 000 bootstraps)

17
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B.5. Stratification of the test set between high and low confidence slides

Table 5: Stratification of the gold standard test set between high confidence and low con-
fidence slides. Ensembling predictions from the 5 folds cross validation trainings
and bootstraped.

threshold= median AUC (Average on 4 classes) NPV Carcinoma (3) NPV Abnormal (1)+(2)+(3)

1000 bootstraps
Low

Confidence
High

Confidence
Gap

Low
Confidence

High
Confidence

Gap
Low

Confidence
High

Confidence
Gap

MC-Dropout 0.842 [0.78, 0.9] 0.884 [0.823, 0.938] 4,2% 0.95 [0.87, 1.0] 0.936 [0.86, 1.0] -1,4% 0.664 [0.364, 0.917] 0.733 [0.47, 1.0] 6,9%
Raw risk (SOSR) 0,797 [0.719, 0.862] 0,934 [0.882, 0.978] 13,70% 0,92 [0.847, 0.984] 1 [1.0, 1.0] 8,0% 0,621 [0.25, 1.0] 0,742 [0.524, 0.938] 12,1%
Deep Ensembling 0.79 [0.719, 0.858] 0.928 [0.879, 0.978] 13,8% 0.938 [0.879, 0.985] 1.0 [1.0, 1.0] 6,2% 0.54 [0.222, 0.819] 0.809 [0.588, 1.0] 26,9%

Grade Sensitive (Ours) 0.77 [0.689, 0.84] 0.941 [0.902, 0.977] 17,1% 0.92 [0.848, 0.983] 1.0 [1.0, 1.0] 8,0% 0.496 [0.214, 0.778] 0.867 [0.667, 1.0] 37,1%

Table 6: Other metrics
threshold= median AUC Carcinoma (3) AUC Abnormal (1)+(2)+(3)

1000 bootstraps
Low

Confidence
High

Confidence
Gap

Low
Confidence

High
Confidence

Gap

MC-Dropout 0.953 [0.893, 0.997] 0.936 [0.857, 1.0] -1,70% 0.825 [0.708, 0.919] 0.948 [0.889, 0.99] 12,30%
Raw risk (SOSR) 0,891 [0.768, 0.988] 0,979 [0.939, 1.0] 8,80% 0,737 [0.577, 0.875] 0,968 [0.922, 1.0] 23,10%
Deep Ensembling 0.911 [0.8, 0.991] 0.982 [0.942, 1.0] 7,10% 0.722 [0.567, 0.849] 0.968 [0.916, 1.0] 24,60%

Grade Sensitive (Ours) 0.915 [0.815, 0.989] 0.98 [0.942, 1.0] 6,50% 0.718 [0.562, 0.852] 0.974 [0.931, 1.0] 25,60%

B.6. Analysis on most hesitating slides, comparison between ordinal loss and
cross-entropy

Figure 9: When trained with cross entropy (right), the model hesitates between classes that
are not always adjacent. On the other hand, when trained with the ordinal loss
(left), the gap between the most probables classes (or less risky) is always of
1. This behavior align with pathologists experience and biological groundings.
Predictions on the gold standard test set were obtained by ensembling on the 5
folds.

B.7. Comparison with different cost matrices

The cost matrix defined in the TissueNet Challenge (Loménie et al., 2022) was set by an
expert consensus within a scientific council. It reflects the medical impact a diagnosis error
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can have on the patient’s care, cure and follow up. For instance, according to experts, di-
agnosing a benign case (0) instead of a low grade lesion (1) has less impact than diagnosing
a high grade (2). Without any prior knowledge or experts to set error costs, one could use
more standard matrices with linear or quadratic weights for instance. The following results
compare performances obtained from training with the custom costs matrix and a linear
cost matrix as defined below.

Linear cost matrix:


0.0 0.33 0.66 1.0
0.33 0.0 0.33 0.66
0.66 0.33 0.0 0.33
1.0 0.66 0.33 0.0



Table 7: Per class classification performances (avg +/- std on the 5 folds) on the gold
standard test set

Normal (0) Low Grade (1) High Grade (2) Carcinoma (3)

AUC Custom Matrix
Overall AUC= 0.875 +/- 0.005

0.911 +/- 0.0078 0.78 +/- 0.0101 0.845 +/- 0.007 0.963 +/- 0.0071

AUC Linear Matrix
Overall AUC= 0.879 +/- 0.0064

0.91 +/- 0.0047 0.795 +/- 0.0171 0.849 +/- 0.0099 0.963 +/- 0.0068

Figure 10: Similar to Figure 1. Overall AUC evolution on the Gold Standard Test set as
we remove the most uncertain slides. Comparison with trainings done using a
linear cost matrix in yellow.
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