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Arbitrarily Fast Robust KKL Observer for
Nonlinear Time-varying Discrete Systems

Gia Quoc Bao Tran, Graduate Student Member, IEEE and Pauline Bernard

Abstract— This work presents the Kazantzis-
Kravaris/Luenberger (KKL) observer design for nonlinear
time-varying discrete systems. We first give sufficient
results on the existence of a sequence of functions
(Tk)k∈N transforming the given system dynamics into
an exponentially stable filter of the output in some other
target coordinates, where an observer is directly designed.
Then, we prove that under uniform Lipschitz backward
distinguishability, the maps (Tk)k∈N become uniformly
Lipschitz injective after a certain time, if the target
dynamics is pushed sufficiently fast. This leads to an
arbitrarily fast discrete observer, which exhibits similarities
with the famous high-gain observer for continuous-time
systems. Input-to-state stability of the estimation error
with respect to uncertainties, input disturbances, and
measurement noise is then shown. Next, under the milder
backward distinguishability, we show the injectivity of the
maps (Tk)k∈N after a certain time for a generic choice of
the target filter dynamics. Examples including a discretized
permanent magnet synchronous motor (PMSM) illustrate
the proposed observer.

Index Terms— KKL observer, discrete systems, time-
varying systems.

I. INTRODUCTION

OBSERVERS are algorithms developed for estimating the
state of dynamical systems from their known outputs

and inputs. Among many existing routes [1], the Kazantzis-
Kravaris/Luenberger (KKL) observers [2]–[5] are of interest
in nonlinear observer design thanks to their beautiful theory
revolving around Coron’s Lemma [2], [6]. These consist in
transforming the system dynamics (of dimension nx) into
an exponentially stable filter of the output in some new
coordinates (referred to as the target coordinates, of dimension
nz ≥ nx), where an observer readily exists, and inverting
this transformation to recover the estimate of the state in
the original coordinates. This design then translates into the
following three main questions:
• Under what conditions does such a transformation exist?
• Under what conditions is the transformation uniformly in-

jective?
• How to find an explicit and implementable expression of this

transformation, and more importantly, of its left inverse?
The injectivity property is indeed needed to find a left

inverse of the transformation and thus guarantee stability
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and convergence in the system coordinates. The two main
questions about existence and injectivity have been answered
in the literature for several classes of systems. Initially, David
Luenberger proposed this method for linear time-invariant
(LTI) continuous systems in [7]—he showed that an invertible
linear transformation into a stable filter of the output always
exists as long as the given system is observable and the
eigenvalues of the filter are picked different from those of
the system. Several attempts were then made to extend this
theory to nonlinear continuous systems. The existence of a
nonlinear transformation was first considered in [8]–[10] in
the analytic context and around an equilibrium point. Then,
the localness was dropped following another perspective in
[11] where a global existence result was proposed based on
a strong observability assumption which unfortunately did not
provide an indication of the necessary dimension of the filter.
This problem was solved in [2] by proving the existence of an
injective transformation under a mild backward distinguisha-
bility condition, for complex-valued filters of dimension nx+1,
with almost any choice of nx+1 distinct complex eigenvalues
and recently in [12] for almost any real diagonalizable filter
of dimension 2nx + 1, both applied to each output. Stronger
uniform injectivity results were also obtained under differential
observability conditions, in the case where the eigenvalues
of the filter are pushed sufficiently fast [3]. In parallel,
this KKL paradigm was also developed for non-autonomous
continuous systems [4] and for autonomous discrete systems
[5], under similar backward distinguishability and differential
observability conditions. Existing KKL observer results for
various system classes are in Table I at the end of this paper.

Regarding the third question about a constructive design, an
explicit and exploitable expression of the transformation can
be found in particular contexts such as parameter identification
[13] or state/parameter estimation for electrical machines
[14], [15]. But when an implementable expression for the
transformation or its left inverse is not available, numerical
approximation methods based on neural networks are being
developed as in [16]–[19]. This aspect being a research direc-
tion in its own right, here we leave it aside and focus instead on
the questions of existence and injectivity of the transformation
in the context of nonlinear time-varying discrete systems.

In this case, assuming invertibility of the dynamics, we show
that there exists a sequence of transformations transforming
the dynamics into a discrete stable filter of the output. Under
an appropriate uniform Lipschitz backward distinguishability
property, this sequence of transformations is shown to become



uniformly Lipschitz injective when the filter has an appropriate
dimension and is pushed sufficiently fast. Our observer com-
bines two main features. First, it provides an arbitrarily fast
convergence of the estimation error in the system coordinates,
as soon as allowed by the distinguishability condition. Second,
this KKL design allows us to filter the output and provides
input-to-state stability (ISS) of the estimation error, with an
explicit strict ISS Lyapunov function. Such a design may
thus be seen as a discrete counterpart of the celebrated high-
gain observer for continuous-time systems [20], which as
far as we know does not exist for discrete systems (apart
from discretizations of continuous high-gain observers [21]).
Reviewing in more detail the literature on discrete-time es-
timators, our uniform Lipschitz backward distinguishability
condition is the same as in [22, Definitions 3 and 4]. It requires
that for some m ∈ N, the map between a state and its m past
outputs is uniformly Lipschitz injective. Such a property is
widely exploited in the literature, including moving horizon
state estimators [23]–[25] (known for their robustness with
respect to modeling uncertainties and numerical errors [26]),
or discrete (dead-beat) estimators based on the left inversion of
this observability map, such as [27] with Newton algorithms,
which provide instantaneous estimation as soon as enough
output information is gathered, but have no filtering effects
against measurement noise.

Forgetting about the condition of uniformity (in time),
this distinguishability property was shown to be generic for
m = 2nx + 1 in [28] (and the references therein) when the
number of outputs is larger than the number of inputs. Note
that relaxing further the Lipschitzness and the uniformity in
m leads to a weaker distinguishability condition similar to
[29, Definition 3], which we show guarantees injectivity of
the KKL transformations, but not uniform injectivity, thus
preventing us from stating any convergence result.

In the linear context, the uniform Lipschitz backward dis-
tinguishability turns out to coincide with Kalman’s well-
known uniform complete observability. Under this assumption,
[30], [31] show asymptotic stability “in the large” of the
widely used discrete Kalman filter, in the stochastic and
deterministic context respectively. The discrete KKL design
proposed in this paper thus constitutes an alternative to the
discrete Kalman filter for linear systems. Despite a larger
dimension, its advantage mainly lies in its explicit quadratic
ISS strict Lyapunov function, which facilitates the robustness
analysis, unlike in [30], [31] where the Lyapunov function
is not strict and decreases over a certain finite number of
steps. More importantly, the KKL design extends to nonlinear
systems and guarantees (semi-)global asymptotic stability. On
the contrary, the extended Kalman filter/observer for nonlinear
systems typically provides only local convergence, assuming
the uniform complete observability condition holds on the
linearization of the dynamics along the estimate [32]–[34].
Unfortunately, this kind of assumption typically introduces a
loop in the analysis, since the estimation error must remain
small to guarantee observability along the estimate, which is
in turn needed to keep the error small. This loop is broken in
[32] but the analysis remains inherently local. Note also that
those papers do not mention any explicit stability guarantees.

Other local designs have been proposed for general discrete
systems as in [35] or based on local linearization techniques
[36], [37]. In terms of global designs, some LMI-based
approaches have been developed for discrete normal forms
with Lipschitz nonlinearities as in [38]. But to the best of
our knowledge, there do not exist systematic global observer
designs for general discrete systems. To further highlight our
contribution, we are not aware of any other discrete observer
design that can be both arbitrarily fast and robust at the same
time. The KKL design we propose in this paper does not
assume any particular form for the system dynamics and pro-
vides a systematic arbitrarily fast robust observer design under
only an appropriate distinguishability condition on the system.
Lastly, note that although they both rely on transforming the
given dynamics into linear dynamics with output injection,
the crucial difference between KKL designs and linearization
techniques [36], [37], [39] is that the former does not require
a linear output map in the new coordinates (in fact, we do not
need to express this output map in the new coordinates), thus
leading to much more generic results as the class of systems
where the method is applicable is much wider.

This paper is organized as follows. The KKL observer de-
sign problem is stated in Section II. Then, sufficient conditions
for the existence of a sequence of maps (Tk)k∈N transform-
ing the dynamics into a filter of the output are presented
in Section III. Then, Section IV shows uniform Lipschitz
injectivity of (Tk)k∈N under the uniform Lipschitz backward
distinguishability, which allows us to obtain an arbitrarily fast
observer in discrete time. Section V shows injectivity of the
maps (Tk)k∈N under a weaker backward distinguishability, but
without any convergence guarantee of the estimation error.
Lastly, Section VI gives examples including the case of linear
time-varying systems and a permanent magnet synchronous
motor (PMSM) illustrating the interest of using discrete KKL
design for discretized continuous systems.

Notations: Let R (resp. N) denote the set of real numbers
(resp. natural numbers, i.e., {0, 1, 2, . . .}). R≥0 = [0,+∞)
while R>0 = (0,+∞) and N>0 = N \ {0}. Rm×n (resp.
Cm×n) is the set of real (resp. complex) (m×n)-dimensional
matrices. For a set E, let cl(E) be its closure and E + σ
be the set of points that lie within the distance σ ∈ R>0

from a point in E. Let ℜ(z) and ℑ(z) denote the real and
imaginary parts of the complex variable z. Given a vector
norm denoted | · |, we denote ∥ ·∥ as the induced matrix norm.
Let eig(W ) be the set of eigenvalues of the matrix W . For a
sequence (xk)k∈N of vectors in Rm indexed by the discrete
time k ∈ N, xk is the vector at time k, while xi,k denotes its
ith component at time k. A function ρ : R≥0 → R≥0 is class-
K if ρ is continuous, ρ(0) = 0, and ρ is strictly increasing.
A function β : R≥0 × R≥0 → R≥0 is class-KL if for all
r ∈ R≥0, β(·, r) is class-K and for all s ∈ R≥0, β(s, ·) is
decreasing and limr→+∞ β(s, r) = 0. For two functions f and
g, f ◦ g is their composition, namely for all x in the domain
of g, g(x) is in the domain of f and (f ◦ g)(x) = f(g(x)).
The left inverse f∗ of the map f on the set X is one such that
f∗(f(x)) = x for all x ∈ X . A⊗B is the Kronecker product
of matrices A and B. Last, for x ∈ Rm, Br(x) denotes the
open ball of radius r > 0 centered at x.



II. PROBLEM STATEMENT

Consider the nonlinear time-varying discrete system

xk+1 = fk(xk), yk = hk(xk), (1)

where fk : Rnx → Rnx and hk : Rnx → Rny are the
dynamics and output maps, xk ∈ Rnx is the state, and
yk ∈ Rny is the output at discrete time k.

Remark 1: Any system of the form

xk+1 = fk(xk, uk), yk = hk(xk, uk), (2)

where the input uk ∈ Rnu is a known trajectory of time, can
be put into form (1) with the maps (fk, hk)k∈N depending on
a particular sequence of inputs (uk)k∈N. The results of this
paper thus depend on this sequence of inputs, but some can
be made uniform with respect to a family of (uk)k∈N, if the
corresponding assumptions also hold uniformly in the inputs.

Assumption 1: The solutions of (1) of interest are initialized
in a set X0 and remain in a compact set X ⊇ X0 in positive
time.1

The KKL observer design consists in seeking a sequence of
nonlinear maps (Tk)k∈N, with Tk : Rnx → Rnz , transforming
the dynamics (1) into an LTI discrete filter of the output, i.e.,
such that zk = Tk(xk) verifies

zk+1 = Azk +Byk, (3)

where A ∈ Rnz×nz is Schur and B ∈ Rnz×ny such that
(A,B) is controllable. In other words, we look for (Tk)k∈N
satisfying for all k ∈ N,

Tk+1(xk+1) = ATk(xk) +Bhk(xk) (4)

along solutions to (1) remaining in X . A sufficient condition
for that is to have for all k ∈ N,

(Tk+1 ◦ fk)(x) = ATk(x) +Bhk(x), ∀x ∈ X : fk(x) ∈ X .
(5)

The observer in the z-coordinates is then made of a simple
filter of the output

ẑk+1 = Aẑk +Byk, (6)

since the estimation error then verifies (zk+1−ẑk+1) = A(zk−
ẑk), which is exponentially stable. The following Theorem 1
then shows that if the sequence (Tk)k∈N to (5) is uniformly
injective after a certain time (as in (8) below), it admits a
sequence of left inverses (T ∗

k )k∈N, with T ∗
k : Rnz → Rnx ,

such that the observer

ẑk+1 = Aẑk +Byk, x̂k = T ∗
k (ẑk), (7)

initialized as ẑ0 ∈ T0(X ), provides an asymptotic estimate
x̂k ∈ Rnx of xk and the estimation error in the x-coordinates
is asymptotically stable (as in (9) below). The goal of this
paper is then to provide sufficient conditions to guarantee the
existence of such a sequence of maps (Tk)k∈N.

Theorem 1: Assume there exists (Tk)k∈N satisfying (5)
with T0 continuous on X and (Tk)k∈N is uniformly injective

1This is much milder than requiring that X is forward invariant, which
means that all trajectories initialized in X , including the ones we are not
interested in, remain in X .

after a time, i.e., there exist a concave class-K function ρ and
k⋆ ∈ N such that for all k ≥ k⋆ and for all (xa, xb) ∈ X ×X ,

|xa − xb| ≤ ρ(|Tk(xa)− Tk(xb)|). (8)

Then, there exists (T ∗
k )k∈N and a class-KL function β such

that for any solution k 7→ xk of (1) with x0 ∈ X0 and any
solution k 7→ ẑk of (7) with ẑ0 ∈ T0(X ) and input yk =
hk(xk), we have

|xk − x̂k| ≤ β(|x0 − x̂0|, k). (9)
Remark 2: In this paper, the concavity assumption of ρ is

not restrictive because we will achieve, in Theorem 3, uniform
Lipschitz injectivity of (Tk)k∈N characterized by a linear ρ. In
general, this assumption can also be dropped if there exists a
compact set Z ⊂ Rnz such that for all k ≥ k⋆, Tk(X ) ⊆ Z .

Proof: From the uniform injectivity of (Tk)k∈N in (8),
there exists a sequence of left inverse maps (T−1

k )k∈N :
Tk(X ) → Rnx such that for all k ≥ k⋆,
• For all x ∈ X , T−1

k (Tk(x)) = x;
• For all (za, zb) ∈ Tk(X )× Tk(X ), |T−1

k (za)− T−1
k (zb)| ≤

ρ(|za − zb|).
Applying [40] component-wise, (T−1

k )k∈N can be extended
into a sequence of left inverse maps (T ∗

k )k∈N : Rnz → Rnx

such that there exists c1 ∈ R>0 such that for all k ≥ k⋆,
• For all x ∈ X , T ∗

k (Tk(x)) = x;
• For all (za, zb) ∈ Rnz×Rnz , |T ∗

k (za)−T ∗
k (zb)| ≤ c1ρ(|za−

zb|).
It follows that for all k ≥ k⋆,

|T ∗
k (Tk(xk))− T ∗

k (ẑk)| = |xk − x̂k|
≤ c1ρ(|Tk(xk)− ẑk|)
≤ c1ρ(c2c

k
3 |T0(x0)− ẑ0|),

for some c2 ∈ R>0 and c3 ∈ (0, 1) thanks to the exponential
stability in the z-coordinates given by (zk+1 − ẑk+1) =
A(zk − ẑk). Pick x̂0 ∈ X such that ẑ0 = T0(x̂0). Because
T0 is continuous on the compact set X , it is also uniformly
continuous on X , meaning that there exists a class-K function
ρ0 such that for any x0 ∈ X0 and x̂0 ∈ X , |T0(x0) − ẑ0| =
|T0(x0)− T0(x̂0)| ≤ ρ0(|x0 − x̂0|). Finally, we get

|xk − x̂k| ≤ c1ρ(c2c
k
3ρ0(|x0 − x̂0|)),

which is a class-KL function in |x0 − x̂0| and k.
The uniform injectivity of (Tk)k∈N as in (8) is thus sufficient

to guarantee asymptotic stability of the estimation error. The
following academic example shows that it is not necessary,
but the injectivity of each map Tk alone, without uniformity
in k, can sometimes be insufficient to ensure convergence.

Example 1: Consider the first-order time-varying system

xk+1 = xk, yk = hkxk, (10)

where hk ∈ R≥0. We see that the output enables us to
reconstruct the constant state xk as soon as hk ̸= 0 for
some k. Let us try to build a KKL observer. Thanks to the
dynamics being linear, we look for a transformation of the
form Tk(x) = mkx, where (mk)k∈N is a sequence of scalars



to be found so that (5) holds. Picking λ ∈ (0, 1), this is
achieved if for all k ∈ N,

mk+1 = λmk + hk,

of which the solution is

mk = λkm0 +

k−1∑
j=0

λk−j−1hj

for some initial m0. As long as m0 > 0, the mk are always
positive for k > 0 so that each map Tk is injective. However, if
hk vanishes asymptotically, mk decays to zero as k increases,
and the sequence (Tk)k∈N is not uniformly injective. We get

|xk − x̂k| =
1

mk
|zk − ẑk| =

λk

mk
|z0 − ẑ0|

=
λk

λkm0 +
∑k−1

j=0 λ
k−j−1hj

|h0x0 − h0x̂0|

=
h0

m0 +
∑k−1

j=0
hj

λj+1

|x0 − x̂0|.

Consider the first case where for some k⋆ ∈ N>0,

hk =

{
1 if k ≤ k⋆

0 if k > k⋆,
(11)

then, |xk − x̂k| does not converge to zero. The reason is that
even though each map Tk is injective at each k, (Tk)k∈N
becomes less and less injective over time. Consider another
case where hk = h0ϵ

k for some constants h0 ∈ R>0 and
ϵ ∈ (0, 1), so the system is instantaneously observable at each
k, but “less and less” over time. We have

|xk − x̂k| =
h0

m0 +
h0

λ

∑k−1
j=0

(
ϵ
λ

)j |x0 − x̂0|

=
h0

m0 +
h0

ϵ−λ

((
ϵ
λ

)k − 1
) |x0 − x̂0|

so that if we choose λ < ϵ, the error converges to zero
asymptotically. Furthermore, if we initialize (mk)k∈N as m0 =
h0

ϵ−λ > 0 (note that (hk)k∈N is known), we even get exponen-
tial stability of the error as

|xk − x̂k| = (ϵ− λ)

(
λ

ϵ

)k

|x0 − x̂0|.

This estimation can also be made arbitrarily fast by keeping
pushing λ smaller. Therefore, uniform injectivity is a sufficient
condition according to Theorem 1, but it is not necessary.
Convergence, stability, as well as other properties, could still
happen without uniformity in k, but it is not guaranteed.

In this work, we provide sufficient conditions to guarantee:
• Existence of (Tk)k∈N satisfying (5) in Section III;
• Uniform Lipschitz injectivity of (Tk)k∈N after a certain time

in Section IV;
• Injectivity of each Tk after a certain time in Section V.

Actually, in Section IV, we achieve a stronger asymptotic
property than (9): we show exponential stability of the estima-
tion error in the x-coordinates, namely, there exist c1 ∈ R>0,
c2 ∈ (0, 1), and k⋆ ∈ N such that for all k ≥ k⋆,

|xk − x̂k| ≤ c1c
k
2 |x0 − x̂0|. (12)

Such a property is achieved by strengthening the uniform
injectivity of (Tk)k∈N in (8) into uniform Lipschitz injectivity
and the continuity of T0 into Lipschitz continuity (with ρ and
ρ0 linear). This stronger result enables us to obtain a discrete
observer with arbitrarily fast robust convergence as soon as
allowed by the distinguishability property. More precisely, for
any desired convergence rate c⋆2 ∈ (0, 1), there exists a choice
of (A,B) such that (12) is satisfied with c2 ≤ c⋆2. Note that
decreasing c2 typically leads to an increase in c1, namely, we
get a discrete-time equivalence of the peaking phenomenon
typically encountered in the high-gain observers in continuous
time [20]. Also, such a design allows for robustness against
disturbances/uncertainties and filtering of measurement noise.

III. EXISTENCE OF (Tk)k∈N

This part studies the sufficient conditions for the existence
of (Tk)k∈N satisfying (5). It is established under the following
assumption.

Assumption 2: For all k ∈ N, fk is invertible and its inverse
function f−1

k is defined on Rnx .
Remark 3: While invertibility is for now required globally,

since the solutions of interest are known to remain in X , it may
be possible to modify the maps (fk)k∈N (and so (f−1

k )k∈N)
outside of the set X , while still keeping the observability
property mentioned below (see Section IV-D).

Such an assumption is common in discrete observers, such
as [5], [27], [37] or in the Kalman literature [30]–[32], [41]
and concerns a wide class of systems. For instance, discrete
dynamics that are discretizations of continuous dynamics
take the form xk+1 = xk + ∆tkΦ(xk, tk), which is close
to identity for sufficiently small sampling times ∆tk, and
therefore invertible. The physical meaning of this assumption
is that a given current state has only one possible past. Such
invertibility of the dynamics allows us to go back and forth in
discrete time and access states at different times, according to

xk+n = (fk+n−1 ◦ fk+n−2 ◦ . . . ◦ fk)(xk),

xk−n = (f−1
k−n ◦ f−1

k−(n−1) ◦ . . . ◦ f
−1
k−1)(xk),

for k, n ∈ N. Under this invertibility assumption, Theorem 2
gives existence results for the function sequence (Tk)k∈N.

Theorem 2: Under Assumption 2, given any T0 : Rnx →
Rnz , the sequence (Tk)k∈N such that each Tk : Rnx → Rnz

is given by

Tk(x) = Ak(T0 ◦ f−1
0 ◦ f−1

1 ◦ . . . ◦ f−1
k−1)(x)

+

k−1∑
j=0

Ak−j−1B(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(x) (13)

verifies (5). Furthermore, for any other solution (T ′
k)k∈N to (5),

for all x ∈ X such that f−1
k−1(x) ∈ X and for all k ∈ N>0, we

have T ′
k(x) = Tk(x) with Tk defined in (13) for T0 := T ′

0.
Proof: To start, notice that under Assumption 2, (5) is

verified if and only if

Tk(x) = A(Tk−1 ◦ f−1
k−1)(x) +B(hk−1 ◦ f−1

k−1)(x), (14)

for all x ∈ X such that f−1
k−1(x) ∈ X and for all k ∈ N>0.

We next show by induction that (14) is equivalent to (13) for



all k ∈ N>0 and for all x ∈ X such that f−1
k−1(x) ∈ X . This

is trivial for k = 1. Then, assuming (14) is equivalent to (13)
for a given k and for all x ∈ X such that f−1

k−1(x) ∈ X , we
have

A(Tk ◦ f−1
k )(x) +B(hk ◦ f−1

k )(x) =

A

(
Ak(T0 ◦ f−1

0 ◦ f−1
1 ◦ . . . ◦ f−1

k−1)(f
−1
k (x))

+

k−1∑
j=0

Ak−j−1B(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(f

−1
k (x))

)
+B(hk ◦ f−1

k )(x) =

AAk(T0 ◦ f−1
0 ◦ f−1

1 ◦ . . . ◦ f−1
k−1 ◦ f

−1
k )(x)

+

(
A

k−1∑
j=0

Ak−j−1B(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1 ◦ f

−1
k )(x)

+B(hk ◦ f−1
k )(x)

)
=

Ak+1(T0 ◦ f−1
0 ◦ f−1

1 ◦ . . . ◦ f−1
k−1 ◦ f

−1
k )(x)

+

k+1−1∑
j=0

Ak+1−j−1B(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1 ◦ f

−1
k )(x).

Therefore, by mathematical induction, both expressions are
equivalent for all x ∈ X such that f−1

k−1(x) ∈ X and for all
k ∈ N>0. Finally, on Rnx , (13) satisfies (5) analytically.

Example 2: Consider the class of (1) with linear dynamics
and polynomial output

xk+1 = Fkxk, yk = HkPd(xk), (15)

where (Fk)k∈N ∈ Rnx×nx and (Hk)k∈N ∈ Rny×nd are
sequences of matrices and Pd : Rnx → Rnd is a vector of
nd monomials with degrees less than or equal to d. We then
look for (Tk)k∈N of the form

Tk(x) = MkPd(x).

Since Pd(Fk(x)) contains polynomials of x of order less than
or equal to d, there exists (Dk)k∈N ∈ Rnd×nd such that

Pd(Fkx) = DkPd(x).

Therefore, we have Tk+1(xk+1) = Mk+1Pd(xk+1) =
Mk+1Pd(Fkxk) = Mk+1DkPd(xk) and (5) holds if

Mk+1Dk = AMk +BHk. (16)

If (Dk)k∈N is invertible for all k ∈ N, it can be proven by
mathematical induction that (16) admits the unique solution

Mk = AkM0

k−1∏
j=0

D−1
j +

k−1∑
j=0

Ak−j−1BHj

k−1∏
q=j

D−1
q ,

for all k ∈ N>0, initialized as M0. So (Tk)k∈N is of the form

Tk(x) =

(
AkM0

k−1∏
j=0

D−1
j +

k−1∑
j=0

Ak−j−1BHj

k−1∏
q=j

D−1
q

)
Pd(x).

(17)
The particular case where the system is fully linear, namely
with Pd(·) identity, is detailed below in Section VI-A.

However, (Tk)k∈N, even if it exists, may not be injective
and may thus be unusable for observer design. Sufficient
conditions guaranteeing injectivity are analyzed next.

IV. AN ARBITRARILY FAST ROBUST DISCRETE
OBSERVER FROM UNIFORM LIPSCHITZ BACKWARD

DISTINGUISHABILITY

This part shows that the uniform Lipschitz injectivity of
(Tk)k∈N is obtained after a certain time under uniform Lip-
schitz backward distinguishability if the target dynamics are
pushed sufficiently fast. This leads to an arbitrarily fast robust
discrete observer as soon as allowed by distinguishability.

A. Uniform Lipschitz Injectivity of (Tk)k∈N from Uniform
Lipschitz Backward Distinguishability

In this part, A is chosen of the form γÃ with Ã Schur,
and γ ∈ (0, 1] sufficiently small to ensure uniformly Lipschitz
injectivity of (Tk)k∈N after a certain time. This is done under
the following distinguishability condition.

Definition 1: The system (1) is uniformly Lipschitz back-
ward distinguishable on a set X if for each output yi, i ∈
{1, 2, . . . , ny}, there exists mi ∈ N>0 such that for all k ≥
m := maxi mi, the sequence of backward distinguishability
maps (Obw

k )k∈N defined as

Obw
k (x) = (Obw

1,k(x),Obw
2,k(x), . . . ,Obw

ny,k(x)),

where Obw
i,k(x) ∈ Rmi is defined as

Obw
i,k(x) =

(hi,k−1 ◦ f−1
k−1)(x)

(hi,k−2 ◦ f−1
k−2 ◦ f

−1
k−1)(x)

. . .
(hi,k−(mi−1) ◦ f−1

k−(mi−1) ◦ . . . ◦ f
−1
k−1)(x)

(hi,k−mi
◦ f−1

k−mi
◦ f−1

k−(mi−1) ◦ . . . ◦ f
−1
k−1)(x)

 ,

is uniformly Lipschitz injective on X , i.e., there exists co ∈
R>0 such that for all k ≥ m and for all (xa, xb) ∈ X × X ,

|Obw
k (xa)−Obw

k (xb)| ≥ co|xa − xb|.
Intuitively, the concatenation of a sufficient number mi of

the past outputs determines uniquely and uniformly the current
state (and equivalently the trajectory as well). Equivalent
kinds of uniform observability are assumed in [42, Theorem
4.1] and [4, Theorem 2] for autonomous and time-varying
continuous-time systems respectively, leading to similar results
with arbitrarily fast convergence of the estimation error.

Remark 4: While the condition in Definition 1 is what is
required and assumed later for the proof, in practice it is not
always easy to obtain the closed forms of the inverse maps
of fk in (Obw

k )k∈N. Actually, this condition is satisfied with
mi = m for all i ∈ {1, 2, . . . , ny} if both of the following
conditions are satisfied.
• There exists m ∈ N>0 such that there exists co′ ∈ R>0 such

that for all k ∈ N and for all (xa, xb) ∈ X × X ,

|Ofw
k (xa)−Ofw

k (xb)| ≥ co′ |xa − xb|,



where the sequence of forward distinguishability functions
(Ofw

k )k∈N is defined as

Ofw
k (x) = (Ofw

1,k(x),O
fw
2,k(x), . . . ,O

fw
ny,k

(x)),

where Ofw
i,k (x) ∈ Rm is defined as

Ofw
i,k (x) =
hi,k(x)
(hi,k+1 ◦ fk)(x)
. . .
(hi,k+(m−2) ◦ fk+(m−3) ◦ . . . ◦ fk)(x)
(hi,k+(m−1) ◦ fk+(m−2) ◦ fk+(m−3) ◦ . . . ◦ fk)(x)

 ;

• The sequence of inverses (f−1
k )k∈N is uniformly Lipschitz

injective, i.e., there exists cf ∈ R>0 such that for all k ∈ N
and for all (xa, xb) ∈ Rnx × Rnx ,

|f−1
k (xa)− f−1

k (xb)| ≥ cf |xa − xb|.
Indeed, from the two conditions above, we have for all k ∈ N
and for all (xa, xb) ∈ X × X ,

|Obw
k (xa)−Obw

k (xb)|
= |Ofw

k−m((f−1
k−m ◦ f−1

k−(m−1) ◦ . . . ◦ f
−1
k−1)(xa))

−Ofw
k−m((f−1

k−m ◦ f−1
k−(m−1) ◦ . . . ◦ f

−1
k−1)(xb))|

≥ co′ |(f−1
k−m ◦ f−1

k−(m−1) ◦ . . . ◦ f
−1
k−1)(xa)

− (f−1
k−m ◦ f−1

k−(m−1) ◦ . . . ◦ f
−1
k−1)(xb)|

≥ co′c
m
f |xa − xb| := co|xa − xb|,

by letting co = co′c
m
f . Checking uniform Lipschitz backward

distinguishability using (Ofw
k )k∈N is much more convenient

than (Obw
k )k∈N since the forward maps (fk)k∈N are available.

For our uniform Lipschitz injectivity result, we make the
following assumptions.

Assumption 3: We assume that:
(A3.1) The sequences (f−1

k )k∈N and (hk)k∈N are uniformly
Lipschitz, i.e., there exist positive scalars cf and ch
such that for all k ∈ N and for all (xa, xb) ∈ Rnx ×
Rnx ,

|f−1
k (xa)− f−1

k (xb)| ≤ cf |xa − xb|,
|hk(xa)− hk(xb)| ≤ ch|xa − xb|;

(A3.2) The system (1) is uniformly Lipschitz backward
distinguishable on X for some mi ∈ N>0, i ∈
{1, 2, . . . , ny}.

Remark 5: Assumption (A3.1) requires global uniform Lip-
schitzness of the sequences (f−1

k )k∈N and (hk)k∈N. Its re-
laxation into uniform Lipschitzness over a compact set is
analyzed in Section IV-D. Note that for a linear time-varying
system, Assumption (A3.1) is reduced to uniform boundedness
of the dynamics and output matrices (see Section VI-A).

The following theorem then shows uniform Lipschitz injec-
tivity of (Tk)k∈N after a certain time.

Theorem 3: Suppose Assumptions 1, 2, and 3 hold. Define
nz =

∑ny

i=1 mi. Consider a globally Lipschitz2 map T0 :

2This is only a constraint on how to initialize (Tk)k∈N, which should not
impact estimation since this will be forgotten and at the initial time we do
not have uniform Lipschitz backward distinguishability anyway; in fact, it is
suggested to choose T0 identically zero when possible.

Rnx → Rnz , and for each i ∈ {1, 2, . . . , ny}, a controllable
pair (Ãi, B̃i) ∈ Rmi×mi × Rmi with Ãi Schur. Then, there
exists γ⋆ ∈ R>0 such that for any 0 < γ < γ⋆, there exists
k⋆ ∈ N such that the sequence (Tk)k∈N defined in (13) with

A = γ diag(Ã1, Ã2, . . . , Ãny
) ∈ Rnz×nz , (18a)

B = diag(B̃1, B̃2, . . . , B̃ny
) ∈ Rnz×ny , (18b)

and initialized as T0, is uniformly Lipschitz injective on X for
all k ≥ k⋆, where γ⋆ and k⋆ are defined in the proof. More
precisely, there exists c ∈ R>0 (independent of γ) such that
for all k ≥ k⋆ and all (xa, xb) ∈ X × X , we have

|Tk(xa)− Tk(xb)| ≥ cγm−1|xa − xb|, (19)

where m := maxi mi.
Proof: First, pick γ small enough for

γ diag(Ã1, Ã2, . . . , Ãny
) to be Schur, namely

γmaxi max | eig(Ãi)| < 1. Consider a solution (Tk)k∈N
of (5) for (A,B) given in (18). Then,

Tk(x) = (T1,k(x), T2,k(x), . . . , Ti,k(x), . . . , Tny,k(x))

where for each i ∈ {1, 2, . . . , ny}, (Ti,k)k∈N is solution to
(5) with (A,B) replaced by (γÃi, B̃i). Therefore, Theorem
2 applies to each (Ti,k)k∈N. It follows that for each i ∈
{1, 2, . . . , ny}, for all k ≥ mi, and for all (xa, xb) ∈ X ×X ,
Ti,k(xa)− Ti,k(xb) can be written as the sum of three parts

Ti,k(xa)− Ti,k(xb) =
(
Ii,k(xa)− Ii,k(xb)

)
+

(
Ti,k(xa)− Ti,k(xb)

)
+
(
Ri,k(xa)−Ri,k(xb)

)
where

Ii,k(xa)− Ii,k(xb)

= (γÃi)
k

(
(T0 ◦ f−1

0 ◦ f−1
1 ◦ . . . ◦ f−1

k−1)(xa)

− (T0 ◦ f−1
0 ◦ f−1

1 ◦ . . . ◦ f−1
k−1)(xb)

)
,

Ri,k(xa)−Ri,k(xb)

=

k−mi−1∑
j=0

(γÃi)
k−j−1B̃i

(
(hi,j ◦ f−1

j ◦ f−1
j+1 ◦ . . . ◦ f

−1
k−1)(xa)

− (hi,j ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(xb)

)
,

Ti,k(xa)− Ti,k(xb)

=

k−1∑
j=k−mi

(γÃi)
k−j−1B̃i

(
(hi,j ◦ f−1

j ◦ f−1
j+1 ◦ . . . ◦ f

−1
k−1)(xa)

− (hi,j ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(xb)

)
= Di(γ)Ci(Obw

i,k(xa)−Obw
i,k(xb)),

where Di(γ) = diag(1, γ, γ2, . . . , γmi−1) and Ci =(
B̃i ÃiB̃i Ã2

i B̃i . . . Ãmi
i B̃i

)
is the controllability ma-

trix of the pair (Ãi, B̃i). Now, we will establish bounds on
each of the three parts. As (Tk)k∈N is initialized globally
Lipschitz, there exists cT ∈ R≥0 such that for all (xa, xb) ∈
Rnx × Rnx , |T0(xa) − T0(xb)| ≤ cT |xa − xb|. Exploiting



Assumption (A3.1), we thus have for all i ∈ {1, 2, . . . , ny},
for all k ≥ mi, and for all (xa, xb) ∈ X × X ,

|Ii,k(xa)− Ii,k(xb)| ≤ cT (γ∥Ãi∥cf )k|xa − xb|.

Then, for γ such that γmaxi ∥Ãi∥cf < 1, exploiting Assump-
tion (A3.1), we have for all i ∈ {1, 2, . . . , ny}, for all k ≥ mi,
and for all (xa, xb) ∈ X × X ,

|Ri,k(xa)−Ri,k(xb)|

≤
k−mi−1∑

j=0

(γ∥Ãi∥)k−j−1∥B̃i∥chck−j
f |xa − xb|

= ∥B̃i∥chcf
(γ∥Ãi∥cf )mi

1− γ∥Ãi∥cf
(1− (γ∥Ãi∥cf )k−mi−1)|xa − xb|

≤ ∥B̃i∥chcf
(γ∥Ãi∥cf )mi

1− γ∥Ãi∥cf
|xa − xb|.

As the pairs (Ãi, B̃i) ∈ Rmi×mi × Rmi are controllable,
there exists cc ∈ R>0 such that ∥Ci∥ ≥ cc > 0 for all
i ∈ {1, 2, . . . , ny}. Next, from Assumption 3, we deduce
that for all i ∈ {1, 2, . . . , ny}, for all k ≥ mi, and for all
(xa, xb) ∈ X × X ,

|Ti,k(xa)− Ti,k(xb)| ≥ γmi−1cc|Obw
i,k(xa)−Obw

i,k(xb)|.

Therefore, for all i ∈ {1, 2, . . . , ny}, for all k ≥ mi, and for
all (xa, xb) ∈ X × X ,

|Ti,k(xa)− Ti,k(xb)| ≥ |Ti,k(xa)− Ti,k(xb)| − |Ri,k(xa)

−Ri,k(xb)| − |Ii,k(xa)− Ii,k(xb)|
≥ γmi−1cc|Obw

i,k(xa)−Obw
i,k(xb)|

− ∥B̃i∥chcf
(γ∥Ãi∥cf )mi

1− γ∥Ãi∥cf
|xa − xb|

− cT (γ∥Ãi∥cf )k|xa − xb|

≥ γmi−1

(
cc|Obw

i,k(xa)−Obw
i,k(xb)|

− ∥B̃i∥chcf
γ(∥Ãi∥cf )mi

1− γ∥Ãi∥cf
|xa − xb|

− cT γ
k−mi+1(∥Ãi∥cf )k|xa − xb|

)
.

Now, if we concatenate the outputs, depending on the norm,
there exists a constant cN ∈ R>0 such that for all k ≥ m and
for all (xa, xb) ∈ X ×X , we have since γ ∈ (0, 1] and thanks
to Assumption (A3.2),

|Tk(xa)− Tk(xb)| ≥

cNγm−1

(
ccco −max

i
∥B̃i∥chcf

γmaxi((∥Ãi∥cf )mi)

1− γmaxi ∥Ãi∥cf

− cT γ
k−m+1(max

i
∥Ãi∥cf )k

)
|xa − xb|.

If we select γ ∈ (0, 1] such that

0 < γ < γ⋆ = min

{
1

maxi max | eig(Ãi)|
,

1

maxi ∥Ãi∥cf
,

ccco

maxi ∥Ãi∥cfccco +maxi ∥B̃i∥chcf maxi((∥Ãi∥cf )mi)

}
,

then with γ fixed, for all k ≥ k⋆ where k⋆ = m if cT = 0
and

k⋆ = max

{
m,

⌊
(m− 1) ln γ + ln c̃− ln cT

ln γ + ln(maxi ∥Ãi∥cf )
+ 1

⌋}
,

where c̃ = ccco−maxi ∥B̃i∥chcf γ maxi((∥Ãi∥cf )mi )

1−γ maxi ∥Ãi∥cf
if cT > 0,

there exists a constant c ∈ R>0 (independent of γ) such that
for all (xa, xb) ∈ X × X , we have (19).

Remark 6: This is a high-gain result in discrete time since
we have to push the (discrete) dynamics sufficiently fast,
namely take γ sufficiently small, to guarantee uniform Lip-
schitz injectivity of (Tk)k∈N. However, as γ is picked closer
to zero, the coefficient 1

cγm−1 quantifying the injectivity of
(Tk)k∈N in (19) increases, making (Tk)k∈N “less (but still)
uniformly Lipschitz injective”. We also observe that:
• If co is close to zero, i.e., the system (1) is “less uniformly

Lipschitz backward distinguishable”, the upper bound
ccco

maxi ∥Ãi∥cfccco +maxi ∥B̃i∥chcf maxi((∥Ãi∥cf )mi)

on γ is reduced, which means we have to pick γ closer to
zero to guarantee uniform Lipschitz injectivity of (Tk)k∈N;

• As γ is picked closer to zero, the quantity⌊
(m− 1) ln γ + ln c̃− ln cT

ln γ + ln(maxi ∥Ãi∥cf )
+ 1

⌋
approaches m, so k⋆ = m, which means (Tk)k∈N becomes
uniformly Lipschitz injective right after we have uniform
Lipschitz backward distinguishability, namely in m steps.
Also, the discontinuity of k⋆ in cT reflexes the time depen-
dence of the injectivity of (Tk)k∈N. Indeed, if cT = 0, then
the uniform Lipschitz injectivity of (Tk)k∈N is achieved as
soon as we get uniform Lipschitz backward distinguishabil-
ity, so it is independent of time. For cT > 0, we will have to
wait some time until the terms (Ik)k∈N become dominated.
Therefore, this injectivity is time-dependent.
Example 3: Consider the system in Example 1. We have

Obw
k (x) =


hk−1x
hk−2x
. . .

hk−mx

 =


hk−1

hk−2

. . .
hk−m

x := Hbw
k x,

which is not uniformly Lipschitz injective since the ∥Hbw
k ∥

part in

|Obw
k (xa)−Obw

k (xb)| = ∥Hbw
k ∥|xa − xb|

cannot be lower bounded by any positive constant uniformly
in k for any m. Therefore, this example does not fall into the
context of Theorem 3.

B. Arbitrarily Fast Observer Design
According to the proof of Theorem 1, once (Tk)k∈N has

become uniformly Lipschitz injective on X following Theorem
3, there exists a sequence of left inverse maps (T ∗

k )k∈N :
Rnz → Rnx and c′ ∈ R>0 such that

T ∗
k (Tk(x)) = x, ∀k ≥ k⋆, ∀x ∈ X , (20a)



|T ∗
k (za)− T ∗

k (zb)| ≤
c′

cγm−1
|za − zb|,

∀k ≥ k⋆, ∀(za, zb) ∈ Rnz × Rnz . (20b)

Exploiting Lipschitzness, the result of Theorem 1 can thus
be strengthened as follows, obtaining exponential asymptotic
stability of the estimation error in the x-coordinates, and an
arbitrarily fast discrete observer.

Corollary 1: Under the assumptions of Theorem 3, con-
sider A and B of the form (18) with γ < γ⋆, (Tk)k∈N, and
k⋆ provided by Theorem 3. Then, there exist (T ∗

k )k∈N and
c ∈ R>0 such that for any solution k 7→ xk of (1) with
x0 ∈ X0 and any solution k 7→ ẑk of (7) with3 ẑ0 ∈ T0(X )
and input yk = hk(xk),

|xk − x̂k| ≤
c(γ∥Ã∥)k

γm−1
|x0 − x̂0|, ∀k ≥ k⋆. (21)

Corollary 1 shows that the observer (7) can be made
arbitrarily fast after (Tk)k∈N has become uniformly Lipschitz
injective, by picking γ closer to zero. Indeed, compared with
(12), the error in the x-coordinates is exponentially stable with
c1 = c

γm−1 and c2 = γ∥Ã∥. For any desired convergence

rate c⋆2 ∈ (0, 1), by picking γ ≤ min
{

c⋆2
∥Ã∥ , γ

⋆
}

, we achieve
c2 ≤ c⋆2. Note though that this typically increases c1, because
if c2 ≤ c⋆2 then c1 ≥ c⋆1 = c∥Ã∥m−1

(c⋆2)
m−1 . We thus recover here

a discrete-time version of the well-known peaking behavior
in continuous-time high-gain designs [20]. This observer is
illustrated in Section VI.

Remark 7: While we assume in Assumption (A3.1) that
the maps (f−1

k )k∈N and (hk)k∈N are uniformly Lipschitz,
namely the Lipschitz constants cf and ch are the same for all
k, we can instead consider sequences of Lipschitz constants
(cf,k)k∈N and (ch,k)k∈N providing that there are positive
scalars cf and ch such that for all k ∈ N, cf,k ≤ cf and
ch,k ≤ ch. Assumption (A3.1) then holds with cf = cf and
ch = ch. These upper bounds prevent an asymptotic loss
of Lipschitzness (when (cf,k)k∈N and (ch,k)k∈N diverge to
infinity). Similarly, in Assumption (A3.2), we can consider
a sequence (co,k)k∈N lower bounded by co > 0 (to prevent
an asymptotic loss of observability). Indeed, this allows us to
update dynamically γ ∈ (0, 1] at each iteration k, as follows

0 < γk < µγ⋆k = µmin

{
1

maxi max | eig(Ãi)|
,

1

maxi ∥Ãi∥cf,k
,

ccco,k

maxi ∥Ãi∥cf,kccco,k +maxi ∥B̃i∥ch,kcf,k maxi((∥Ãi∥cf,k)mi)

}
,

for some constant µ ∈ (0, 1). The role of µ is to prevent
(γk)k∈N from converging asymptotically to (γ⋆

k)k∈N, which
cannot converge to zero thanks to the upper bounds cf and
ch. Indeed, this could prevent convergence/injectivity. The
interest of allowing γ to vary is that, at some time when
we have a lot of observability (large co,k) or Lipschitzness
(small cf,k or ch,k), we can afford to let γk increase while
still keeping convergence, thus decreasing the peaking (or the
noise amplification, see next Section IV-C) caused by a too fast
observer (see Section VI-B for illustrations). Finally, we can
pick a time-varying target filter in the z-coordinates, provided
that the properties are uniform with respect to this variation.

3It is intuitive to initialize ẑ0 in the image of the known set X . If T0 is
globally Lipschitz as in Theorem 3, then x̂0 can be anywhere in Rnx .

For instance, it was observed on a continuous-time motor [43],
without any rigorous proof, that performance can be improved
if the eigenvalues of the filter are adapted to the motor speed.

Remark 8: If T0 is taken constant (or even identically zero)
meaning that cT = 0, then for any initial condition x0 ∈ X0

of the system and ẑ0 of the observer, we have ẑ0 = T0(x0).
This leads to ẑk = Tk(xk) for all k ∈ N and so x̂k = xk for
all k ≥ k⋆. Therefore, we have finite-time convergence.

C. Robust and Input-to-state Stability of the Error
In this part, we now study the robust stability (in the sense

of [44]) and ISS properties [45] of the observer given by
Corollary 1. Suppose the system has dynamics (1) with some
disturbance/uncertainty vk and a measurement with noise wk:

xk+1 = fk(xk) + vk, yk = hk(xk) + wk. (22)

Then, if the pair (fk)k∈N, (hk)k∈N verifies the conditions of
Theorem 3, we know that there exists a sequence of left
inverses (T ∗

k )k∈N for k ≥ k⋆ that verifies (20). However,
in practice, following for instance [16], such maps are only
approximately known. Theorem 4 then shows the robustness
of the estimation error in the x-coordinates with respect to all
those uncertainties.

Theorem 4: Under the assumptions of Theorem 3, consider
A and B of the form (18) with γ < γ⋆, (Tk)k∈N, and k⋆

provided by Theorem 3, and (T ∗
k )k∈N provided by Corollary 1.

Consider an approximation (T̃ ∗
k )k∈N of (T ∗

k )k∈N and δ ∈ R>0

such that

|T̃ ∗
k (z)− T ∗

k (z)| ≤ δ, ∀z ∈ Rnz . (23)

Then, there exist positive scalars c, cv , and cw (independent of
γ) such that for any solution to the system (22) with x0 ∈ X0

and any solution to

ẑk+1 = γAẑk +Byk, x̂k = T̃ ∗
k (ẑk), (24)

initialized as ẑ0 ∈ T0(X ), we have for all k ≥ k⋆,

|xk − x̂k| ≤
c(γ∥Ã∥)k

γm−1
|x0 − x̂0|

+
1

γm−1

k−1∑
j=0

(γ⋆∥Ã∥)k−j−1(cvvj + cwwj) + δ. (25)

Proof: First, we prove that (Tk)k∈N provided by Theorem
3 is uniformly Lipschitz. Indeed, from Assumption (A3.1), we
have for all k ∈ N and for all (xa, xb) ∈ Rnx × Rnx ,

|Tk(xa)− Tk(xb)|
≤ cT (γmax

i
∥Ãi∥cf )k|xa − xb|

+

k−1∑
j=0

(γmax
i

∥Ãi∥)k−j−1 max
i

∥B̃i∥chck−j
f |xa − xb|

≤ cT |xa − xb|

+max
i

∥B̃i∥chcf
1− (γmaxi ∥Ãi∥cf )k−1

1− γmaxi ∥Ãi∥cf
|xa − xb|

≤
(
cT +

maxi ∥B̃i∥chcf
1− γmaxi ∥Ãi∥cf

)
|xa − xb|

:= cL|xa − xb|.



We now prove the robust stability and ISS properties. Consider
a solution to the system (22) with x0 ∈ X0 and a solution to
(24) with z0 ∈ T0(X ). Denoting zk = Tk(xk), we write the
dynamics in the z-coordinates as

zk+1 = Tk+1(fk(xk) + vk)

= Tk+1(fk(xk)) + Tk+1(fk(xk) + vk)− Tk+1(fk(xk))

= γÃTk(xk) +Bhk(xk) + Tk+1(fk(xk) + vk)

− Tk+1(fk(xk))

= γÃTk(xk) +B(yk − wk) + Tk+1(fk(xk) + vk)

− Tk+1(fk(xk))

= γÃzk +Byk + Tk+1(fk(xk) + vk)− Tk+1(fk(xk))

−Bwk.

Because (Tk)k∈N is uniformly Lipschitz, we have for all k ∈
N,

|Tk+1(fk(x) + vk)− Tk+1(fk(x))| ≤ cL|vk|.

According to (24), we get for all k ∈ N>0,

zk − ẑk = (γÃ)k(z0 − ẑ0)

+

k−1∑
j=0

(γÃ)k−j−1(Tj+1(fj(xj)+vj)−Tj+1(fj(xj))−Bwj).

Therefore, we have for all k ≥ k⋆,

|xk − x̂k| = |T ∗
k (zk)− T̃ ∗

k (ẑk)|
≤ |T ∗

k (zk)− T ∗
k (ẑk)|+ δ

≤ c′

cγm−1
|zk − ẑk|+ δ

≤ c′(γ∥Ã∥)k

cγm−1
|z0 − ẑ0|

+
c′

cγm−1

k−1∑
j=0

(γ∥Ã∥)k−j−1|Tj+1(fj(xj) + vj)

− Tj+1(fj(xj))−Bwj |+ δ

≤ c′(γ∥Ã∥)k

cγm−1
|T0(x0)− T0(x̂0)|

+
c′

cγm−1

k−1∑
j=0

(γ⋆∥Ã∥)k−j−1(cLvj + ∥B∥wj) + δ.

This concludes the proof.
Remark 9: Theorem 4 shows that the estimation error in

the x-coordinates is robustly stable with respect to the dis-
turbance/uncertainty vk as well as the noise wk and it is ISS
with respect to the approximation error δ. The former property,
defined in [44], is stronger than the ISS one defined in [45].

Note that it is the exponential stability (rather than asymp-
totic stability) of the estimation error that provides the ISS
with respect to disturbances and measurement noise. We also
see from (25) that accelerating the convergence by pushing
γ closer to zero will worsen the effect of the disturbances
and noise, but not that of the approximation of the inverse
transformation.

D. Saturating the Inverse Maps to Relax Assumption 3
In Assumption (A3.1), we require that the map sequences

(f−1
k )k∈N and (hk)k∈N are globally uniformly Lipschitz,

which is due to the fact that we do not have backward
invariance of the sequence on X . Here, we would like to study
how to relax that into a local requirement on a certain bounded
set, without losing Assumption (A3.2).

Let us assume that, given the mi of Assumption (A3.2),
there exists a large enough positive scalar σd such that for all
x ∈ X and for all k ≥ m := maxi mi, all the pre-images
f−1
k−1(x), (f

−1
k−2 ◦ f−1

k−1)(x), up to (f−1
k−m ◦ f−1

k−(m−1) ◦ . . . ◦
f−1
k−1)(x) are in X + σd. This means that we can change
(f−1

k )k∈N as we want outside of X + σd without altering
Assumption (A3.2) (and without altering the system dynamics
on the set X where the solutions of interest evolve).

Now, for any σc > σd, let us consider a saturating function
χ : Rnx → R defined as

χ(x) =

 1 if x ∈ X + σd

g(x) if x ∈ (X + σc) \ (X + σd)
0 if x /∈ X + σc,

(26)

where g is any locally Lipschitz function such that χ is locally
Lipschitz. We then define (f†

k)k∈N : Rnx → Rnx as

f†
k(x) = χ(x)f−1

k (x) + (1− χ(x))x. (27)

The set

I = (X + σc) ∪
( ⋃

k∈N
f†
k(X + σc)

)
⊂ Rnx

illustrated in Figure 1 is backward invariant with respect to
(f†

k)k∈N. Indeed, pick any x ∈ I and any k ∈ N. Then,
either x ∈ X + σc and thus f†

k(x) ∈ I, or x /∈ X + σc

and then χ(x) = 0 and f†
k(x) = x ∈ I. It follows that all the

requirements of global uniform Lipschitzness of (f−1
k )k∈N,

(hk)k∈N, and T0 as in Assumption 3 can be replaced by
uniform Lipschitzness on this backward invariant set I, by
replacing (f−1

k )k∈N with (f†
k)k∈N defined in (27) in all the

equations. Similarly, in Remark 4, we can check uniform
Lipschitz backward distinguishability using (Ofw

k )k∈N instead
of (Obw

k )k∈N if (f−1
k )k∈N is uniformly Lipschitz injective on

I. Actually, even the invertibility of each fk as in Assumption
2 may only be required on I.

X

σc

σd

f†
1 (X + σc)

f†
2 (X + σc)

f†
3 (X + σc)

f†
k(X + σc)

Fig. 1. Illustration of the backward invariant set I (the union of all).

In particular, I is bounded if and only if the sequence of sets
(f†

k(X + σc))k∈N is uniformly bounded, which is guaranteed



if (f−1
k )k∈N is uniformly bounded on X +σc. In this case, all

those assumptions become much more favorable.
Remark 10: In the case of a discretization, fk(x) = x +

∆tΦ(x, tk), where either ∆t is very small or the function Φ
is uniformly bounded (like in the PMSM example below in
Section VI-B), then the maps (f†

k)k∈N are close to identity and
there is a good chance that the sets (f†

k(X + σc))k∈N should
be close to X + σc, which is known, and that I should be
bounded.

V. INJECTIVITY FROM BACKWARD DISTINGUISHABILITY

In this part, we show the injectivity of (Tk)k∈N after a
certain time from non-uniform and non-Lipschitz backward
distinguishability only. Note that, as illustrated in Section
II, non-uniform injectivity can sometimes be insufficient to
guarantee the asymptotic convergence of the observer.

Definition 2: The system (1) is backward distinguishable on
a set X after time k⋆ if there exist an open set O containing
cl(X ) and k⋆ ∈ N such that for each k ≥ k⋆, for all (xa, xb) ∈
O × O with xa ̸= xb, there exists a jk ∈ {0, 1, . . . , k − 1}
such that

(hjk ◦ f−1
jk

◦ f−1
jk+1 ◦ . . . ◦ f

−1
k−1)(xa) ̸=

(hjk ◦ f−1
jk

◦ f−1
jk+1 ◦ . . . ◦ f

−1
k−1)(xb).

In words, this means that given two different state values
at a time k, there exists at least one instant in the past where
their corresponding outputs have been different. Note that this
is much lighter than the uniform Lipschitz backward distin-
guishability of Section IV—no uniformity of the sequence
(jk)k∈N is required with respect to k nor to the pair (xa, xb).
Therefore, this is one of the weakest forms of observability
we may consider. For our injectivity result, we then make the
following assumptions.

Assumption 4: We assume that:
(A4.1) For all k ∈ N, the functions f−1

k and hk are C1;
(A4.2) There exists k⋆ ∈ N such that the system (1) is

backward distinguishable on X after time k⋆.
Theorem 5 then gives injectivity results for (Tk)k∈N, with

T0 = 0 and for a generic choice of (A,B) of sufficient
dimension. Its proof is based on the generalized Coron’s
Lemma developed recently in [12].

Theorem 5: Under Assumptions 1, 2, and 4, there exists
a set M of zero Lebesgue measure in R(2nx+1)×(2nx+1) ×
R2nx+1 such that for any pair (Ã, B̃) ∈ (R(2nx+1)×(2nx+1) ×
R2nx+1) \M with Ã Schur and any k ≥ k⋆, the sequence of
functions (Tk)k∈N defined in (13) for

A = Iny
⊗ Ã ∈ R(2nx+1)ny×(2nx+1)ny , (28a)

B = Iny
⊗ B̃ ∈ R(2nx+1)ny×ny , (28b)

and initialized as T0 = 0, is injective on X .
Remark 11: Actually, the pair (Ã, B̃) is chosen controllable

and with Ã diagonalizable, which is true for almost any such
pair in R(2nx+1)×(2nx+1) × R2nx+1.

Proof: Recall that the set MND of pairs of real matrices
(Ã, B̃) where Ã is non-diagonalizable in C and the set MNC

of uncontrollable pairs of real matrices (Ã, B̃) are both of
zero measure in R(2nx+1)×(2nx+1) × R2nx+1. Indeed, they

are the zero-locus of non-identically zero polynomials: the
discriminant of the characteristic polynomial for the former
and the determinant of the controllability matrix for the
latter. Now, consider (Ã, B̃) in R(2nx+1)×(2nx+1) × R2nx+1

controllable with Ã Schur and diagonalizable in C. Consider
the maps (Tk)k∈N defined in (13) with T0 = 0, which can be
written as

Tk(x) =

k−1∑
j=0

Ak−j−1B(hj ◦f−1
j ◦f−1

j+1 ◦ . . .◦f
−1
k−1)(x), (29)

with (A,B) defined in (28). Define

Ãreal = diag(Λ1,Λ2, . . . ,Λl, λl+1, λl+2, . . . , λ2nx−l+1),

B̃real =


B1

B2

. . .
B2nx−l+1

 ,

where

Λi =

(
ℜλi −ℑ(λi)
ℑ(λi) ℜ(λi)

)
,

Bi =


(
1
0

)
i ∈ {1, 2, . . . , l}

1 i ∈ {l + 1, l + 2, . . . , 2nx − l + 1},

where l ∈ {0, 1, . . . , nx} is the number of complex non-real
eigenvalues of Ã (that come in pairs of conjugates since Ã
is real). As shown in [12, Appendix B.1], there exists an
invertible matrix P̃ ∈ R(2nx+1)×(2nx+1) such that

Ãreal = P̃−1ÃP̃ , B̃real = P̃−1B̃.

First, since P̃ is invertible, the injectivity of the maps (Tk)k∈N
in (29) is implied by the injectivity of the maps (Treal,k)k∈N
defined as

Treal,k(x) = (Iny
⊗ P̃−1)Tk(x).

We have

Treal,k(x)

= (Iny
⊗ P̃−1)Tk(x)

= (Iny
⊗ P̃−1)

k−1∑
j=0

Ak−j−1B(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(x)

= (Iny
⊗ P̃−1)

k−1∑
j=0

(Iny
⊗ Ã)k−j−1(Iny

⊗ B̃)

(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(x)

=

k−1∑
j=0

(Iny
⊗ (P̃−1ÃP̃ ))k−j−1(Iny

⊗ (P̃−1B̃))

(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(x)

=

k−1∑
j=0

Ak−j−1
real Breal(hj ◦ f−1

j ◦ f−1
j+1 ◦ . . . ◦ f

−1
k−1)(x),

with the pair (Areal, Breal) defined as

Areal = Iny
⊗ Ãreal, Breal = Iny

⊗ B̃real.



Second, we prove the injectivity of the maps (Treal,k)k∈N.
Define now the open sets Υ = {(xa, xb) ∈ O×O : xa ̸= xb}
and Λl = (B1(0))

l × (−1, 1)2nx−l+1. For λ ∈ C, define the
map Tλ,k as

Tλ,k(x) =

k−1∑
j=0

λk−j−1(hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(x).

With the structure of Ãreal and B̃real, the functions
(Treal,k)k∈N can be written up to a permutation as

Treal,k(x) = (ℜ(Tλ1,k(x)),ℑ(Tλ1,k(x)), . . . ,ℜ(Tλl,k(x)),

ℑ(Tλl,k(x)), Tλl+1,k(x), . . . , Tλ2nx−l+1,k(x)).

It follows that proving the injectivity of Treal,k for some
(λ1, λ2, . . . , λ2nx−l+1) ∈ Λl is equivalent to proving the
injectivity of

Tcomplex,k(x) = (Tλ1,k(x), Tλ2,k(x), . . . , Tλ2nx−l+1,k(x)).

We now prove that this is guaranteed for all k ≥ k⋆ and
for almost any choice of (λ1, λ2, . . . , λ2nx−l+1) ∈ Λl in the
Lebesgue measure sense. For that, we define the sets

Θi =

{
B1(0) i ∈ {1, 2, . . . , l}
(−1, 1) i ∈ {l + 1, l + 2, . . . , 2nx − l + 1},

the counters

pi =

{
2 i ∈ {1, 2, . . . , l}
1 i ∈ {l + 1, l + 2, . . . , 2nx − l + 1},

and the functions gi,k : Υ×Θi → R for i ∈ {1, 2, . . . , l} and
gi,k : Υ×Θi → C for i ∈ {l+ 1, l+ 2, . . . , 2nx − l+ 1}, by

gi,k((xa, xb), λ) = Tλ,k(xa)− Tλ,k(xb)

=

k−1∑
j=0

λk−j−1
(
(hj ◦ f−1

j ◦ f−1
j+1 ◦ . . . ◦ f

−1
k−1)(xa)

− (hj ◦ f−1
j ◦ f−1

j+1 ◦ . . . ◦ f
−1
k−1)(xb)

)
.

Now, we check the conditions for the generalized Coron’s
Lemma in [12, Lemma B.3]. For any l ∈ {0, 1, . . . , nx},
• For i ∈ {1, 2, . . . , l}, we see that gi,k((xa, xb), ·) is holo-

morphic on B1(0) for all (xa, xb) ∈ Υ. From the chain rule,
under Assumption (A4.1), for all λ ∈ B1(0), gi,k(·, λ) is C1

on Υ for each λ ∈ B1(0) because it is a finite composition
of C1 functions;

• For i ∈ {l+1, l+2, . . . , 2nx−l+1}, as gi,k((xa, xb), ·) is a
polynomial, it is C∞ on (−1, 1) for all (xa, xb) ∈ Υ. From
the chain rule, under Assumption (A4.1), for all λ ∈ (−1, 1)

and for all j ∈ N, the maps ∂jgi,k
∂λj (·, λ) are C1 on Υ because

they are finite compositions of C1 functions.
We then show that under Assumption (A4.2), for all i ∈
{1, 2, . . . , 2nx − l+ 1}, gi,k((xa, xb), ·) cannot be identically
zero on Θi. Take (xa, xb) ∈ Υ and take k ∈ N : k ≥ k⋆ and
assume gi,k((xa, xb), λ) = 0 for all λ ∈ Θi. By uniqueness of
polynomials, for all j ∈ {0, 1, . . . , k−1}, we have (hj ◦f−1

j ◦
f−1
j+1 ◦ . . . ◦ f

−1
k−1)(xa) = (hj ◦ f−1

j ◦ f−1
j+1 ◦ . . . ◦ f

−1
k−1)(xb),

which contradicts Assumption (A4.2). From the generalized

Coron’s Lemma [12] applied at each l ∈ {0, 1, . . . , nx} and
each k ≥ k⋆, since

∑2nx−l+1
i=1 pi = 2nx + 1, the set

El,k =
⋃

(xa,xb)∈Υ

{
(λ1, λ2, . . . , λ2nx−l+1) ∈ Λl |

∀i ∈ {1, 2, . . . , 2nx − l + 1}, gi,k((xa, xb), λi) = 0
}
,

which is literally the set of eigenvalues in Λl making
Tcomplex,k (at each k) non-injective, has zero Lebesgue mea-
sure. Then, from [12, Lemma B.2], the set

Ml,k = {(Ã, B̃) ∈ R(2nx+1)×(2nx+1) × R2nx+1,

Ã has the eigenvalues in El,k}

also has zero measure. Now, recall that the countable union
of infinitely many zero Lebesgue measure sets also has zero
Lebesgue measure [46]. Therefore, the set

M = MND ∪MNC ∪
⋃
k∈N

l∈{0,1,...,nx}

Ml,k

also has zero Lebesgue measure.
It is interesting to see that this injectivity result is proven

differently from the continuous-time case in [4], due to the
different nature of time. Indeed, the continuous time t belongs
to the open uncountable set [0,+∞), so the result in [4,
Theorem 3] is proven with Coron’s Lemma applied only once
to a set Υ that contains time. However, the discrete time
k belongs to N, which is not open but countable, so the
generalized Coron’s Lemma is here applied separately at each
instant k, and the result is then obtained for the whole time
domain by the countable union of zero-measure sets.

Example 4: Consider the system in Example 1. It veri-
fies the backward distinguishability condition in Assumption
(A4.2) as long as there exists k such that hk ̸= 0. Therefore,
Theorem 5 applies with T0 = 0 (so m0 = 0): there exists
a sequence of injective maps (Tk)k∈N (from a certain time)
transforming the dynamics into a form (3).

This result only ensures the injectivity of each map Tk

after a certain time, without any uniformity in k, which may
impair convergence, as seen in Example 1. However, we saw
in Example 1 that injectivity alone can still suffice in some
cases. Therefore, if we initialize T0 = 0, the observer may
still work under backward distinguishability only, which is a
very mild observability condition.

Remark 12: In general, solutions to (5) taking the form (13)
is written as Tk(x) = Ik(x) + Tk(x) where Ik(x) = Ak(T0 ◦
f−1
0 ◦f−1

1 ◦ . . .◦f−1
k−1)(x) and Tk(x) =

∑k−1
j=0 A

k−j−1B(hj ◦
f−1
j ◦ f−1

j+1 ◦ . . . ◦ f−1
k−1)(x). In Theorem 5, we prove the

injectivity of (Tk)k∈N for all k ≥ k⋆ assuming T0 = 0,
namely the injectivity of (Tk)k∈N. Therefore, it is advised to
initialize (Tk)k∈N such that T0 is identically zero, if possible.
In a stronger case, if (Tk)k∈N is uniformly injective, i.e., there
exist a class-K function κ and l ∈ R>0 such that for all k ≥ k⋆

and for all (xa, xb) ∈ X × X ,

|Tk(xa)− Tk(xb)| ≥ lκ(|xa − xb|),



and if for all k ≥ k⋆ and for all (xa, xb) ∈ X × X ,

|T0(xa)− T0(xb)| ≤ κ(|xa − xb|),

then

|Tk(xa)− Tk(xb)| = |Ik(xa)− Ik(xb) + Tk(xa)− Tk(xb)|
≥ |Tk(xa)− Tk(xb)| − |Ik(xa)− Ik(xb)|
≥ (l − 2∥A∥k)κ(|xa − xb|),

which implies that (Tk)k∈N becomes uniformly injective after
a certain time. This, as seen in Theorem 1, is sufficient for
an asymptotic observer assuming that the inverse map of κ
is concave, whose dynamics unfortunately cannot be assigned
arbitrarily fast.

VI. EXAMPLES

A. System with Linear Dynamics and Output
Consider a linear time-varying discrete systems of form

xk+1 = Fkxk, yk = Hkxk. (30)

A linear transformation xk 7→ zk = Tkxk into (3) can be
found with the sequence of matrices (Tk)k∈N satisfying

Tk+1Fk = ATk +BHk,

initialized as T0. Under invertibility of the sequence (Fk)k∈N,
it is defined by the closed form

Tk = AkT0

k−1∏
j=0

F−1
j +

k−1∑
j=0

Ak−j−1BHj

k−1∏
q=j

F−1
q ,

for all k ∈ N>0. Then, provided each Tk is full-rank, and thus
left-invertible (see below), the KKL observer takes the form{

ẑk+1 = Aẑk +Byk

Tk+1 = ATkF
−1
k +BHkF

−1
k

, x̂k = T ∗
k ẑk (31)

where T ∗
k is a left inverse of Tk.

The system (30) is uniformly Lipschitz backward distin-
guishable (see Definition 1) if and only if there exists m ∈
N>0 such that there exists co ∈ R>0 such that for all k ≥ m,
the backward distinguishability matrix

Obw
k =


Hk−1F

−1
k−1

Hk−2F
−1
k−2F

−1
k−1

. . .
Hk−(m−1)F

−1
k−(m−1) . . . F

−1
k−1

Hk−mF−1
k−mF−1

k−(m−1) . . . F
−1
k−1


verifies

Obw⊤
k Obw

k ≥ coI > 0. (32)

Alternatively, under uniform boundedness of (Fk)k∈N, we
can use the forward version similar to the one in Remark
4. According to Theorem 3, under (32) and the uniform
boundedness of (Fk, Hk)k∈N, picking A sufficiently fast of
dimension m, there exist ct ∈ R>0 and k⋆ ∈ N such that
for all k ≥ k⋆, T⊤

k Tk ≥ ctI > 0, namely (Tk)k∈N is
(uniformly) left-invertible for k sufficiently large. Therefore,
(31) is implementable and provides arbitrarily fast robust
exponentially stable estimation for (30).

Interestingly, (32) coincides with the uniform complete
observability condition required by the Kalman filter (see
[30, Condition (13)] or [31, Definition 3]), namely there exist
m ∈ N>0 and co ∈ R>0 such that for all k ≥ m,

k−1∑
j=k−m

F−1⊤
k−1 F−1⊤

k−2 . . . F−1⊤
j H⊤

j HjF
−1
j . . . F−1

k−2F
−1
k−1

≥ coI > 0.

It is thus interesting to compare both designs. In terms of
dimensions, the complexity of the Kalman filter is nx(nx+1)

2 +
nx, while that of the KKL observer is (mny)

2 + mny with
mny ≥ nx (or

∑ny

i=1 mi instead of mny if the observabil-
ity multiplicities mi are considered in (32)). Therefore, the
Kalman filter is advantageous in dimension compared to the
KKL observer. However, the advantage of the latter (besides
being applicable in the nonlinear context) is that, there exists
a strict ISS Lyapunov function Vk : Rnx → R≥0 of quadratic
form

Vk(xk) = (xk − x̂k)
⊤T⊤

k PTk(xk − x̂k),

where P ∈ Rnz×nz is a positive definite solution to A⊤PA−
P < 0, and verifying

αx⊤
k xk ≤ Vk(xk), ∀k ≥ k⋆,

for some α ∈ R>0 independent of k. Exponential ISS of the
estimation error can thus be proven with an explicit quadratic
Lyapunov function, unlike the discrete Kalman filter [30]
whose Lyapunov function is not strict.

B. Permanent Magnet Synchronous Motor
Consider a permanent magnet synchronous motor (PMSM)

with the reproduced model [47]

ẋ = u−Ri, y = |x− Li|2 − Φ2 = 0, (33)

where x ∈ R2 is the electromagnetic flux (in Vs); the voltages
u (in V) and currents i (in A) are inputs in R2; the resistance
R = 1.45 (Ω), the inductance L = 0.0121 (H), and the
flux Φ = 0.1994 (Vs) are constant parameters. Here in this
example, the value of the output y is always zero. Even though
this system has linear dynamics, its quadratic output map
renders observer design very challenging and thus necessitates
thorough studies [14], [15], [43], [47], [48].

We see that the function

H(x, u, i, u̇,
di

dt
,
d2i

dt2
) =

 |x− Li|2 − Φ2

2η⊤(x− Li)
2η̇⊤(x− Li) + 2η⊤η

 ,

describing the output and its two first time derivatives, with
η = u − Ri + L di

dt , is uniformly Lipschitz injective if there
exists cη ∈ R>0 such that(

η⊤

η̇⊤

)⊤ (
η⊤

η̇⊤

)
≥ cηI > 0. (34)

It can be shown that this property holds if the motor speed
is uniformly bounded away from zero [48]. Following [48],
a continuous-time KKL observer with a sufficiently fast con-
tinuous pair (A,B) of dimension 3 can be designed for this



system. But actually, in practice, the input signals u and i are
only known at specific sampling times, typically related to the
PWM. Two paths are then possible:
• Design a continuous KKL observer for the continuous model

and then discretize it at the sampling rate; or
• Build a discretized model of the system at the sampling rate

and design a discrete KKL observer for this discrete model.
Intuitively, both paths should be equivalent for small sam-

pling times ∆t. However, for a PMSM discretized at the PWM,
discretization errors are significant at high speeds and we
illustrate here the great interest of following the second path.
Indeed, it offers the crucial advantage of using an appropriate
discretization, adapted to the physics of the system, which is
not the case in the first path where physical insight is much
trickier to exploit for the observer discretization.

1) Discrete KKL Observer with Euler’s Method:
One way to discretize the PMSM is by using Euler’s method

xk+1 = xk +∆t(uk −Rik), yk = |xk − Lik|2 − Φ2 = 0.
(35)

Let us now verify the assumptions needed for observer design,
more particularly those required by Theorem 3.
• Assumption 1: The solutions of (35), when injected with

sinusoidal inputs, are also sine waves, so they remain in a
compact set in positive time;

• Assumption 2: The dynamics map of (35), with (uk)k∈N
and (ik)k∈N known, is invertible;

• Assumption 3: First, uniform Lipschitzness of the inverse
dynamics and output maps of (35) holds since the inputs
(uk)k∈N and (ik)k∈N are uniformly bounded and solutions
remain in a compact set. Second, the uniform Lipschitz
backward distinguishability is very hard to check analyti-
cally in discrete time because it involves the inversion of the
dynamics. We thus use its continuous-time version related
to (34) to argue that the equivalent property should hold in
discrete time if the sampling period ∆t is sufficiently small.
Guided by Example 2 and the knowledge that a KKL

observer of dimension 3 exists in continuous time, we look
for a transformation of the form

zk = Tk(xk) = ak|xk|2 + bkxk + ck ∈ R3,

where

ak =
(
a1,k a2,k a3,k

)⊤ ∈ R3,

bk =
(
b1,k b2,k b3,k

)⊤ ∈ R3×2,

ck =
(
c1,k c2,k c3,k

)⊤ ∈ R3.

Note that each bi,k, i = 1, 2, 3 is a vector in R2. With A ∈
R3×3 Schur and the pair (A,B) controllable, zk is solution to
(3) if

ak+1 = Aak +B,

bk+1 = Abk − 2∆tak+1(uk −Rik)
⊤ − 2LBi⊤k ,

ck+1 = Ack −∆t2ak+1|uk −Rik|2

−∆tbk+1(uk −Rik) +B(L2|ik|2 − Φ2).

(36)

Note that ak can be picked constant equal to (I − A)−1B.
Because yk = 0 for all k, zk converges to zero exponentially

fast and it is straightforward to pick for instance the particular
solution ẑk = 0 for the observer. Then, the estimate is obtained
by solving Tk(x̂k) = ẑk = 0, namely

x̂k = −
(
a1,kb2,k − a2,kb1,k
a1,kb3,k − a3,kb1,k

)−1 (
a1,kc2,k − a2,kc1,k
a1,kc3,k − a3,kc1,k

)
.

(37)

2) Discrete KKL Observer with Rotation Correction:

According to [49], a more appropriate method to discretize
the PMSM (33) taking into account its rotating dynamics is

xk+1 = xk +∆tΩk(uk −Rik) sinc(φk),

yk = |xk − Lik|2 − Φ2 = 0,
(38)

where Ωk =

(
cos(φk) − sin(φk)
sin(φk) cos(φk)

)
and φk = ω̂k∆t

2 where

ω̂k = sign((uk − uk−1)
⊤uk−1)

|uk − uk−1|
∆t|uk|

is the estimate of the motor’s rotation speed that is approxi-
mately the same for (uk)k∈N, (ik)k∈N, and (xk)k∈N, assuming
that this speed does not vary too fast. Notice that when ω̂k = 0
for all k (no rotation), we recover Euler’s discretized version
in (35). We also see that (38), with the inputs (uk)k∈N and
(ik)k∈N being sinusoidal, satisfies all the assumptions required
by Theorem 3.

Keeping the same pair (A,B), we get this time

ak+1 = Aak +B,

bk+1 = Abk − 2∆tak+1(Ωk(uk −Rik) sinc(φk))
⊤ − 2LBi⊤k ,

ck+1 = Ack −∆t2ak+1 sinc
2(φk)|Ωk(uk −Rik)|2

−∆tbk+1Ωk(uk −Rik) sinc(φk) +B(L2|ik|2 − Φ2),
(39)

with ak still possibly constant equal to (I − A)−1B, and the
estimate is still obtained with (37).

3) Comparison of Performance:

Due to space constraints, we only show the estimation error
for one of the two state components, the other one being
similar. In Figure 2, the estimation errors with respect to the
continuous-time trajectory of (33) are compared among the
three cases: 1) A continuous KKL observer designed following
[47] and discretized using Euler’s method; 2) A discrete
KKL observer designed based on the Euler discretization of
(33); 3) A discrete KKL observer designed based on the
discretization of (33) with rotation correction. From here, we
draw two important lessons: 1) It seems better to design a
discrete observer from a discretized model than to discretize a
continuous observer already designed; 2) The numerical errors
due to incorrect discretization may be reduced by taking into
account the system’s physics in the discrete model.
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Fig. 2. Estimation error by: 1) The continuous KKL observer from
[47] with Ac = −diag(10, 44, 80) discretized at ∆t = 0.001
(s) (Euler); 2) The discrete KKL observer (36), (37); 3) The discrete
KKL observer with rotation correction (39), (37), for A = e∆tAc and
B =

(
1 1 1

)⊤.

Simulations with multiple choices of γ in the rotation
correction case are compared in Figure 3. It is observed that
a smaller γ gives a faster convergence, but a more serious
amplification of numerical noise, which is coherent with the
robustness results in Theorem 4. However, in the region of
too high rotating speeds, the three designs tend to perform the
same, since the discretized model becomes less appropriate,
which is something the observers cannot deal with. Last, it is
interesting to notice that in this application case, as we choose
ẑk = 0 for the observer in the z-coordinates, it is indeed the
transformation (Tk)k∈N that serves to provide the estimation.

Fig. 3. Comparison among different choices of γ in the rotation
correction case.

VII. CONCLUSION

This work presents the KKL observer design for nonlinear
time-varying discrete systems. After giving the closed form of
the transformation (Tk)k∈N into an exponentially stable filter
of the measurement, we have shown how the uniform Lipschitz
injectivity of this transformation is achieved after a certain
time under uniform Lipschitz backward distinguishability if
the target dynamics is sufficiently fast. This result provides
an arbitrarily fast discrete observer that is ISS with respect
to uncertainties, input disturbances, and measurement noise.
For linear systems, this provides an alternative to the discrete
Kalman filter, with an explicit quadratic ISS Lyapunov func-
tion. We have also shown how non-uniform injectivity of the
transformations is achieved under backward distinguishability,
a mild observability condition, which in some cases is enough
for observer design. The example of a PMSM with sampled

inputs illustrates how it may be more efficient to design a
discrete KKL observer for an appropriate faithful discrete
model of the system, instead of discretizing a continuous KKL
observer designed for the continuous model.

A future question is how to develop or find an alternative
to the generalized Coron’s Lemma to obtain a uniform in-
jectivity result possibly without Lispchitzness and arbitrarily
fast convergence, typically through a uniform non-Lipschitz
distinguishability property. Finally, a major drawback of KKL
observers is in the numerical computation of the transforma-
tion, because closed-form expressions such as (13) are hard to
achieve analytically for general nonlinear systems. To address
this, numerical tools are currently being developed [16], [17].
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