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Abstract

The melting of an amorphous polymer filament through the hot end of a material ex-
trusion process is addressed using computational multiphase fluid dynamics coupled to
heat transfer. Only the flow through the heat block is investigated. The air gap between
the filament and the interior of the extruder is accounted for. The polymer/air interface
is implicitly tracked by a level-set method. The system of equations is solved using a
finite element method with a time-marching method. Three extrusion velocities are in-
vestigated. For the lowest velocity, after the contact of the polymer with the extruder
on the nozzle, the air gap disappears with time. The transient regime lasts a few tens
of seconds. For the two larger velocities, even if the air gap is more and more reduced
with time, it persists for a long time. The extension of the air gap increases with the
velocity. The feeding force needed to push the filament is obtained by the integration
of the tension on the surface of the extruder. After a transient regime driven by the
heat transfer, a steady-state regime is observed for the three velocities. Roughly, the
feeding force increases linearly with the extrusion velocity. A good agreement is found
with experimental results for the two smallest velocities.

Keywords: material extrusion; polymer; melting; heat transfer; finite element analysis;
level-set method

1. Introduction

Since the patent of Crump [1], the fused filament fabrication (FFF or FDM™ for
Fused Deposition Modeling) does not significantly change in its principle. Nowadays, the
market of FFF 3D printers is the majority of additive manufacturing. Due to the low
cost of materials and energy, FFF 3D printers are accessible to everyone. Nevertheless,
the extension to high-performance polymers needs a better control of the process leading
to more expensive printers devoted to industrial purposes.
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Despite the high level of technology, the understanding of a FFF 3D printer is still
partial. To print an object, the material is added in a molten state after melting in
a hot-end (also called extruder or liquefier) to make a filament of a few hundreds of
micrometers in diameter. The way to melt the polymer in the extruder is still debated.
Bellini et al. [2], the first to study the melting of the polymer in the liquefier, considered
that “the dynamics of the liquefier is one of the most complicated phenomena to analyze
in a FDM process”.

In general, the melting of polymer is achieved in a block heated by a cartridge com-
pleted by a thermistor to control the temperature. A nozzle is consolidated of the heat
block. Technical details can be found for instance in the website [3] and will be also
presented in § 2. Consequently, the melting is achieved through a channel of a few tens
of millimeters in length. For a 1.75mm diameter filament, the channel has a diameter of
2mm. Bellini et al. [2] assumed that the polymer is fully melted inside the nozzle with
a temperature equal to the melting temperature. The extruder is considered to be filled
with polymer. From this simplified model, they determined the pressure drop through
the nozzle using a power-law behavior for the molten polymer rheology. Nevertheless,
the printer used by Bellini et al. [2] is poorly described compared to the recent printers.
For instance, the geometry of the nozzle is not described.

Cited as the reference model by Turner et al. [4], the model of Bellini et al. [2] has
been recently called into question by Osswald et al. [5]. These authors claimed that the
model of Bellini et al. [2] would be valid only for small flow rates. They argued that in
this last situation, the heat diffusion is enough efficient to obtain an uniform temperature
as assumed in [2]. When the feeding (inlet) velocity becomes larger than 0.25mms−1,
Osswald et al. [5] proposed a new model of melting. They considered that the melting
area is more reduced close to the capillary tube at the end of the nozzle and occurs on the
wall of the convergent. Based on this model, the pressure drop is analytically determined
using a hydrodynamic model of a Newtonian fluid. The force required to push a filament
through an extruder is also experimentally investigated in [5].

Serdeczny et al. [6] provided the first Computational Fluid Dynamics (CFD) study
in which the air gap between the interior cylinder of the heat block and the polymer
is accounted for. The polymer/air interface is tracked using a Volume-of-fluid method.
They observed a rising of the triple line corresponding to the contact line between the
two fluids and the interior wall of the extruder. The triple line is stabilized after 50 s
when the feeding velocity is 0.67mms−1. Beside the numerical investigations, Serdeczny
et al. [6] developed an experimental set-up to determine the feeding force for various
working conditions.

To investigate numerically the melting of a filament, Kattinger et al. [7] described the
fluid motion coupled to the heat transfer in the hot-end using a finite volume method.
As already mentioned above, an air gap exists between the wall of the extruder and
the polymer filament, Kattinger et al. [7] assumed that the filament moves through the
extruder with a shear-free condition when the polymer is not in contact with the nozzle.
When the polymer reaches the nozzle, the no-slip condition is used. In the numerical
model described by Kattinger et al. [7], only the polymer domain is considered. Apart
from in the nozzle, the air gap does not change with time. The heat transfer is also taken
into account using heat transfer coefficients to account for the radial heating due to the
heat block.

In the works [5, 7], the heat transfer is only limited when the polymer is in contact
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with the nozzle assuming that the polymer stays with the same morphology through the
extruder. The heat transfer described by Bellini et al. [2] or Osswald et al. [5] is purely
axial while the heating is provided radially by the heat block. Even if Kattinger et al. [7]
take into account the radial heating with the introduction of heat transfer coefficients, it
stays limited. Conversely, other contributions consider that the gap between the extruder
and the polymer does not exist. Nikzad et al. [8] studied the heating in the extruder of
the FDM3000 printer of the Stratasys assuming a perfect contact between the polymer
and the extruder. More recently, Pigeonneau et al. [9] developed a numerical model
taking into account the shear-thinning of the polymer and the temperature shift using
Carreau-Yasuda’s law. The generalized Navier-Stokes equations are coupled with the
heat transfer through the extruder. The effect of the air gap was investigated using a
heat transfer coefficient based on the air thermal resistance model. To agree with the
experimental results of Peng et al. [10], Pigeonneau et al. [9] claimed that the contact
between the extruder and the polymer should be perfect. Recently, Hong et al. [11]
developed a clever experimental set-up to observe the dynamics of the air gap through
a transparent tube modeling an extruder. For both PLA and ABS polymers, the air
gap is removed due to the introduction of the filament in the tube. Nevertheless, the
experiment set-up developed in [11] is far from a real extruder in which the heating is
more efficient.

Even if the contribution of Serdeczny et al. [6] is significant, their numerical model
is debatable. Under the boundary conditions chosen in [6], the air can not exit the
heat block from the top while the air is free to escape. Their numerical simulations
show a small gap pocket at the end of the computation near the entrance where the air
is under pressure. What is the effect on the dynamics of the contact line? Moreover,
the transition of the behavior of the polymer around the glass transition temperature
is sharply described in [6]. Below Tg, the polymer behaves like a solid and above Tg

the polymer is considered like a fluid with the viscosity described according to a power
law. In general, the polymer rheology presents a Newtonian plateau at small shear rates
completely absent in [6].

Consequently, the purpose of the current article is to clarify the melting of an amor-
phous polymer through a liquefier. To address this issue, a numerical method taking
into account both the air gap and the polymer is developed. In section 2, the problem
statement is detailed with a multiphase flow behavior using a level-set method. The heat
transfer is also described. Results and discussion will be then presented in section 3.
Section 4 closes the article with a synthesis and perspectives.

2. Problem statement

2.1. Geometry

The extruder V6 designed by E3D is depicted in Figure 1-(a), see [3] for more details.
This extruder equips many 3D printers and can be considered as an emblematic example
of available extruders in the market. The essential parts of the device are reported in
this cut view. The polymer is pushed through the extruder with a guide at the top of the
extruder. To prevent the heating in the guide area, a heat sink is added completed by a
fan to extract the maximum of heat out of the heat block. Moreover, a small separation,
designated as heatbreak, is added between the heat sink and the heat block. The heat
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(a) (b)

Figure 1: (a) Cut view of the extruder V6 designed by E3D according to [3] and (b) channel with
dimensions (given in mm) used in the numerical computation.

block is heated with an electrical cartridge. The control of the temperature is done with
a thermistor.

It is assumed that the polymer stays in a solid state until its introduction into the heat
block. Consequently, only the channel through which the polymer is melted in the heat
block is considered in this present work. By assuming the homogeneity of temperature
in the heat block and the nozzle, the problem is reduced to the heat transfer and fluid
dynamics through a channel corresponding to the assembling of the heatbreak, the heat
block and the nozzle.

Figure 1-(b) is a cut view of the numerical domain used in the following work. Ac-
cording to the design provided in [3], the total length corresponds to the domain heated
by the cartridge. The channel in the heat block has a diameter, D, equal to 2mm. A
nozzle with an outlet diameter, d, equal to 0.4mm and a capillary tube of 1mm in length
is used. The half-angle of the convergent is equal to 30◦.

2.2. Balance equations

The two-phase dynamics to track both the air and the polymer phases are described
as single-fluid representation [12]. The interface between the two phases is assumed sharp
and is implicitly described using a level-set function [13]. Initially, the polymer is partially
introduced in the extruder at room temperature, T0. The surrounding air is assumed
to be thermally balanced with the extruder. Consequently, the initial temperature of
the air is equal to the extruder temperature, written T∞. The properties, dynamic
viscosity, and thermal conductivity of air are taken from Kadoya et al. [14]. In the first
approximation, the physical properties of air are determined at T∞ and do not change
with time. Consequently, the air is assumed incompressible.

The amorphous polymer, characterized by its glass transition temperature Tg, is
assumed incompressible. Here, an ABS polymer characterized in [9] is used. The value
of Tg is equal to 378.15K. According to Bird et al. [15, Chap. 4 & 9], the use of a
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generalized Newtonian fluid is justified in the fluid domain above Tg. However, as already
done by Xia et al. [16] and Pigeonneau et al. [9], the same behavior is considered below
the glass transition temperature. The temperature dependence of the viscosity leads
to very high values which mimic a solid behavior. The dynamic viscosity is given by
Carreau-Yasuda’s law [17, 15] as follows

ηp(γ̇, T ) =
ηp,0aT

[1 + (λaT γ̇)
a
]
(1−n)/a

, (1)

in which ηp,0 is the Newtonian plateau viscosity of the polymer, n the power law index,
λ a time constant depending on the nature of the polymer and a a parameter to describe
the transition between the Newtonian plateau and the power-law regime, T the absolute
temperature, γ̇ the generalized shear rate defined by

γ̇ =
√
2ϵ̇ : ϵ̇, (2)

and ϵ̇ the rate-of-strain tensor given by

ϵ̇ =
1

2

(
∇u+∇tu

)
, (3)

in which u is the fluid velocity. The symbol “:” in eq. (2) is the double dot product
operator defined in [18] and the exponent t is used for the tensor transposition.

The shift factor aT follows Arrhenius’s law given by

aT = exp

[
Ea

R

(
1

T
− 1

Tref

)]
, (4)

with Ea the activation energy, R the ideal gas constant and Tref a reference temperature.
As already pinpointed in [9], the shift factor is approximately equal to 4 · 103 at Tg. In
this case, the fluid moves according to a “solid body motion” with a rate-of-strain tensor
equal to zero.

As usual, the problem is normalized. The spatial coordinates are reduced by the
inlet diameter, D=2mm. The characteristic velocity is taken as equal to the outlet (or
extrusion) velocity

U =
4Q

πd2
, (5)

with Q the volumetric flow rate and d the diameter of the capillary tube of the nozzle,
equal to 0.4mm. The dynamic viscosity is scaled with the viscosity ηp,0 of the Newtonian
plateau. At first glance, the viscosity forces are larger than the inertial forces. Conse-
quently, the pressure is normalized by ηp,0U/D. The shear rate is also reduced using
U/D. Since the range of temperature is between T0, the inlet temperature, and T∞ the
extruder temperature, the dimensionless temperature is written as follows

θ =
T − T0

T∞ − T0
. (6)

Density and specific heat at constant pressure are normalized by ρp, and Cp,p, respec-
tively.
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For convenience, the dimensionless variables are written without a particular symbol.
The system of balance equations is then given by

∇ · u = 0, (7)

Re ρ
Du

Dt
= −∇P +∇ · [2η(γ̇, θ, φ)ϵ̇] + Ca−1 κ∥∇φ∥δ(φ)nφ −Ga ρk, (8)

Pe ρCp
Dθ

Dt
= ∇ · [k∇θ] + Br η(γ̇, θ, φ)γ̇2, (9)

Dφ

Dt
= 0. (10)

Equations (7), (8) and (9) correspond to volume, momentum and heat balances,
respectively. Recall that due to the discontinuities of physical properties and variables
through the polymer/air interface, these equations must be taken in the meaning of
the distribution theory [19] or [20, Chap. 20]. The polymer/air interface is assumed
without mass meaning that its Lebesgue measure is equal to zero. Equation (10) describes
the transport of the level-set function, φ, without source term. In a such case, the
polymer/air interface is simply a material surface.

Due to the normalization of the momentum equation by the viscous stress, the inertia
term is proportional to the Reynolds number, Re. Apart from the two first terms on the
right-hand side of (8) corresponding to the pressure and viscous stresses, the third term
is the contribution of the surface tension. This stress results from the jump condition at
the fluid interface [21, 12]. This term is inversely proportional to the capillary number,
Ca. The symbol δ(φ) is the Dirac distribution function. The vector nφ is the unit normal
vector at the interface defined by

nφ =
∇φ

∥∇φ∥ , (11)

and κ is the mean curvature given by [22]:

κ = −∇S · nφ. (12)

The last term of the right-hand side of (8) is due to the gravity force directed downward
with k the unit vector in the z-axis direction. The gravity force is proportional to the
Galilei number, Ga, that is the ratio of the gravity to the viscous force. In eq. (9),
the effect of the pressure work has been neglected due to the low compressibility of the
polymer and the air. The last term of the right-hand side of (9) is the heating source
due to the viscous dissipation characterized by the Brinkman number, Br.

All properties are defined as a function of characteristic functions of each phase. If
the level-set function is defined as positive in the polymer phase, the density is then
written as follows

ρ(φ) = H(φ) + ρair [1−H(φ)] , (13)

with H(φ) the Heaviside distribution function. The density of air is normalized by the
polymer density. The same relation of (13) is used to determine the dynamic viscosity,
η, the heat capacity at constant pressure, Cp and thermal conductivity k. Finally, recall
the dimensionless form the dynamic viscosity of the polymer is given by [9]

ηp(γ̇, θ) =
aT

[1 + (Wi aT γ̇)
a
]
(1−n)/a

, (14)
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Table 1: Dimensionless numbers, names, definitions and typical values obtained for an extrusion velocity
of 3mmin−1.

Reynolds capillary Galilei Péclet Brinkman Weissenberg
Re Ca Ga Pe Br Wi

ρpUD
ηp,0

Uηp,0

γ
ρpgD

2

Uηp,0

UD
ap

ηp,0U
2

kp(T∞−T0)
λU
D

3.8× 10−5 5× 103 2.9× 10−4 1.15× 103 1.7× 10−1 8× 10−1

with Wi is a Weissenberg number defined in Table 1.
Dimensionless numbers are listed in Table 1 with name and definition. Apart from

U , D, ηp,0 and λ already defined above, ρp is the polymer density, γ the surface tension
between the two phases, g the acceleration of the gravity, kp the thermal conductivity
of the polymer and ap = kp/(ρpCp,p) the thermal diffusivity of the polymer. With
the numerical values of physical properties and with an outlet velocity taken equal to
3mmin−1, the values of each dimensionless number are reported in Table 1. As expected,
the Reynolds number is less than one meaning that the inertia is negligible. Nevertheless,
the inertia term will be conserved in the numerical implementation because, in the air
domain, the typical Reynolds number can be more significant. The capillary number is
high enough to mention that the capillary effect will be weak as for the gravity force,
small Galilei number. The large value of the Péclet number means that the advection
plays an important role in the heat transfer through the channel. The self-heating of the
polymer should be moderated due to the weak value of the Brinkman number.

2.3. Initial and boundary conditions

Before solving numerically the system of equations (7-10), initial and boundary con-
ditions have to be pointed out. Figure 2 provides the initial state with the polymer
partially immersed in the extruder. The filament diameter is equal to dfil=1.75mm.
Around the polymer, the channel is filled with air in blue. The temperature of the poly-
mer is equal to the room temperature which is equal to θ=0 under the dimensionless
form. The temperature of the air is assumed to be equal to the extruder temperature,
i.e. θ=1. Initially, both polymer and air are at rest.

In Figure 2, the main boundary conditions are also reported. The values reported
in Figure 2 are written in dimensionless form. The entrance section, at the top of
the domain, is decomposed in two sections, ∂Ωin and ∂Ωgas. On ∂Ωin, the boundary
conditions on the polymer are written on the top left of Figure 2. The velocity is set
equal to the feeding velocity of the polymer over the area corresponding to the filament.
Due to the mass conservation, the normalized magnitude of feeding velocity is simply
given by the d/dfil ratio squared. Temperature is set equal to room temperature and
the level-set function is defined as positive at the input to establish the iso-value φ=0
at the polymer/air interface at any time. On the free polymer crown, at the top of
the channel, written on the top right of Figure 2 and designated by ∂Ωgas, the Cauchy
stress normal is assumed to be free meaning that the pressure is equal to zero. This is
the major difference with the condition used by Serdeczny et al. [6] for which the air
can not escape freely from the extruder. Thermal flux and the level-set flux are equal
to zero. On the channel wall, ∂Ωw, the boundary conditions are written on the left of
Figure 2. No-slip condition is used for the velocity. Temperature is equal to the extruder
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u = −
(

d
dfil

)2
k,

θ = 0,

ϕ > 0.





∂Ωin

∂Ωgas





(σ · n) · n = 0,

ux = uy = 0,
∂θ
∂n = 0,
∂ϕ
∂n = 0.

u = 0,

θ = 1,
∂ϕ
∂n = 0.





∂Ωw

∂Ωout





(σ · n) · n = 0,

ux = uy = 0,
∂θ
∂n = 0,
∂ϕ
∂n = 0.

P
ol
y
m
er

Air

Figure 2: Boundary conditions on the channel written in a dimensionless form with the initial position
of the polymer and air with n the outward unit normal to the boundary of the domain.

temperature equal to one in dimensionless form. This condition is fully justified since
the thermal effusivity of the heat block in aluminum is 33 times larger than the polymer
effusivity and 4452 times larger than the effusivity of air. For the level-set function, no
flux condition is used. This means that at the wall, the contact angle at the triple line
is set equal to π/2. Finally, the outlet conditions are depicted on the bottom right of
Figure 2, boundary ∂Ωout.

Note that numerically, a 3D case is solved. Due to the revolution symmetry, only one-
quarter of the domain is considered. This means that apart from the previous boundary
conditions, symmetric conditions have to be applied to the two symmetric planes.

2.4. Numerical method

To solve numerically the system of equations (7-10), a time-marching method is
used. To determine the temporal derivatives of u, θ and φ, a first-order finite-difference
method is employed. To ensure numerical stability, an implicit Euler scheme is imple-
mented. The spatial discretization is performed by a finite-element method. The domain
is meshed with linear tetrahedral elements. For the Navier-Stokes equations, the discrete
inf − sup condition is satisfied by using the P1−bubble/P1 element [23]. The transport
equations for the temperature and the level-set function are stabilized by a Streamline
Upwind/Petrov-Galerkin method [24]. To catch the polymer/air interface as accurately
as possible, an adaptive anisotropic mesh is used and detailed in [25].

As it is well known, the transport of the level-set leads to a loss of the Eikonal property
of φ, i.e., ∥∇φ∥ ≠ 1. A direct reinitialization method is used. This technique works in
three steps: (i) the interface corresponding to the zero iso-value of the level-set function
is discretized into a collection of simple elements; (ii) the distance is then calculated for
each node to all elements of the domain and (iii) the smallest one is stored becoming the
updated value of the level-set function, see [26] for more details. This method is applied
every two-time steps.
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Table 2: Parameters used in Carreau-Yasuda and Arrhenius laws for the acrylonitrile butadiene styrene.

ηp,0 λ n a Ea Tref

Pa s s – – kJmol−1 K
3.04× 103 3.2× 10−2 0.28 0.6 115.06 493.15

Table 3: Thermal properties for the acrylonitrile butadiene styrene from [28] and air from [14].

ρ Cp k

kg/m3 J kg−1 K−1 Wm−1 K−1

ABS
1150 2100 0.21

Air, T = Text

0.701 1034.78 0.0399

Numerically, the Heaviside and Dirac functions have to be regularized according to
functions defined by [27]:

Hε(φ) =





0 if φ < −ε;
1
2

[
1 + φ

ε + 1
π sin

(
πφ

ε

)]
if |φ| ≤ ε;

1 if φ > ε,
(15)

and

δε(φ) =
dHε(φ)

dφ
. (16)

The numerical parameter ε is chosen to be equal to a distance of a few of minimal mesh
sizes, hmin. A factor of three or five of hmin gives an acceptable regularization of the
properties. Numerical computations have been done with hmin equal to 10−3.

3. Results and discussion

The numerical computations are carried out using an acrylonitrile butadiene styrene
(ABS) polymer already characterized in [9]. The parameters for determining the dynamic
viscosity of the ABS polymer and the shift factor are gathered in Table 2. The thermal
properties of the ABS polymer taken from [28] and of the air according to [14] are
summarized in Table 3. According to Bellehumeur et al. [29], the surface tension required
to determine the capillary number is taken equal to 2.8× 10−2 Nm−1.

The working conditions chosen for numerical computations are given in Table 4.
Mainly, three values of extrusion velocity are tested. The feeding velocity, Uin is also
indicated. The smallest U is higher than the velocity mentioned by Osswald et al. [5].
Nevertheless, the feeding velocity remains small enough for the typical values used in the
applications.

3.1. Transitional regime

The first stage is only a transport of the filament polymer until the contact with the
nozzle. The polymer moves simply with a plug flow heated up by the warm surrounding

9



Table 4: Data of working conditions.

Case U (mmin−1) Uin (mms−1) T0 (K) T∞ (K)
1 1 8.71× 10−1

2 3 2.61 297.15 503.15
3 6 5.22

(a) case 1 (b) case 2 (c) case 3

Figure 3: Temperature field (in K) for (a) case 1, (b) case 2, and (c) case 3 of Table 4 when the normalized
time is equal to 18 corresponding to 2.16 s, 0.72 s and 0.36 s for cases 1, 2 and 3 respectively.

air. Figure 3 depicts the temperature field in K when the polymer is just in contact
with the nozzle for the three cases listed in Table 4. Under a dimensionless formulation,
the contact appears at the same time for the three cases, i.e. for t=18. This duration
corresponds to 2.16 s, 0.72 s and 0.36 s for cases 1, 2 and 3 respectively. The level set
position equal to zero corresponding to the polymer/air interface is represented in solid
black line. The solid white line represents the iso-Tg of the polymer. In case 1, the
time required to have contact is sufficiently large to heat up radially the polymer over a
significant length. A large part of the polymer is already heated above Tg. Only the area
close to the inlet stays cool. For the two other cases, the temperature field underlines that
the thermal conduction is less efficient. The polymer is close to the initial temperature.
The locations of the interface and the iso-Tg are very close.

In Figure 4, the temperature field in K, the polymer/air interface and the iso-Tg are
given for t starting from 3 s and increasing by a time step of 3 s until t=18 s for the case
1. At t=3 s in Figure 4-(a), the polymer is in contact with the extruder just above the
conical part until the exit of the extruder. The axial coordinate of the contact line, zcl,
has been reported in Figure 4-(a). The contact between the polymer with the extruder
enhances the heat transfer since the polymer exhibits a temperature close to the extruder
temperature. The triple line rises up along the interior of the extruder. When t=12 s,
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(a) t=3 s

zcl

(b) t=6 s (c) t=9 s (d) t=12 s (e) t=15 s (f) t=18 s

Figure 4: Temperature field (in K) for case 1 for various increasing time starting at t=3 s with a time
step of 3 s until t=18 s. The vertical position of the contact line, zcl, has been reported for t=3 s.

the air gap has completely disappeared. Figure 4-(e) and Figure 4-(f) are very similar
suggesting that the steady-state regime is reached. The air gap is then removed after
a physical time around 15 s when the extrusion velocity is equal to 1mmin−1. This
time is the same order of magnitude as the prediction of Serdeczny et al. [6]. With
increasing time, the iso-Tg is more and more localized close to the inlet of the extruder.
In these conditions, the temperature is uniform in a large portion of the extruder. The
view proposed by Bellini et al. [2] is then valid even for this case for which the feeding
velocity is larger than 0.25mms−1 given as a threshold by Osswald et al. [5].

Figure 5 provides the temperature field, the polymer/air interface and iso-Tg for the
case 2 for which the extrusion velocity is multiplied by a factor of three and for t from 1 s
to 7 s. The heat transfer changes strongly to the previous case. At a short time, Figure 5-
(a), the melting of the polymer occurs mainly from the contact with the extruder. The
polymer filament stays at a temperature below Tg practically until contact with the
convergent of the nozzle. Only, a thin layer is melted. For t=2 s, the iso-Tg is yet close
to the capillary tube of the nozzle. This state is the view proposed by Osswald et al.
[5]. But, the state is unsteady. With time, the polymer is more and more heated up.
This dynamics is strongly coupled to the motion of the contact line. The triple line rises
up until t=5 s. As seen in Figure 5-(f) and (g), the contact line does not move. This
means that an air gap is not fully removed for case 2. This state has been observed in [6].
Nevertheless, in our numerical model, the air is free to escape meaning that the solution
found here is the solution to the dynamics of the two-phase flows. This suggests that the
polymer enters in the heat block without contact over a non-negligible length. This air
gap plays the role of a thermal insulator as shown in Figure 5-(g) in which the iso-Tg is
quasi vertical over a length corresponding to the air gap.

Figure 6 presents for a time starting from 1 s to 4 s the temperature field, the poly-
mer/air interface and iso-Tg for an extrusion velocity equal to 6mmin−1. The advection
of the polymer becomes high enough to observe a large area in which the polymer stays
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(a) t=1 s

Zcl

(b) t=2 s (c) t=3 s (d) t=4 s (e) t=5 s (f) t=6 s (g) t=7 s

Figure 5: Temperature field (in K) for case 2 for various increasing time starting at t=1 s with a time
step of 1 s until t=7 s. The vertical position of the contact line, zcl, has been reported for t=1 s.

cold. A singular behavior of case 3 is due to the air gap. In a first stage, the air gap
disappears quasi completely at t=10 s (Figure 6-(c)) to reappear for longer times (Fig-
ure 6-(d-g)). At the same time, the iso-Tg extending until the exit of the nozzle at a
short time becomes shorter and shorter with the time. Note that the temperature is far
from uniform at the exit of the nozzle.

To see the dynamics of the contact line, the vertical position of this line in the tube
zcl is plotted in Figure 7 as a function of time given in physical dimensions. For case
1, i.e. U=1mmin−1, after a delay corresponding to the time needed for the polymer to
move freely in the nozzle, the triple line rises up approximately linearly with time. After
15 s, the triple line reaches the top of the heat block. When the extrusion velocity is
equal to 3mmin−1, the triple line rises up to reach a stationary position after 15 s. As
already pinpointed above, the dynamics for case 3, i.e. U=6mmin−1, is not monotone
with time. The triple line rises up until the top of the extruder. The air gap is slowly
created to reach a stationary state after a duration around 14 s.

Even if our conditions are more ideal than to those of Hong et al. [11], the overall
dynamics obtained numerically is in agreement with the experimental observations. The
presence of the air gap at the beginning of the extruder for a large feeding velocity is
also experimentally observed.

3.2. Steady-state regime

The temperature fields for the three cases obtained in the steady-state regime are
depicted in Figure 8. In case 1, the temperature appears quasi uniform in a large part
of the extruder. This means that the radial heating by the heat block is efficient. This
picture is close to the description drawn by Bellini et al. [2]. For the second case,
Figure 8-(b), the influence of the transport by convection is stronger than for the case
1. A cold core with a temperature close to the inlet temperature is present over a large
distance. The influence of the advection is more pronounced in the last case, Figure 8-(c).
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(a) t=1 s

zcl

(b) t=1.5 s (c) t=2 s (d) t=2.5 s (e) t=3 s (f) t=3.5 s (g) t=4 s

Figure 6: Temperature field (in K) for case 3 for various increasing time starting at t=1 s with a time
step of 0.5 s until t=4 s. The vertical position of the contact line, zcl, has been reported for t=5 s.
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Figure 7: Behavior of the contact line (zcl) as a function of time t (s) for the three velocities.
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Figure 8: Temperature field (in K) in a symmetric plane for the three velocities: (a) U=1mmin−1, (b)
U=3mmin−1 and (c) U=6mmin−1.
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Figure 9: Behavior of the temperature (K) along the symmetry axis as a function of : (a) the height in
the nozzle z (mm) and (b) z/Pe for the three cases.

Only the polymer in contact with the extruder is heated up at the heating temperature.
The core of the filament stays relatively cold.

Figure 9-(a) depicts the temperature in K in the axial position as a function of the
longitudinal position given in mm. Both the glass transition temperature of the ABS and
the extruder temperature have been reported. At the lowest velocity (case 1), the heating
is high enough to observe that the axial temperature reaches the extruder temperature.
When the feeding velocity is multiplied by 3, the axial temperature never reaches the
extruder temperature. The worst situation is observed for the last case. The heating
of a fluid has been studied by many authors. Bejan [30, Sec. 3.5] synthesized the heat
transfer in a developing flow through a channel, the so-called Graetz problem.

It is expected that the temperature is self-similar when it is given as a function of z/Pe
with z already normalized by the duct diameter. Figure 9-(b) represents the temperature
as a function of z/Pe for the three cases. The Péclet numbers are equal 383.33, 1150
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Figure 10: Temperature (K) along a radial axis r (mm) for the three cases at the nozzle exit.

and 2300 respectively for cases 1, 2, and 3. The self-similarity is well observed for the
two last cases. For the first case, the increase of the temperature is stiffer than the two
other cases. It is mainly due to the total absence of an air gap for the case 1. For the
two other cases, the temperature profile presents a sigmoidal profile.

Figure 10 gives the radial profiles of the temperature in the nozzle exit. As expected,
the thermal gradient increases with the extrusion velocity. While for the case 1, the
temperature is uniformly equal to the extruder temperature over the radial position, a
thermal gradient increases for the second case. In the last situation, with U=6mmin−1,
the thermal difference is around 70K.

3.3. Feeding force

As already analyzed in [5, 6], the feeding force needed to push the polymer filament
is a relevant quantity to determine. To get numerically this quantity, the surface force
of the Cauchy stress on the wall of the extruder, boundary ∂Ωw in Figure 2, has to
be integrated over the total boundary ∂Ωw. To avoid the determination of the Cauchy
stress, a significant result of fluid mechanics is used. According to Berker [31], the tension
on a wall with the no-slip condition and for an incompressible fluid is given by

T = Pn+ 2ηn× ω, (17)

with

ω =
1

2
∇× u, (18)

the vorticity and n the outward unit normal to the boundary ∂Ωw. The expression of
Berker [31] is useful since only the vorticity is needed to compute the tension on the wall.
This result is simply a corollary of the Stokes theorem. The vorticity is determined using
the software Paraview in post-treatment.

The surface integration of (17) over the boundary ∂Ωw gives access to the force
required to introduce the filament through the extruder. Figure 11 presents the vertical
component of the feeding force in Newton as a function of time (s) for the three cases.
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Figure 11: Feeding force (N) as a function of time for the three cases.

For case 1, Figure 11-(a), the force is quasi-equal to zero at the beginning. A sudden
increase is observed at t=2.5 s when the polymer becomes in contact with the nozzle.
After a decrease, the force increases to reach a plateau for which the value of the feeding
force is around 4N.

For the case 2, Figure 11-(b), the force increases sharply from t=0.8 s to reach a
maximum of 22N at t=1.5 s. This significant force comes from the high value of the
viscosity due to the temperature is under Tg at short times. Finally, with the heating of
the polymer, the force needed to push the filament decreases to reach a value around 9N.
Case 3 exhibits a similar behavior apart from the amplitude of the force which is larger
than 80N. Even if the steady-state force can be acceptable for the feeding mechanism,
the transient stage could produce jamming. Apart from case 1, for which the steady-state
regimes on the triple line and the feeding force are observed approximately at the same
time, the two other cases behave differently. While the stationary position of the triple
line required a few tens of seconds to be observed, the feeding force reaches a plateau
over a time around 5 s.

For comparison with experimental data, the results provided by Serdeczny et al. [6]
are used by selecting the closest temperature to our conditions. In Figure 12, the feeding
force is plotted as a function of the feeding velocity, Uin. The black dots correspond to
our numerical solution obtained with an extruder temperature equal to 503.15K. The
blue crosses are the experimental data obtained by Serdeczny et al. [6] on the same
extruder as our numerical simulations with an equivalent polymer and for an extruder
temperature equal to 498.15K. The numerical force is very close to the experimental
data for the two lowest feeding velocities. The numerical simulation underestimates the
feeding force for the highest velocity used. From the numerical simulations, the feeding
force appears to be linear with the feeding velocity, whereas the experimental data show
a non-linear behavior. Although the experimental predictions present large uncertainties
at high feeding velocity (not represented in Figure 12), this disagreement has to be
understood.

4. Synthesis and perspectives

This work has been devoted to numerical investigations of the melting of a polymer
inside an extruder (type E3D-V6). A multiphase model considers the two fluids (air and
polymer) as a single material. The level-set method describes implicitly the interface
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Figure 12: feeding force ,F (N), as a function of Uin (mms−1) of the present study for T∞=503.15K
and comparison with experimental data of Serdeczny et al. [6] obtained at T∞=498.15K.

between the two fluids. To accurately capture the interface and the thermal behavior, an
adaptive mesh refinement is also implemented. By this way, it is possible to accurately
describe the first steps of the melting of the filament through the extruder. At very short
times, the melting is localized near the contact with the nozzle. These results are in
agreement with the previous conclusions of Osswald et al. [5]. However, the polymer
rises up along the nozzle wall and the heat block leading to a reduction of the air gap.
At low velocities, the air gap can disappear. The increase of the extrusion velocity (or
feeding velocity) leads to the occurrence of the air gap at the top of the extruder. This
air layer is an efficient thermal insulator leading to the extinction of an area of polymer
with a temperature below the glass transition temperature. The rising of the air gap and
the establishment of the thermal balance take a few tens of seconds. This transitional
regime needs a time not negligible in comparison to the time required to deposit a thread
of a few of centimeters.

The creation of an air gap confirms the previous predictions of Serdeczny et al. [6].
In our numerical model, the air gap is free to form or not. The occurrence of the air gap
when the feeding velocity is larger than 0.87mms−1 limits the heat transfer between the
heat block and the polymer. In such a situation, the model proposed by Osswald et al.
[5] seems appropriate. In the first stage, the melting of the polymer occurs close to the
wall of the extruder.

The determination of the feeding force gives an acceptable agreement with the ex-
perimental data. This integral result allows relying on the numerical model developed
for this work. Notwithstanding the novelty of our numerical simulations, many improve-
ments have been done. The polymer has been considered as a pseudoplastic fluid. To
take into account the elastic contribution, a viscoelastic fluid behavior would be required
with a non-linear law to take into account the shear thinning effect. The presence of
the triple line is a significant issue to address due to the singularity of the shear rate at
the triple line. Apart from these new numerical investigations, experiences could be also
developed to see through an extruder using an X-ray source on a synchrotron facility.
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[19] L. Schwartz. Méthodes Mathématiques pour les Sciences Physiques. Hermann, Paris, 1961.
[20] A. Prosperetti. Advanced Mathematics for Applications. Cambridge Univ Press, Cambridge, 2011.
[21] J.-M. Delhaye. Jump condition and entropy sources in two-phase systems. local instants formulation.

Int. J. Multiphase Flow, 1:395–409, 1974.
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