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Abstract

Whole slide images (WSI) are microscopy images of

stained tissue slides routinely prepared for diagnosis and

treatment selection in medical practice. WSI are very large

(gigapixel size) and complex (made of up to millions of

cells). The current state-of-the-art (SoTA) approach to clas-

sify WSI subdivides them into tiles, encodes them by pre-

trained networks and applies Multiple Instance Learning

(MIL) to train for specific downstream tasks. However, an-

notated datasets are often small, typically a few hundred to

a few thousand WSI, which may cause overfitting and un-

derperforming models. Conversely, the number of unanno-

tated WSI is ever increasing, with datasets of tens of thou-

sands (soon to be millions) of images available. While it

has been previously proposed to use these unannotated data

to identify suitable tile representations by self-supervised

learning (SSL), downstream classification tasks still require

full supervision because parts of the MIL architecture is not

trained during tile level SSL pre-training. Here, we propose

a strategy of slide level SSL to leverage the large number

of WSI without annotations to infer powerful slide repre-

sentations. Applying our method to The Cancer-Genome

Atlas, one of the most widely used data resources in cancer

research (16 TB image data), we are able to downsize the

dataset to 23 MB without any loss in predictive power: we

show that a linear classifier trained on top of these embed-

dings maintains or improves previous SoTA performances

on various benchmark WSI classification tasks. Finally, we

observe that training a classifier on these representations

with tiny datasets (e.g. 50 slides) improved performances

over SoTA by an average of +6.3 AUC points over all down-

stream tasks.

1. Introduction

Whole slide images (WSI) are microscopy images of

stained tissue sections. They are enormous (billions of pix-

els) and complex, often containing millions of individual

cells, their environments, and the overall tissue structure.

They are routinely used in cancer treatment centers for diag-

nosis, patient stratification, and treatment selection. Com-

putational pathology is the field concerned with the auto-

matic analysis of WSI. The most clinically impactful task

in computational pathology is to make predictions directly

from the WSI, such as predicting cancer subtype, survival of

the patient, or response to treatment. The major challenges

in building predictive models operating on WSI are:

• Prohibitive memory requirements (typically 15GB un-

compressed per WSI);

• Signal/noise: The high amount of biological material,

not necessarily related to the output variable, is making

models: (i) fail to identify the region of interests; (ii)

prone to overfitting.

• Technical complexity: WSI are technically demand-

ing to deal with given their large size, which presents

a considerable barrier for multi-modal analyses of ge-

nomic and pathology data.

Today, the leading methods for WSI classification rely

on Multiple Instance Learning (MIL): WSI are tessellated

into small images, called tiles, which are encoded by an

embedder. Tile embedders are usually pre-trained, either

on natural images or - more recently and with great effect

- by self-supervised learning (SSL). WSI are then seen as

bags of tiles, and the slide representation is obtained by

combining the tile embeddings, which are then used as in-

put for the slide classification network. The agglomera-

tion strategy comes in different flavors and usually relies
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on tile selection or weighted averaging of tile embeddings

[9,17,23,24,28]. The slide classification network is usually

trained from scratch on the specific classification task.

While these methods successfully predict a large vari-

ety of output variables, such as grade, cancer subtype, gene

signatures, mutations or response to treatment [1, 8, 13, 18,

20, 26, 27], the performances remain highly dependent on

the size of the training dataset [1]. Indeed, MIL perfor-

mance reaches saturation when using thousands of slides

with associated ground truth for training [1]. This might

be realistic for the most frequent cancer types and routinely

acquired output variables, but in most real-world projects

only a few tens or hundreds of WSI with corresponding

ground truth are available. However, with the digitaliza-

tion of many pathology facilities, there is an increasing ac-

cess to WSI without ground truth which are digitalized in

clinical routine. Following the SSL paradigm that has been

successfully applied at the tile level [7, 10, 20, 29], there is

a challenging opportunity to make use of these unannotated

data at the slide level to derive meaningful slide represen-

tations. These would be particularly useful for small co-

horts and non-standard output variables, such as prognosis

for rare cancer types or prediction of treatment response in

clinical trials.

However, learning representations at the WSI level is dif-

ficult since WSI cannot be manipulated as one image object

due to their size, impeding the straightforward use of self-

supervised learning frameworks developed on natural im-

ages. The community needs to innovate to translate SSL at

the WSI level regarding the design of pertinent augmenta-

tions. For instance, the crop augmentation plays a central

role for learning good representations with SSL on natural

images [4, 25]. However, randomly cropping one memory-

fittable image from a WSI can lead to a complete loss of

the cells and tissues that determine its ground-truth, due to

the inherent heterogeneity of tissues. Further developments

should also be done on the architecture of a SSL framework

for WSI representations, as was done in the only paper tack-

ling SSL at the WSI level [3].

Here, we propose Giga-SSL, a strategy to perform SSL

for gigapixel images. Designed for pathology data, our

method is capable of leveraging large datasets, such as The

Cancer Genome Atlas (TCGA) [34], to learn representa-

tions at the WSI level without using any ground truth data –

but only whole slide images. Our main contributions are:

• Giga-SSL, an efficient self-supervised learning frame-

work for gigapixel images.

• Extensive experiments show that a linear classifier that

uses these embeddings outperforms the current state-

of-the-art performance on several clinically impactful

classification tasks. The gains are especially signifi-

cant for small datasets.

• We publicly release the WSI embeddings of the whole

TCGA dataset, compressing it by a factor of almost 1

million from 16Tb to 23Mb, and thus making this large

image datasets amenable for future research.

We expect that this method will have an important im-

pact in the field of computational pathology in two ways:

(1) Our method specifically boosts performance for small

datasets, which are very common in practice. We therefore

address a major bottleneck in computational pathology. (2)

We can make image data accessible to a larger community

of researchers in cancer bioinformatics, in order to investi-

gate the complex relationships between genetic, transcrip-

tomic and phenotypic data. To facilitate reproducibility and

the broad use of Giga-SSL, the complete source code of this

work as well as the full TCGA-FFPE encodings are avail-

able at https://github.com/trislaz/gigassl.

2. Background

2.1. Multiple instance learning for gigapixel images

In the MIL paradigm, objects (called bags) comprise

other objects (called instances). For gigapixel images, the

bag is a gigapixel image, and its instances are subimages

(also called tiles or patches) extracted throughout the gi-

gapixel image. While traditional MIL assumes indepen-

dent and identically distributed (i.i.d.) instances within each

bag [17], this assumption is relaxed for gigapixel images

because instances are extracted from the same image, and

are therefore not independent. Given a gigapixel image X
made of nx instances (x1, . . . , xnx

), MIL is implemented

as a combination of three modules: (i) an instance embed-

der eθ1(·), (ii) a pooling operator pθ2(·) and (iii) a classifier

cθ3(·) such that a decision ŷ is obtained with

ŷ = cθ3

(

pθ2
(

{eθ1(x1), . . . , eθ1(xn)}
)

)

.

Most MIL architectures differ in the design of the pool-

ing operator pθ2 . There are two families of operators: (i)

those that consider instances as i.i.d. and (ii) those that ex-

ploit the relationship between instances of a bag. Architec-

tures that consider instances as i.i.d. are either parameter-

less (e.g. using the operators average, maximum, a concate-

nation of both [21], or a noisy-OR function [32]), or train-

able, such as an attention-based neural network [17]. While

these architectures obtain good performances, instances of

gigapixel images are dependent and contain information

that can be leveraged to produce accurate predictions. Mod-

ern MIL architecture for gigapixel images have been de-

signed to exploit the spatial relationship of instances. For

instance, transformer-based MIL approaches [31] extend

the attention mechanism of Ilse et al. [17] by incorporat-

ing the positions of instances for decision prediction. Of
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particular interest in this work, the SparseConvMIL [22] ar-

chitecture leverages spatial information by building a sparse

map from both the instance embeddings and their sampled

locations. This map is further processed by a sparse-input

convolutional neural network that outputs a latent vector to

be further classified by a generic classifier.

2.2. Self­supervised learning for gigapixel images

Self-supervised learning have been investigated in com-

putational pathology at the tile level, i.e. for patches ex-

tracted from whole slide images [7, 10, 20, 29]. The find-

ings suggest that SSL indeed improved the performance on

WSI classification tasks by using the SSL pre-trained tile

level model as a frozen tile encoder. Because patches ex-

tracted from WSI are of size similar to datasets of natural

images, the majority of the work successfully used off-the-

shelf frameworks developed on natural images such as Sim-

CLR [4] or MoCo [15].

To the best of our knowledge, only one prior work has

proposed a self-supervised learning framework for learn-

ing representations directly at the WSI level [3]. To do so,

the authors design a new architecture made of 3 hierarchi-

cally stacked visual transformers [12] which is trained on

unlabelled WSI with the DINO framework [2], notably by

enforcing consistency between two perturbed views of the

same object. As stated by the authors [3], their approach

cannot be trained end-to-end due to memory issues and

needs to be trained in stages, starting from the visual trans-

former at higher magnification. on top of time-consuming

SSL pre-training, a drawback is the need to retrain all trans-

formers at lower magnifications when modifying one visual

transformer. A major bottleneck of this approach is the ne-

cessity to retrain the last transformer from scratch, implying

that (i) the whole system does not benefit fully of SSL pre-

training, and that (ii) linear embeddings cannot be extracted

for new slides and used as input vectors for downstream

tasks [3]. Conversely, we designed an efficient method for

learning WSI representations that obtained state-of-the-art

performance with a linear classifier without the need to fine-

tune any part of our system.

3. Methods

3.1. Algorithmic design

Notations and algorithmic background Giga-SSL

training comprises 6 sequential steps to extract WSI repre-

sentations which we details here and which is illustrated in

Figure Fig. 1. Lets us consider a WSI X . Giga-SSL uses

an extension of the SparseConvMIL architecture for WSI

classification [22] by considering a ResNet network fθ (e.g.

ResNet18) [16], which is cut at the beginning of the fourth

residual block into two sequential parts:

1. the first part, acting as the tile embedder eθ1 , is made of

all layers of fθ up to the first layer of the fourth block,

2. the second part, acting as the pooling function pθ2 , is

made of all layers after and including the fourth block

of fθ,

such that for any image i, the ResNet embedding is:

fθ(i) = pθ2
(

eθ1(i)
)

∈ R
512.

Step 1: Augmentation of the WSI at the tile-level Two

augmentation functions t1 and t2 are sampled from an im-

age augmentation domain A made of color augmentations

(color jitter, grayscale) and geometric augmentations (flips,

rotations, scaling, blurring). First, T tiles are subsampled

from X for each augmentation function t1 and t2, yielding

two sets of patches {X1} and {X2}. The coordinates of the

top-left pixel of the tiles are stored for further processing.

Finally t1 is applied to all patches of {X1}, yielding a set

of augmented patches denoted as t1
(

{X1}
)

, and similarly a

set t2
(

{X2}
)

for the second set patches {X2}.

Step 2: Embedding of tiles Each tile of both t1
(

{X1}
)

and t2
(

{X2}
)

are concurrently and independently for-

warded through the tile embedder network eθ1 . Each im-

age is thus converted into a feature map which is averaged

across all pixels, yielding a tile embedding of size F (256

for ResNet18) for each tile of t1
(

{X1}
)

and t2
(

{X2}
)

Step 3: Building of the sparse maps Following the

framework of SparseConvMIL [22], a sparse map S1 is built

by assigning each produced embedding of t1
(

{X1}
)

at the

location where each of its original tiles was sampled in Step

1 Sec. 3.1 but downsampled by a factor d = 224. Similarly,

a sparse map S2 is built from the embeddings t2
(

{X2}
)

.

Step 4: Augmentations of the WSI at the slide-level

While WSI are difficult to manipulate due to their huge size,

a sparse map can be augmented with geometric transforma-

tions, enabling our framework to perform slide-level trans-

formations in real-time. S1 and S2 are randomly flipped, ro-

tated, and scaled with a factor uniformly sampled in [0.5, 2]
independently for the x and y axis.

Step 5: Embedding of the sparse maps into two aug-

mented WSI representations To compute representa-

tions, we apply pθ2 on both augmented sparse maps S1 and

S2. It should be noted that pθ2 is not a conventional CNN

model but has been converted into a submanifold convolu-

tional network [14] with the same architecture such that it

can process sparse data. At this stage, the two augmented

views of the input WSI X (augmented at the tile-level and

at the slide-level) are vector representations of the WSI.
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Figure 1. Overview of the Giga-SSL method. First, random augmentations of a WSI are used to create two different views X1 and

X2 of the same WSI. Next, T tiles randomly extracted from each view are embedded using a tile-embedder network eθ1 , resulting in T

embeddings in R
F . These embeddings and their associated tile coordinates are fed into a sparse-input CNN model pθ2 , producing two

WSI representations W1 and W2. A contrastive loss is applied on a minibatch of several whole slide images in order to update both eθ1
and pθ2 .

Step 6: Loss optimization As is done in SimCLR, aug-

mented views are finally fed to a projector, giving two aug-

mented projections with which the loss will be computed.

We train the weights of the pooling function pθ2 by op-

timizing the contrastive loss NT-XENT loss [4]. Given a

minibatch B of augmented WSI (X i
1
, X i

2
)i∈B , we set the

loss function for a positive pair of WSI as

ℓi = − log
exp

(

sim
(

X i
1
, X i

2

)

/τ
)

∑

x∈B 1{x 6=Xi

1
} exp

(

sim
(

X i
1
, x

)

/τ
) (1)

where τ is the temperature parameter and 1{.} the indicator

function. The final loss is computed as the average of these

terms across all views.

3.2. Design choices

Selection of the underlying CNN architecture and loss

function Giga-SSL does not theoretically rely on a

ResNet architecture. There are many choices of good archi-

tectures that could be used for the comprising tile encoder

and pooling function, including two parts of different ar-

chitectures. However, the pooling function must be imple-

mented such that it can handle sparse data since it processes

the augmented sparse maps (see Step 5 Sec. 3.1).

Freezing the tile encoder A key computational bottle-

neck of this strategy is the online computation of tile em-

beddings for a batch of B WSI, each composed of T

tiles.GPU memory limitations put constraints on B and Nt,

which effectively limits the number of total tiles per batch

that can be used. Besides, it has been shown in SSL for

natural images that a large batch size is required to yield

representations with good downstream classification perfor-

mances [4–6]. A strategy for overcoming these issues is to

freeze the tile encoder eθ1 and pre-compute the embeddings

of randomly sampled and augmented tiles for each WSI,

i.e. essentially bypassing steps 1 and 2 of Sec. 3.1. For

encoding a WSI, this is implemented by: (i) sampling 50

tile-level augmentation functions (both color and geometric

augmentations) (tk)k650, (ii) for each k, randomly subsam-

pling 256 tiles from the WSI and augment them with tk, and

(iii) concurrently and independently forwarding each aug-

mented tile into eθ1 and storing them. This process leads to

N*50*256 tile embeddings where N is the total number of

WSI of the Giga-SSL training dataset.

Giga-SSL is then trained, starting from step 3 Sec. 3.1

by performing the following to sample a view of a WSI: (i)

sample one of the 50 tile-level augmentations, (ii) sample

a subset T of the 256 embeddings obtained from this aug-

mentation, (iii) build the sparse map, and (iv) carry on from

step 4 of Sec. 3.1.
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4. Experimental validation

4.1. Step 1: self­supervised pre­training

Self-supervised pre-training of Giga-SSL is done using

The Cancer Genome Atlas (TCGA) [34], a public dataset

that comprises 11754 whole slide images containing tissue

from virtually all types of solid cancers. This dataset is the

result of an international data-collecting effort and therefore

features a high variety of participant centers (190). Such

slides are crucial for patient care since they are the basis

of diagnosis and treatment selection. On average, images

have a width of 93000 pixels and a height 67500 pixels,

for an average of 6.5 billion pixels per image. Fully com-

pressed, TCGA weighs more than 16 Terabytes, i.e. 3 or-

ders of magnitude more than ImageNet [11]. We tesselated

non-overlapping square patches of size 256 pixels from all

diagnostic slides of the TCGA at 10x magnification.

eθ1 pre-training We choose to pre-train eθ1 using MoCo

[15]. We trained a full ResNet18 on a subset of 6 million of

these tiles extracted from a random set of 3000 slides from

the TCGA for 200 epochs. eθ1 is then extracted from this

network as described in Sec. 3.1. More details about this

pre-training are available in the supplementaries.

Giga-SSL pretraining: we trained Giga-SSL on the

full TCGA dataset, with frozen augmented embeddings ex-

tracted with the previously described pre-trained tile em-

bedder (see Sec. 3.2), with Adam [19] for 1000 epochs.

4.2. Step 2: learning from linear embeddings

Training design For Giga-SSL, similarly to the works on

natural images [2, 4, 15], we measured the quality of the

learned representations by performing linear probing either

with all the labels available for a given task or by artificially

reducing the number of labels to simulate a semi-supervised

setting. To do so, one representation was extracted for each

WSI after SSL pretraining. These representations were then

used as input data to train a logistic regression for each con-

sidered downstream task.

Datasets This protocol was applied to six diagnostic WSI

classification tasks highly pertinent for clinical practice:

• 3 tasks performed by Chen et al. [3] aiming at automat-

ing the routine diagnosis of Non-Small Scell Lung

Cancer (NSCLC), Breast Cancer (BRCA), and Kidney

Cancer (RCC);

• 3 tasks aiming at inferring molecular properties from

tissue slides towards faster, cheaper and more accessi-

ble molecular testing for cancer therapy selection.

For each of these 6 tasks, Tab. 1 reports the number of train-

ing WSI of the corresponding dataset, and their class distri-

bution. All the datasets for these tasks are subsets of the

TCGA [34]. Results were computed on 10 bootstrapped

splits of the data for each experiment, as was done in Chen

et al. [3], and we also used their train/test splits to ensure

fairness of performance comparisons.

Task # samples # labels per class

BRCA subtyping 1041 831 - 210

Kidney subtyping 924 510 - 294 - 120

NSCLC subtyping 1033 528 - 505

BRCA Molecular 595 129 - 466

BRCA mHRD 912 447 - 465

BRCA tHRD 634 318 - 316

Table 1. Total number of samples and number of samples per class

for all of the 6 benchmarked tasks in this paper.

Default settings The number T of tiles sampled per slide

to 5. For a slide X , we bootstrap R = 50 views with-

out tile augmentation (i.e. differing only in the sampled

tiles), compute their embedding {Wr}1,...,50 and consider

the WSI representation as the elementwise average of the

{Wr}1,...,50. Average embeddings are normalized using a

standard scale, while the Giga-SSL embeddings are normal-

ized using the L2 unit. More details about training parame-

ters are given in the supplementaries.

4.3. Results

Classification results on benchmarked tasks Table 2

synthesizes the results on all tasks for 5 models i.e. av-

erage, an attention-based MIL [17] on top of a ResNet18

pretrained with MoCo , DeepSMILE [30] and HIPT [3].

Results from HIPT and DeepSMILE are taken from their

respective articles, and constitute the SoTA on the task on

which they are cited.

Our proposed approach, Giga-SSL, outperforms the

state-of-the-art on two out of three tasks benchmarked in

( [3]) when using 100% of the available training labels

NSCLC and BRCA subtyping. For BRCA subtyping, the

AUC is increased by 3 points. Our proposed approach also

achieves superior performances for all the other remain-

ing tasks (mHRD, tHRD and BRCA molecular profiling).

However, the power of the proposed approach seems to be

in the low data regime. This is evident by the results ob-

tained by using only 25% of the available labels. In this

semi-supervised regime, the proposed approach obtained

the best results on all tasks. While this finding may be ex-

pected when comparing Giga-SSL to methods without pre-

training, Giga-SSL obtained superior results compared to

the other SSL-based approach HIPT. For example, there is

a gain of 6.9 AUC points for BRCA subtyping.

Compared to attention-based MIL and HIPT, the pro-

posed approach (Giga-SSL) provides an overall gain in per-
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Method Giga-SSL (proposed) AverageMIL DeepMIL [17] HIPT [3] DeepSMILE [30]

Linear ✓ ✓ ✗ ✗ ✗

Task % data

NSCLCsubtyping
100 0.952 ± 0.020 0.913 ± 0.023 0.948 ± 0.017 0.952 ± 0.021 -

25 0.939 ± 0.017 0.885 ± 0.036 0.922 ± 0.034 0.923 ± 0.020 -

BRCAsubtyping
100 0.905 ± 0.032 0.859 ± 0.038 0.874 ± 0.050 0.874 ± 0.060 -

25 0.890 ± 0.058 0.822 ± 0.072 0.860 ± 0.042 0.821 ± 0.069 -

RCCsubtyping
100 0.982 ± 0.007 0.973 ± 0.011 0.986 ± 0.008 0.980 ± 0.013 -

25 0.975 ± 0.012 0.959 ± 0.015 0.970 ± 0.016 0.974 ± 0.012 -

BRCAmolecular
100 0.938 ± 0.035 0.920 ± 0.037 0.924 ± 0.042 - -

25 0.853 ± 0.075 0.799 ± 0.068 0.810 ± 0.093 - -

BRCA mHRD
100 0.756 ± 0.028 0.706 ± 0.030 0.736 ± 0.047 - 0.727 ± 0.010

25 0.743 ± 0.039 0.643 ± 0.050 0.660 ± 0.046 - -

BRCA tHRD
100 0.855 ± 0.023 0.799 ± 0.034 0.836 ± 0.052 - 0.838 ± 0.012

25 0.781 ± 0.050 0.698 ± 0.078 0.721 ± 0.075 - -

Table 2. Benchmark study reporting the 10-fold cross-validated AUC performances of a logistic regression trained with Giga-SSL WSI

representations or AverageMIL WSI representations, and retrained from scratch for other benchmarked approaches. For each task, we

evaluate the methods with two data budgets with either 100% or 25% of the available training data.

formance while working in a linear regime. This is in con-

trast to HIPT and attention-based methods, which require

fine-tuning and learning from scratch, respectively. Con-

sequently, the downstream training pipeline for Giga-SSL

is extremely efficient in comparison to the other two ap-

proaches. For instance, training for BRCA subtyping with

100% of the training data on 10 bootstrapped splits took

1.25 CPU-seconds for the proposed approach versus 150

GPU-minutes for attention-based MIL. This is a difference

of 7200 times in favor of Giga-SSL – while also obtaining

superior performances.

Tiny datasets In practice, pathological datasets can be

tiny for the prediction of treatment response. For instance,

phase II clinical trials typically involve 50 patients. Training

a model to identify responding and non-responding patients

is therefore challenging due to the low number of available

labels.

We measured the performance of Giga-SSL in such a

context by artificially reducing the size of all 6 datasets to

250, 100 and 50 samples. We compare Giga-SSL to the

DeepAttnMIL model, which performances are on par with

all other benchmarked algorithms (see Tab. 2).

Figure 2 shows that the performance gap between the

proposed approach and the standard WSI classification

method strengthens as the number of samples decreases.

The average improvement over all tasks brought by Giga-

SSL features is of 5.1 AUC points when using 100 WSI and

up to 6.3 AUC points when using only 50 WSI.

5. Ablation study and sensitivity analyses

In this section, we aim to understand the impact of some

of Giga-SSL design choices over the predictive power of the

learned representations. All subsequent experiments were

conducted with the same conditions (including hyperparam-

eters, epochs, and training dataset) as in the previous exper-

iments, unless otherwise stated.

Sharing tile augmentations within views improves per-

formance Table 3 reports the performance of Giga-SSL

when removing one component at a time, i.e. (i) with a tile

embedder pre-trained on ImageNet rather than pre-trained

with MoCo on histopathological data (Giga-SSLim), (ii)

without slide-level augmentation during the WSI-level SSL

pretraining; (iii) without shared augmentations across all

tiles of a view, i.e. each tile is transformed by a randomly

and independently sampled augmentation.

100% data 50 WSI

NSCLC CRC BRCA NSCLC CRC BRCA

Giga-SSL 0.952 0.982 0.905 0.894 0.960 0.793

w/o slide-aug 0.935 0.973 0.894 0.86 0.951 0.80

NS 0.933 0.971 0.875 0.847 0.939 0.774

Giga-SSLim 0.922 0.978 0.888 0.813 0.952 0.751

Giga-SSLim NS 0.897 0.975 0.853 0.777 0.935 0.707

Table 3. 10-fold cross-validated AUC performances of ablated

Giga-SSL models. w/o slide-aug is a Giga-SSL model trained

without slide-level augmentations. NS (Not Shared) is a Giga-SSL

model trained without sharing the tile-level augmentation among

views. Giga-SSLim stands for a Giga-SSL model trained with tiles

embeddings transfered from an ImageNet pretraining.

Using a tile-level SSL algorithm to pretrain the tile en-
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Figure 2. Difference between the average AUC performances of Giga-SSL and DeepMIL (in %) as a function of the training set size. The

red line represents equal performance. Above the red line, the advantage is given to Giga-SSL

coder eθ1 brings improvement to the WSI-level represen-

tations: the Giga-SSL trained with MoCo features outper-

forms its ImageNet (Giga-SSLim) counter part on all tasks.

On the contrary, the slide-level augmentation does not seem

to be extremely important for the SSL task, as removing it

has a small to no impact on performances.

However, applying independent transformations to each

tile (not shared) degrades substantially the performances

with an average decrease of 1.9 AUC points using 100%

of the data down to 2.8 AUC points when using only

50 WSI, over the classification tasks. When ablating the

shared transformations from a Giga-SSL model trained with

tile features pretrained with ImageNet, the drop of perfor-

mances compared to a Giga-SSLim is even more important:

2.1 AUC points with 100% of the data, 3.2 AUC points with

50 WSI.

Using shared augmentation thus allows the learning of

useful features in abundant and scarce data regimes. We

hypothesize key features linked to the slide preparation and

shared by all the tiles on the slide are still available for short-

cut learning if the tile-level augmentations are not shared. It

seems that these shortcut features may be more present in

ImageNet than in MoCo. Highlighting such features and

finding even more stringent ways to hide them when learn-

ing Giga-SSL would improve even more its performances.

The fewer tiles, the better Figure 3.A presents the per-

formances of 4 Giga-SSL models trained with different

numbers of sampled tiles per view. The fewer tiles we sam-

ple, the better the resulting WSI representations. This be-

haviour strengthens when the downstream problem has a

smaller training set and is comparable among all the down-

stream classification tasks. Interestingly, we can observe the

opposite effect when using a DeepMIL model to classify a

WSI: the fewer tiles used at training time, the worse the per-

formances [21]. A very small numberT of sampled tiles per

view when training Giga-SSL can be seen as an aggressive

augmentation. It has been reported ( [4]) that SSL benefits

from stronger augmentations more than classification tasks,

and Tian et al. ( [33]) have shown that there is an optimal

strength of augmentation for each downstream task. This

optimum results from a trade-off between keeping enough

information to solve the downstream task and minimizing

irrelevant features.

As sampling 5 tiles per WSI is enough to learn useful

information to solve all the proposed downstream tasks, we

can deduce that the signal relative to these problems is dis-

tributed among most of the tiles of the WSI. It would be

interesting to test the performances of Giga-SSL on a clas-

sification task for which we know that the signal is highly

concentrated on a few instances.

Ensembling representations brings improvement We

show in supplementaries that a Giga-SSL model with a

SparseConvMIL aggregation module must use the same

number of tiles per WSI at inference and training. We there-

fore decided to bootstrap R views of a WSI at inference

time before averaging the Giga-SSL embeddings of these

R views. Figure Fig. 3.B investigates the effect of R on the

downstream performances of the Giga-SSL representations.

It shows that without this ensembling strategy, Giga-SSL

loses up to 4 AUC points on NSCLC subtyping. The gain

in performance saturates around R = 50.

Generalization Giga-SSL has been trained on the full

TCGA dataset, and downstream classification dataset also

comes from the TCGA. In order to investigate the extent

to which Giga-SSL could transfer to other datasets, we ex-

tracted from the TCGA all slides coming from the 41 cen-

ters that contributed to the NSCLC dataset, leading to an in-

7



A CB

Figure 3. Experiments on key parameters of Giga-SSL. Each point is a 10-fold cross-validated AUC performance of a logistic regression

fed with Giga-SSL features. The classification task is NSCLC subtyping for the three experiments. A. Effect of the number of sampled

tiles T per WSI during training. B. Effect of the number R of bootstrapped non-augmented views of WSI to feed Giga-SSL at inference

time (see supplementaries). C. Evolution of the performances of a Giga-SSL with a SparseConvMIL (blue line, normal situation) or an

attention-MIL network (orange line) as an aggregator.

dependent set of 6840 WSI. We trained Giga-SSL for 1000

epochs on this training set and reports the results in table

Tab. 4. Interestingly, Giga-SSL performs almost as good

data regime 100% data 50 WSI

Full dataset 0.952 ± 0.020 0.894 ± 0.045

Independent training set 0.948 ± 0.017 0.885 ± 0.045

Table 4. Linear classification performances on NSCLC subtyping

of embeddings trained on either the full TCGA or a subset of the

TCGA independent from the downstream task dataset.

when trained on a set of WSI totally independent from the

downstream task set. This suggests that Giga-SSL would

generalize well on a different dataset.

Attention-deep-MIL unlearns when trained with SSL

Instead of using a sparse-CNN as a tiles features aggregator,

one could choose any other MIL model. We trained a Giga-

SSL model with a DeepMIL aggregation module and eval-

uated its downstream linear performances on the NSCLC

dataset. Figure 3.C shows that the performances of such a

model decrease while the SSL training is in progress. Al-

though the DeepMIL shows very good classification perfor-

mances Tab. 2 when trained from scratch, this architecture

seems not suitable for Giga-SSL pretraining. We suspect

that the DeepMIL architecture has too easily access to short-

cuts features to learn the WSI identity. Understanding what

causes its collapse may highlight key pitfall for Giga-SSL

training and therefore allow to improve it.

For all of the latter points, we report in the supplemen-

taries a similar behaviour on the other downstream classifi-

cation tasks.

6. Conclusion

Limitations While Giga-SSL has been shown to gener-

alize well outside of its training data distribution, the tile-

embedder is not pre-trained on a dataset that is entirely in-

dependent from the downstream tasks datasets. It would be

interesting to conduct the same experiment as Sec. 5 but ex-

cluding the WSI from the tile-embedder pre-training dataset

too. In addition, a drawback of working with frozen embed-

dings of WSI is that it removes any possibility of building

explainable models.

Finally, we have explored self-supervised learning for

whole slide images with a versatile design based on spe-

cific data augmentation tailored for the multiple instance

learning framework. Our proposed approach achieved or

beat state-of-the-art performance over a wide range of clin-

ically impactful tasks in both high and low data regimes. In

particular, for small datasets (e.g. 50 slides), our approach

achieved a performance improvement of 6.3 AUC points on

average compared to competing methods. Ablation studies

and sensitivity analyses highlighted the key components of

our approach – including tile encoder pretraining and how

to apply augmentations to tiles – to better understand the

pitfalls of self-supervised whole slide image representation

learning.

The public release of the learned representations for all

diagnostic slides of The Cancer Genome Atlas in a man-
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ageable size has the potential to decipher new knowledge

about cancer and to develop new tools for diagnosis assis-

tance and treatment response prediction towards improved

patient survival.
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