
HAL Id: hal-04029994
https://minesparis-psl.hal.science/hal-04029994

Preprint submitted on 15 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PointFISH – learning point cloud representations for
RNA localization patterns

Arthur Imbert, Florian Mueller, Thomas Walter

To cite this version:
Arthur Imbert, Florian Mueller, Thomas Walter. PointFISH – learning point cloud representations
for RNA localization patterns. 2023. �hal-04029994�

https://minesparis-psl.hal.science/hal-04029994
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


PointFISH: Learning Point Cloud
Representations for RNA Localization Patterns

Arthur Imbert1,2,3,†, Florian Mueller4,5, Thomas Walter1,2,3,†

1. Centre for Computational Biology, Mines Paris, PSL University, Paris, France
2. Institut Curie, PSL University, Paris, France

3. INSERM, U900, Paris, France
4. Imaging and Modeling Unit, Institut Pasteur and UMR 3691 CNRS, Paris, France

5. C3BI, USR 3756 IP CNRS, Paris, France
† Corresponding authors: Thomas Walter (Thomas.Walter@minesparis.psl.eu),

Arthur Imbert (Arthur.Imbert@minesparis.psl.eu)

Abstract. Subcellular RNA localization is a critical mechanism for the
spatial control of gene expression. Its mechanism and precise functional
role is not yet very well understood. Single Molecule Fluorescence in
Situ Hybridization (smFISH) images allow for the detection of individ-
ual RNA molecules with subcellular accuracy. In return, smFISH requires
robust methods to quantify and classify RNA spatial distribution. Here,
we present PointFISH, a novel computational approach for the recog-
nition of RNA localization patterns. PointFISH is an attention-based
network for computing continuous vector representations of RNA point
clouds. Trained on simulations only, it can directly process extracted co-
ordinates from experimental smFISH images. The resulting embedding
allows scalable and flexible spatial transcriptomics analysis and matches
performance of hand-crafted pipelines.

Keywords: smFISH, RNA localization, Point cloud, Transfer learning,
Simulation, Spatial transcriptomics

1 Introduction

Localization of messenger RNAs (mRNAs) are of functional importance for gene
expression and in particular its spatial control. RNA localization can be related
to RNA metabolism (to store untranslated mRNAs or degrade them) or protein
metabolism (to localize translations). RNA localization is not a limited phe-
nomenon but a common mechanism throughout the transcriptome, which might
also concern non-coding RNAs [1,2]. Despite the importance of this process, it is
still poorly understood, and adequate tools to study this process are still lacking.

The spatial distribution of RNA can be investigated with sequence or image-
based techniques. We focus on the latter, since they provide substantially better
spatial resolution and are therefore more suitable for the analysis of subcellular
RNA localization. The method of choice to visualize RNAs in intact cells is
single molecule Fluorescence in Situ Hybridization (smFISH) that comes in many

ar
X

iv
:2

30
2.

10
92

3v
1 

 [
q-

bi
o.

Q
M

] 
 2

1 
Fe

b 
20

23



2 A. Imbert et al.

variants, such as a scalable and cost-efficient version [3], which we will use in
the following. In smFISH, individual RNA molecules of a given RNA species are
targeted with several fluorescently labeled oligonucleotides and appear as bright
diffraction-limited spots under a microscope and can thus been detected with
traditional image analysis or computer vision methods. Usually, some additional
fluorescent markers are used to label relevant cell structures (cytoplasm, nucleus,
centrosomes, . . . ), which allow one to determine the position of each individual
RNA with respect to these landmarks. From such a multi-channel microscopy
image, we can thus obtain a coordinate representation of each individual cell
and its RNAs as illustrated in Figure 1.

(a) Foci (b) Intranuclear (c) Nuclear edge (d) Perinuclear (e) Protrusion

Fig. 1: RNA localization patterns from [4]. (Top) Typical smFISH images with
different RNA localization patterns. (Bottom) Coordinate representations with
RNA spots (red), cell membrane (black) and nuclear membrane (blue). Detection
and segmentation results are extracted and visualized with FISH-quant [5]

RNA localization results in several, distinct patterns, which can in general
be defined by a local overcrowded subcellular region. In the literature [4], several
patterns have been described, even for a simple biological system such as HeLa
cells: a random default pattern where RNAs localize uniformly within the cell,
RNA clusters (foci), a high density of transcripts along the nuclear membrane
(nuclear edge), inside the nucleus itself (intranuclear), in cell extensions (protru-
sion), or a polarization within the cell, like RNA localizing towards the nucleus
(perinuclear).

It is still an open problem how to statistically classify and automatically
detect RNA localization patterns and how to represent point cloud distributions.
Previous approaches relied essentially on handcrafted features, quantitatively
describing RNA spatial distribution within subcellular regions [6,7,8].

Here, we intend to address the challenge to detect RNA localization patterns
with a deep learning approach. The idea is to replace the feature engineering
problem by a training design problem. Instead of manually crafting features,



PointFISH 3

we propose a training procedure to learn generic encodings for RNA clouds
inside cells allowing us to efficiently address the recognition of RNA localization
patterns1.

2 Related Work

Recognition of RNA Localization Pattern In previous studies, hand-
crafted features to classify RNA localization patterns were developed [4,7,8,9].
Their design has been inspired by literature on spatial statistics [10] and adapted
from analysis pipelines for fluorescence microscopy images [11,12]. Several pack-
ages already implement modules to perform smFISH analysis and compute these
hand-crafted features [5,13,14,15]. However, these approaches require to carefully
design a set of features corresponding to the concrete biological question under
study. For a different study a new set of features might be necessary. Here, we
aim to investigate a more general approach to build localization features.

Learning Representations Neural network learn powerful representations
that can often be used for transfer learning. The idea is to pretrain a network and
thereby to obtain a generic representation by solving a pretext task on a large
annotated dataset, before addressing a more difficult or specific task with some-
times limited data. Often the representation optimized to solve the pretext task
can also be useful for the more specific task. Such a model can then be used as a
feature extractor by computing features from one of its intermediate layers. The
computer vision community progressively replaces hand-crafted features [16,17]
by deep learning features to analyze images. For instance, convolutional neural
networks pretrained on large and general classification challenges [18,19,20,21]
are used as backbone or feature extractor for more complex tasks like face recog-
nition, detection or segmentation. The NLP community follows this trend as well
with a heavy use of word embeddings [22,23] or the more recent transformers
models. The same strategy has also been applied to graphs: node2vec [24] learns
”task-independent representations” for nodes in networks.

Such embeddings can be a continuous and numerical representation of a non-
structured data like a text or a graph. In spage2vec [25], the model learned a low
dimensional embedding of local spatial gene expression (expressed as graphs).
Authors then identified meaningful gene expression signatures by computing this
embedding for tissue datasets.

Convolutional Features Since we analyze imaging data, a first intuition would
be to build a convolutional neural network to directly classify localization pat-
terns from these fluorescent images. Such approaches have a long tradition in the
classification of subcellular protein localization patterns. Unlike RNAs, proteins
are usually difficult to resolve at the single molecule level unless super-resolution
microscopy was employed, which is not the case for this kind of studies. Protein

1 Code and data are available in https://github.com/Henley13/PointFISH.

https://github.com/Henley13/PointFISH


4 A. Imbert et al.

localization patterns is therefore seen as a characteristic texture in the fluorescent
image and thus the representation of subcellular protein localization often relies
on texture and intensity features. Initial studies [26] computed a set of hand-
crafted features from the microscopy image before training a classifier. With
the advent of deep learning, protein localization is now tackled with convolu-
tional neural networks, but still framed as a texture classification problem. After
crowdsourcing annotations for the Human Protein Atlas dataset [27], researchers
trained a machine learning model (Loc-CAT) from hand-crafted features to pre-
dict subcellular localization patterns of proteins [28]. More recently, an online
challenge [29] was organized, where the majority of top-ranking solutions were
based on convolutional neural networks. In summary, for protein localization
the shift from hand-crafted features to learned representations allows for more
accurate and robust pipelines.

A recent perspective paper [30] suggests the increased use of deep learning
models also for RNA localization analysis. The authors emphasize the recent
successes and flexibility of neural nets with different types of input, and there-
fore the possibility to design a multimodal pipeline. However, the fundamental
difference to existing protein localization datasets, is that RNA molecules ap-
pear as distinguishable spots, and their modeling as a texture seems therefore
suboptimal.

Point Cloud Models We postulate that learning to classify RNA localization
patterns directly from detected spot coordinates could be an efficient approach.
A point cloud has an unordered and irregular structure. Projecting the point
coordinates into images or voxels [31] transforms the problem as an easier vision
challenge, but it comes along with some input degradations and dramatically
increases the memory needed to process the sample. Also, relevant spatial infor-
mation can be lost. In case of RNA point clouds, it makes the recognition of 3D
localization patterns harder [32].

PointNet [33] is a seminal work that opened the way for innovative models to
address shape classification. It directly processes point clouds with shared MLPs
and a max pooling layer, making the network invariant to input permutation.
However, the pooling step is the only way for the model to share information be-
tween close points, which ultimately limits its performance. Yet, recent research
dramatically improves point cloud modelling and especially the capture of local
information.

PointNet++ [34] learns local geometric structures by recursively applying
PointNet to different regions of the point cloud, in a hierarchical manner. This
way, local information can be conveyed through the network more efficiently.
DGCNN [35] proposes a new EdgeConv layer where edge features are computed
between a point and its neighbors. Some models propose to adapt convolutions
to point clouds by designing new weighting functions or kernel operations like
PointCNN [36], PointConv [37] or KPConv [38]. Another inspiration from the
computer vision or NLP literature is the attention-based model. To this end,
PointTransformer [39] proposes an attention layer to be applied to local regions



PointFISH 5

within the point cloud. Finally, PointMLP [40] proposes a simple but efficient
network with a pure deep hierarchical MLP architecture.

3 Problem Statement

We want to train a model, where we can provide directly the point cloud co-
ordinates as an input and compute a continuous vector representation. This
representation can then be used for classification of different RNA localization
patterns. Such a deep learning model might require a large volume of annotated
data to reach a satisfying performance. To generate such a large data sets, we
used simulated data to train our point cloud model and then use it as a trained
feature extractor. Eventually we evaluate these learned features on a real dataset.

(a) 10% perinuclear RNA (b) 50% perinuclear RNA (c) 90% perinuclear RNA

Fig. 2: Perinuclear pattern simulations with increasing pattern strength. Simu-
lated with FISH-quant [5]

Table 1: Annotated real dataset

Pattern # of cells
Random 372

Foci 198
Intranuclear 73
Nuclear edge 87
Perinuclear 64
Protrusion 83

Simulated Dataset Using a Python frame-
work FISH-quant [5], we simulate a dataset
with 8 different localization patterns: random,
foci, intranuclear, extranuclear, nuclear edge,
perinuclear (Figure 2), cell edge and pericellu-
lar. We choose these patterns since they rep-
resent a diverse panel of localization patterns
in different cellular subregions. We simulate
for each pattern 20,000 cells with 50 to 900
RNAs per cell, resulting in a full dataset of
160,000 simulated cells. Except for the ran-
dom pattern, every simulated pattern has a
proportion of RNAs with preferential local-
ization ranging from 60% to 100%. In order
to test how our trained features generalize to unknown localization patterns, we



6 A. Imbert et al.

deliberately omitted one of the patterns (localization in cell protrusions) from
the simulation, i.e. the set of real patterns in the experimental dataset in Figure
1 only partially matches the set of simulated patterns.

We split our dataset into train, validation and test, with 60%, 20% and
20% respectively. FISH-quant simulates point clouds from a limited number of
real image templates. To avoid overfitting, we make sure simulations from the
same cell template can’t be assigned to different splits. Finally, point clouds are
augmented with random rotations along the up-axis, centered and divided by
their absolute maximum value. This normalization step was initially performed
in [33].

Real Dataset To further validate the learned feature representation on sim-
ulated images, we use a previously published experimental dataset [4]. These
images are extracted from a smFISH study in HeLa cells targeting 27 different
genes. After data cleaning, this dataset consists of 9710 individual cells, with
cropped images and coordinates extracted. Cells have on average 346 RNAs and
90% of them have between 39 and 1307 transcripts. Furthermore, 810 cells have
manually annotated localization patterns, as detailed in table 1, providing a
ground-truth for validation. Importantly, these patterns are not mutually exclu-
sive since cells can display several patterns at the same time, e.g. foci with a
perinuclear distribution.

4 PointFISH

4.1 Input Preparation

For the simulated dataset we directly generate point clouds. In contrast, for any
experimental dataset, the starting input is usually a multichannel fluorescent
image including a smFISH channel. The first tasks are the detection of RNA
molecules and the segmentation of cell and nucleus surfaces. These steps allow
to retrieve for each cell a list of RNA coordinates we can format to be used as
an input point cloud. For the experimental dataset we reuse the code and the
extraction pipeline described in [4].

Besides the original RNA point cloud, we can use an optional second input
vector containing additional information as input for our model. Let X ∈ RN×3

be the original input point cloud with N the number of RNAs. We define our
second input vector as X̃ ∈ RN×d with d ∈ {1, 2, 3, 4, 5}. It is composed of
three contextual inputs: morphology input, distance input and cluster input.
First, morphological information (i.e. positional information on the plasma and
nuclear membrane) is integrated by concatenating the initial RNA point cloud
and points uniformly sampled from the 2D polygons outlining the cellular and
nuclear membranes. To be consistent with a 3D point cloud input, these 2D
coordinates are localized to the average height of the RNA point cloud (0 if it is
centered). This morphological input substantially increases the size of the input
point cloud X, because we subsample 300 points from the cell membrane and



PointFISH 7

100 points from the nuclear membrane. To let the network discriminate between
RNA, cell and nucleus points, we define two boolean vectors as contextual inputs
to label the points as a cell or a nucleus point. A point sampled from the cell
membrane will have a value (True, False), one from the nucleus membrane (False,
True) and one from the original RNA point cloud (False, False). We end up with

X ∈ RÑ×3 (with Ñ = N + 300 + 100) and X̃ ∈ {0, 1}Ñ×2 as inputs. Second,
we compute the distance from cellular and nuclear membrane for each RNA in
the point cloud X. This adds an extra input X̃ ∈ RN×2. Third, we leverage the
cluster detection algorithm from FISH-quant [5] in order to label each RNA node
as clustered or not. It gives us a boolean X̃ ∈ {0, 1}N×1 to indicate if a RNA
belongs to a RNA cluster of not. Depending on whether or not we choose to
add the morphological information, the distance or the clustering information,
we can exploit up to 5 additional dimensions of input.

4.2 Model Architecture

We adopt the generic architecture introduced by PointNet [33]: successive point-
wise representations with increasing depth followed by a max pooling operation
to keep the network invariant by input permutation. We incorporate state-of-
the-art modules to learn efficient local structures within the point cloud. As
illustrated in Figure 3, we also adapt the network to the specificity of RNA
point clouds.

Input

MLP Block

Point-wise 
BlockAlignment

Contextual 
Input

MLP Block

P
oo

lin
g

M
LP

 B
lo

ck

O
ut

pu
t

(N, 3) (N, 3)

(N, 16)

(N, 1024) (1, 1024)

(1, 256)

(1, 8)

C

(N, 1 - 5)

(N, 16)

Repeat x 4

Length

Fe
at
ur
es

Fig. 3: PointFISH architecture. Width and height of boxes represent output
length and dimension, respectively. Tuples represent output shapes

Point-wise Block Instead of shared MLPs like PointNet, we implement a
multi-head attention layer based on point transformer layer [39]. First, we as-



8 A. Imbert et al.

sign to each data point xi its 20 nearest neighbors X(i) ⊂ X, based on the
euclidean distance in the feature space. We also compute a position encoding
δij = θ(xi−xj) for every pair within these neighborhoods, with θ a MLP. Three
sets of point-wise features are computed for each data point, with shared linear
projections φ, ψ and α. Relative weights between data points γ(φ(xi) − ψ(xj))
are computed with the subtraction relation (instead of dot product as in the
seminal attention paper [41]) and a MLP γ. These attention weights are then
normalized by softmax operation ρ. Eventually, data point’s feature yi is com-
puted as weighted sum of neighbors value α(xj), weighted by attention. With
the position encoding added to both the attention weights and the feature value,
the entire layer can be summarized such that:

yi =
∑

xj∈X(i)

ρ(γ(φ(xi)− ψ(xj) + δij))� (α(xj) + δij) (1)

For a multi-head attention layer, the process is repeated in parallel with
independent layers, before a last linear projection merge multi-head outputs. A
shortcut connection and a layer normalization [42] define the final output of our
multi-head attention layer.

Alignment Module Albeit optional (point clouds can be processed without
it), this module dramatically improves performance of the network. Some papers
stress the necessity to preprocess the input point cloud by learning a projection
to align the input coordinates in the right space [33,35]. In addition, density
heterogeneity across the point cloud and irregular local geometric structures
might require local normalization. To this end, we reuse the geometric affine
module described in PointMLP [40] which transforms local data points to a
normal distribution. With {xi,j}j=1,...,20 ∈ R20×3, the neighborhood’s features
of xi, we compute:

{xi,j} = α� {xi,j} − xi
σ + ε

+ β (2)

where α ∈ R3 and β ∈ R3 are learnable parameters, σ is the feature deviation
across all local neighborhoods and ε is a small number for numerical stability.

Contextual Inputs Our RNA point cloud does not include all the necessary in-
formation for a localization pattern classification. Especially, information about
the morphological properties of the cell and nucleus are lacking. To this end,
deep learning architectures allows flexible insertions. Several contextual inputs
X̃ can feed the network through a parallel branch, before concatenating RNA
and contextual point-wise features. Our best model exploits cluster and distance
information in addition to RNA coordinates.



PointFISH 9

5 Experiment

5.1 Training on Simulated Patterns

We train PointFISH on the simulated dataset. Our implementation is based on
TensorFlow [43]. We use ADAM optimizer [44] with a learning rate from 0.001
to 0.00001 and an exponential decay (decay rate of 0.5 every 20,000 steps).
Model is trained for a maximum of 150 epochs, with a batch size of 32, but early
stopping criterion is implemented if validation loss does not decrease after 10
consecutive epochs. Usually, the model converges after 50 epochs. We apply a
10% dropout for the last layer and classifications are evaluated with a categorical
cross entropy loss. Even if localization patterns are not necessarily exclusive, for
the simulations we trained the model to predict only one pattern per cell. For this
reason, we did not simulate mixed patterns and assume it could help the model
to learn disentangled representations. Training takes 6 to 8 hours to converge
with a Tesla P100 GPU.

A first evaluation can be performed on the simulated test dataset. With
our reference PointFISH model, we obtain a general F1-score of 95% over the
different patterns. The configurations of this model include the use of distance
and cluster contextual inputs, a geometric affine module, an attention layer as
a point-wise block and a latent dimension of 256.

5.2 Analysis of the embeddings provided by PointFISH

From a trained PointFISH model we can remove the output layer to get a feature
extractor that computes a 256-long embedding from a RNA point cloud.

Exploratory analysis of experimental data embeddings We compute the
embeddings for the entire cell population studied in [4]. All the 9170 cells can be
visualized in 2D using a UMAP projection [45]. In Figure 4 each point represents
a cell. Among the 810 annotated cells, those with a unique pattern are colored
according to the localization pattern observed in their RNA point cloud. The
rest of the dataset is gray. Overall, PointFISH embedding discriminates well
the different localization patterns. Intranuclear, nuclear edge and perinuclear
cells form distinct clusters, despite their spatial overlap, as well as protrusions.
We recall that the protrusion patterns was not used in simulation. Cells with
foci can be found in a separated clusters as well, but also mix with nuclear and
perinuclear patterns. This confusion is not surprising as a large number of cells in
the dataset present a nuclear-related foci pattern (i.e. cells have RNAs clustered
in foci, which in turn are close to the nuclear envelope).

Supervised Classification Because PointFISH already return meaningful em-
beddings, we can apply a simple classifier on top of these features to learn local-
ization patterns. We use the 810 manually annotated cells from the real dataset.



10 A. Imbert et al.

unlabelled
intranuclear
nuclear
perinuclear
protrusion
foci
random

Fig. 4: UMAP embedding with learned features. Each point is a cell from
dataset [4]. Manually annotated cells are colored according to their localization
pattern

We compare the 15 hand-crafted features selected in [4] with our learned embed-
ding. Every set of features (hand-crafted or learned) is rescaled before feeding a
classifier ”by removing the mean and scaling to unit variance”2. Expert features
quantify RNA distributions within specific subcellular compartments and com-
pute relevant distances to cell structures. Porportion features excepted, they are
normalized by their expected value under a uniform RNA distribution. Hand-
crafted features include:

– The number of foci and the proportion of clustered RNA.
– The average foci distance from nucleus and cell.
– The proportion or RNA inside nucleus.
– The average RNA distance from nucleus and cell.
– The number of RNAs detected in cell extensions and a peripheral dispersion

index [12].
– The number of RNAs within six subcellular regions (three concentric re-

gions around the nucleus and three others concentric regions around the cell
membrane).

We design 5 binary classification tasks, one per localized pattern (random
pattern is omitted). The classifier is a SVC model [47]. For evaluation purpose,
we apply a nested cross-validation scheme. First, a test dataset is sampled (20%),

2 Features are rescaled with the StandardScaler method from scikit-learn [46].



PointFISH 11

Hand-crafted features Learned features
0.0

0.2

0.4

0.6

0.8

1.0
SVC

Foci
Intranuclear
Nuclear edge
Perinuclear
Protrusion

Fig. 5: F1-score distribution with localization pattern classification (SVC model)

then the remaining cells are used for a gridsearch to find an optimal SVC model
(with another 20% validation split). Parameters grid includes the choice between
a linear or a RBF kernel and the strength of the regularization. The entire
process is repeated 50 times, with different test split, and F1-score for each
classification task is returned. This full evaluation pipeline is implemented with
scikit-learn [46]. F1-score’s distribution over 50 splits are summarized in Figure 5.
Learned features match performances of hand-crafted features selected for the
tasks. While the recognition of localization in protrusions is slightly worse, it is
important to point out that we did not include simulations of this patterns in
the training dataset.

5.3 Ablation Studies

We perform ablation studies to evaluate the impact of different components in
PointFISH model.

Table 2: Impact of contextual inputs. F1-score
is averaged over 4 trainings with different ran-
dom seeds. Best model is in bold. Reference
model is labelled with ∗

Distance Cluster Morphology F1-score
7 7 7 0.42 (± 0.01)
X 7 7 0.74 (± 0.02)
7 X 7 0.45 (± 0.04)
X X 7 0.81∗ (± 0.01)
X X X 0.82 (± 0.00)

Additional Input We com-
pare the use of RNA point
cloud as unique input or the in-
clusion of contextual informa-
tion through a parallel branch.
RNA coordinates do not carry
any morphological information
about the cell. In table 2, this
design logically returns the low-
est F1-score. Three additional
inputs are available: RNA dis-
tance from cell and nucleus
(distance), RNA clustering flag
(cluster) and the integration
of cell and nucleus membrane
coordinates (morphology). Both



12 A. Imbert et al.

morphology and distance inputs can be added to provide additional information
about cell morphology to the network. However, best performances are reached
when using at least distance and cluster information. Cell and nucleus coordi-
nates do not increase significantly the classification and dramatically increase
the computation time of the model (we need to process a larger point cloud).
In particular, cluster information greatly improves the recognition of the foci
pattern while morphological distances boost others localization patterns.

Alignment Module and Point-wise Block To measure the impact of the
geometric affine module [40], we compare it with the TNet module implemented
in PointNet [33]. We also design a variant of TNetEdge where MLP layers ex-
tracting point-wise independent features are replaced with EdgeConv layers [35].
Results are reported in table 3. An alignment block seems critical at the begin-
ning of the network. In addition, geometric affine module is both more efficient
(F1-score of 0.81) and much lighter than TNet and TNetEdge.

Inspired by PointNet and DGCNN, we also compare the use of their re-
spective point-wise blocks with our multi-head attention layer. As expected,
EdgeConv blocks convey a better information than PointNet by exploiting local
neighborhood within point cloud (F1-score of 0.78 and 0.75 respectively). Yet,
they do not match the performance of multi-head attention layer.

Concerning these layers, we evaluate how the number of parallel heads can
influence the performance of PointFISH. By default, we use 3 parallel attention
heads to let the model specialize its attentions vectors, but we also test 1, 6
and 9 parallel heads. In table 3, we only observe a slight benefit between the
original point transformer layer [39] (with one attention head) and its augmented
implementations.

Latent Dimensions The second part of PointFISH architecture is standard-
ized: a first MLP block, a max pooling operation, a second MLP block and the
output layer. We quantify the impact of additional MLP layers within these
blocks. Our reference model returns an embedding with 256 dimensions (before
the output layer). In a MLP block, we use ReLU activation and layer normaliza-
tion, but also increase or decrease the depth by a factor 2 between layers. Before
the pooling layer, the first MLP block includes 4 layers with an increasing depth
(128, 256, 512 and 1024). After the pooling layer, the second MLP block includes
2 layers with a decreasing depth (512 and 256). Similarly, to return 128, 64 or 32
long embeddings, we implement 6 (128, 256, 512, pooling, 256 and 128), 5 (128,
256, pooling, 128 and 64) or 4 final layers (128, pooling, 64 and 32). We observe
in table 3 a reduction in performance for the lowest dimensional embedding (64
and 32). This hyperparameter is also critical to design lighter models, with a
division by 4 in terms of trainable parameters between a 256 and a 128 long
embedding.



PointFISH 13

Table 3: Ablation studies on real dataset [4]. F1-score is averaged over 4 trainings
with different random seeds. Best models are bold. Reference model is labelled
with ∗

Alignment Point-wise block # heads # dimensions # parameters F1-score

- Attention layer 3 256 1,372,608 0.73 (± 0.00)
TNet Attention layer 3 256 1,712,521 0.74 (± 0.02)

TNetEdge Attention layer 3 256 1,589,321 0.74 (± 0.01)

Affine MLP - 256 1,374,526 0.75 (± 0.01)
Affine EdgeConv - 256 1,387,006 0.78 (± 0.01)

Affine Attention layer 9 256 1,403,334 0.82 (± 0.01)
Affine Attention layer 6 256 1,387,974 0.82 (± 0.01)
Affine Attention layer 3 256 1,372,614 0.81∗ (± 0.01)
Affine Attention layer 1 256 1,362,374 0.81 (± 0.01)

Affine Attention layer 3 128 352,966 0.81 (± 0.01)
Affine Attention layer 3 64 97,094 0.77 (± 0.00)
Affine Attention layer 3 32 32,646 0.75 (± 0.01)

6 Discussion

We have presented a generic method of quantifying RNA localization patterns
operating directly on the extracted point coordinates, without the need to design
handcrafted features. For this, we leverage coordinates of simulated localization
patterns to train a specifically designed neural network taking as input a list of
points and associated features that greatly enhance generalization capabilities.
We show that this method is on par with carefully designed, handcrafted feature
sets.

Being able to directly process list of points provides the community with a
tool to integrate large datasets obtained with very different techniques on differ-
ent model systems. While the actual image data might look strikingly different
between such projects, they can all be summarized by segmentation maps of nu-
clei and cytoplasm, and a list of coordinates of RNA locations. Having methods
that operate directly on point clouds is therefore a strategic advantage.

The idea of training on simulated data provides us the opportunity to query
datasets with respect to new localization patterns that have not yet been ob-
served, and for which we do not have real examples so far. In addition, this
strategy allows us to control for potential confounders, such as cell morphology,
or number of RNAs. Here, we provide a generic method that can leverage these
simulations, without the tedious process of handcrafting new features. Of note,
it is not necessary that the simulated patterns are optimized as to resemble real
data: they rather serve as a pretext task. If a network is capable of distinguishing
the simulated patterns, chances are high that the corresponding representation is
also informative for slightly or entirely different patterns, in the same way as rep-
resentations trained on ImageNet can be used for tumor detection in pathology
images. We show this by omitting the protrusion pattern from the simulation.



14 A. Imbert et al.

We see in Figure 4 that the protrusion patterns live in a particular region of the
feature space, without specific training. Moreover, we see in Figure 4, that the
overall separation between patterns in this exploratory way coincides to a large
extent with the figure that has been proposed by the authors of the original
paper [4].

7 Conclusion

In this work, we introduce a new approach for the quantification and classifica-
tion of RNA localization patterns. On the top of existing solutions to extract
RNA spots and cell morphology coordinates, we propose to directly process the
resulting point clouds. Recent advances in point cloud analysis through deep
learning models allows us to build a flexible and scalable pipeline that matches
results obtained with specific hand-crafted features.

Overall, with the increasing interest on subcellular RNA localization in the
field of spatial transcriptomics, we expect that this approach will be of great
use to the scientific community, and that it will contribute to the deciphering of
some of the most fundamental processes in life.

Acknowledgments This work was funded by the ANR (ANR-19-CE12-0007)
and by the French government under management of Agence Nationale de la
Recherche as part of the “Investissements d’avenir” program, reference ANR-19-
P3IA-0001 (PRAIRIE 3IA Institute). Furthermore, we also acknowledge France-
BioImaging infrastructure supported by the French National Research Agency
(ANR-10-INBS-04).

References

1. Lécuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T.,
Hughes, T.R., Tomancak, P., Krause, H.M.: Global analysis of mRNA localization
reveals a prominent role in organizing cellular architecture and function. Cell
131(1) (2007) 174–187

2. Buxbaum, A.R., Haimovich, G., Singer, R.H.: In the right place at the right time:
visualizing and understanding mRNA localization. Nature Reviews Molecular Cell
Biology 16(2) (2015) 95–109

3. Tsanov, N., Samacoits, A., Chouaib, R., Traboulsi, A.M., Gostan, T., Weber, C.,
Zimmer, C., Zibara, K., Walter, T., Peter, M., Bertrand, E., Mueller, F.: smiFISH
and FISH-quant – a flexible single RNA detection approach with super-resolution
capability. Nucleic Acids Research 44(22) (2016) e165–e165

4. Chouaib, R., Safieddine, A., Pichon, X., Imbert, A., Kwon, O.S., Samacoits, A.,
Traboulsi, A.M., Robert, M.C., Tsanov, N., Coleno, E., Poser, I., Zimmer, C.,
Hyman, A., Le Hir, H., Zibara, K., Peter, M., Mueller, F., Walter, T., Bertrand,
E.: A dual protein-mrna localization screen reveals compartmentalized translation
and widespread co-translational rna targeting. Developmental Cell 54(6) (2020)
773–791.e5



PointFISH 15

5. Imbert, A., Ouyang, W., Safieddine, A., Coleno, E., Zimmer, C., Bertrand, E.,
Walter, T., Mueller, F.: FISH-quant v2: a scalable and modular tool for smFISH
image analysis. RNA 10(6) (2022) 786–795

6. Battich, N., Stoeger, T., Pelkmans, L.: Image-based transcriptomics in thou-
sands of single human cells at single-molecule resolution. Nature Methods 10(11)
(November 2013) 1127–1133 Number: 11 Publisher: Nature Publishing Group.

7. Stoeger, T., Battich, N., Herrmann, M.D., Yakimovich, Y., Pelkmans, L.: Com-
puter vision for image-based transcriptomics. Methods 85 (September 2015) 44–53

8. Samacoits, A., Chouaib, R., Safieddine, A., Traboulsi, A.M., Ouyang, W., Zimmer,
C., Peter, M., Bertrand, E., Walter, T., Mueller, F.: A computational framework
to study sub-cellular RNA localization. Nature Communications 9(1) (2018) 4584

9. Battich, N., Stoeger, T., Pelkmans, L.: Image-based transcriptomics in thousands
of single human cells at single-molecule resolution. Nature Methods 10(11) (2013)
1127–1133

10. Ripley, B.: Spatial Statistics. Wiley Series in Probability and Statistics. Wiley
(2005)

11. Lagache, T., Sauvonnet, N., Danglot, L., Olivo-Marin, J.C.: Statistical analysis of
molecule colocalization in bioimaging. Cytometry Part A 87(6) (2015) 568–579

12. Stueland, M., Wang, T., Park, H.Y., Mili, S.: RDI Calculator: An Analysis Tool
to Assess RNA Distributions in Cells. Scientific Reports 9(1) (2019) 8267

13. Mueller, F., Senecal, A., Tantale, K., Marie-Nelly, H., Ly, N., Collin, O., Basyuk,
E., Bertrand, E., Darzacq, X., Zimmer, C.: FISH-quant: automatic counting of
transcripts in 3D FISH images. Nature Methods 10(4) (2013) 277–278

14. Savulescu, A.F., Brackin, R., Bouilhol, E., Dartigues, B., Warrell, J.H., Pi-
mentel, M.R., Dallongeville, S., Schmoranzer, J., Olivo-Marin, J.C., Gomes, E.R.,
Nikolski, M., Mhlanga, M.M.: DypFISH: Dynamic Patterned FISH to Inter-
rogate RNA and Protein Spatial and Temporal Subcellular Distribution (2019)
https://www.biorxiv.org/content/10.1101/536383v1.

15. Mah, C.K., Ahmed, N., Lam, D., Monell, A., Kern, C., Han, Y., Ces-
nik, A.J., Lundberg, E., Zhu, Q., Carter, H., Yeo, G.W.: Bento:
A toolkit for subcellular analysis of spatial transcriptomics data (2022)
https://www.biorxiv.org/content/10.1101/2022.06.10.495510v1.

16. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of
the Seventh IEEE International Conference on Computer Vision. (1999) 1150–1157

17. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In:
Computer Vision – ECCV 2006. (2006) 404–417

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2016)

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2016)

20. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neu-
ral networks. In: Proceedings of the 36th International Conference on Machine
Learning. (2019) 6105–6114

21. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2017)

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013) https://arxiv.org/abs/1301.3781.



16 A. Imbert et al.

23. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification (2016) https://arxiv.org/abs/1607.01759.

24. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. (2016) 855–864

25. Partel, G., Wählby, C.: Spage2vec: Unsupervised representation of localized spatial
gene expression signatures. The FEBS Journal 288(6) (2021) 1859–1870

26. Boland, M.V., Markey, M.K., Murphy, R.F.: Automated recognition of patterns
characteristic of subcellular structures in fluorescence microscopy images. Cytom-
etry 33(3) (1998) 366–375

27. Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu,
A., Åsa Sivertsson, Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K.,
Lundberg, E., Navani, S., Szigyarto, C.A.K., Odeberg, J., Djureinovic, D., Taka-
nen, J.O., Hober, S., Alm, T., Edqvist, P.H., Berling, H., Tegel, H., Mulder, J.,
Rockberg, J., Nilsson, P., Schwenk, J.M., Hamsten, M., von Feilitzen, K., Forsberg,
M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J., Pontén,
F.: Tissue-based map of the human proteome. Science 347(6220) (2015) 1260419

28. Sullivan, D.P., Winsnes, C.F., Åkesson, L., Hjelmare, M., Wiking, M., Schutten,
R., Campbell, L., Leifsson, H., Rhodes, S., Nordgren, A., Smith, K., Revaz, B.,
Finnbogason, B., Szantner, A., Lundberg, E.: Deep learning is combined with
massive-scale citizen science to improve large-scale image classification. Nature
Biotechnology 36(9) (2018) 820–828

29. Ouyang, W., Winsnes, C.F., Hjelmare, M., Cesnik, A.J., Åkesson, L., Xu, H.,
Sullivan, D.P., Dai, S., Lan, J., Jinmo, P., Galib, S.M., Henkel, C., Hwang, K.,
Poplavskiy, D., Tunguz, B., Wolfinger, R.D., Gu, Y., Li, C., Xie, J., Buslov, D.,
Fironov, S., Kiselev, A., Panchenko, D., Cao, X., Wei, R., Wu, Y., Zhu, X., Tseng,
K.L., Gao, Z., Ju, C., Yi, X., Zheng, H., Kappel, C., Lundberg, E.: Analysis of the
Human Protein Atlas Image Classification competition. Nature Methods 16(12)
(2019) 1254–1261

30. Savulescu, A.F., Bouilhol, E., Beaume, N., Nikolski, M.: Prediction of rna sub-
cellular localization: Learning from heterogeneous data sources. iScience 24(11)
(2021) 103298

31. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). (2015) 922–928

32. Dubois, R., Imbert, A., Samacöıts, A., Peter, M., Bertrand, E., Müller, F., Walter,
T.: A Deep Learning Approach To Identify mRNA Localization Patterns. In:
2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). (2019)
1386–1390

33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2017)

34. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In: Advances in Neural Information
Processing Systems. Volume 30. (2017)

35. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Trans. Graph. 38(5) (2019)

36. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on
x-transformed points. In: Advances in Neural Information Processing Systems.
Volume 31. (2018)



PointFISH 17

37. Wu, W., Qi, Z., Fuxin, L.: Pointconv: Deep convolutional networks on 3d point
clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). (2019)

38. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). (2019)

39. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
(2021) 16259–16268

40. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local
geometry in point cloud: A simple residual MLP framework. In: International
Conference on Learning Representations. (2022)

41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems. Volume 30. (2017)

42. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)
http://arxiv.org/abs/1607.06450.

43. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015)
https://www.tensorflow.org/.

44. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR (2015)
45. McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approx-

imation and projection. Journal of Open Source Software 3(29) (2018) 861
46. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011) 2825–2830

47. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST) 2(3) (2011) 1–27


	PointFISH: Learning Point Cloud Representations for RNA Localization Patterns

