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ABSTRACT

Regulation of RNA abundance and localization is a key step in gene expression control. Single-molecule RNA fluorescence
in situ hybridization (smFISH) is a widely used single-cell-single-molecule imaging technique enabling quantitative studies
of gene expression and its regulatorymechanisms. Today, thesemethods are applicable at a large scale, which in turn come
with a need for adequate tools for data analysis and exploration. Here, we present FISH-quant v2, a highly modular tool
accessible for both experts and non-experts. Our user-friendly package allows the user to segment nuclei and cells, detect
isolated RNAs, decompose dense RNA clusters, quantify RNA localization patterns and visualize these results both at the
single-cell level and variations within the cell population. This tool was validated and applied on large-scale smFISH image
data sets, revealing diverse subcellular RNA localization patterns and a surprisingly high degree of cell-to-cell
heterogeneity.
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INTRODUCTION

Regulation of gene expression is essential for a cell to fulfill
its basic functions, and its dysregulation can lead to serious
failures at the cellular, tissular and organism level.
Transcription levels are not only tightly regulated, but for
many genes it has now been demonstrated that their tran-
scripts accumulate in specific regions in the cell, thereby
producing intricate localization patterns. Such subcellular
targeting of mRNAs is thought to play an important role
for the spatial control of gene expression and improper
RNA trafficking is linked to an increasing number of diseas-
es (Buxbaum et al. 2014; Chin and Lécuyer 2017).
However, the function and mechanisms of RNA localiza-
tion are not fully understood and we still lack a view of
this process at the transcriptomic scale.

RNA abundance and localization can be studied at a
large scale by image-based assays, where individual
mRNA molecules are visualized by single-molecule
Fluorescence in situ hybridization (smFISH). This technique
allows for the detection of individual mRNA molecules in
their native cellular environment (Raj et al. 2008; Tsanov
et al. 2016) by targeting each mRNA with several fluores-
cently labeled oligonucleotides. Many variants of this
method exist, with optimizations regarding signal-to-noise
ratio (SNR), experimental protocol, targeting specificity,
scalability, automatization, and cost (for review, see
Pichon et al. 2018). Furthermore, an increasing number of
multiplexing methods have also been proposed over the
last years, enabling the simultaneous imaging of up to
10,000 RNA species in cells and tissues (Moffitt and
Zhuang 2016; Eng et al. 2019). Usually, smFISH experi-
ments are complemented by the use of one or several fluo-
rescent markers highlighting relevant compartments in the

Corresponding authors: Thomas.Walter@mines-paristech.fr,
fmueller@pasteur.fr
Article is online at http://www.rnajournal.org/cgi/doi/10.1261/rna

.079073.121. Freely available online through the RNA Open Access
option.

© 2022 Imbert et al. This article, published in RNA, is available under a
CreativeCommonsLicense (Attribution-NonCommercial 4.0 Internation-
al), as described at http://creativecommons.org/licenses/by-nc/4.0/.

BIOINFORMATICS

786 RNA (2022) 28:786–795; Published by Cold Spring Harbor Laboratory Press for the RNA Society

 Cold Spring Harbor Laboratory Press on January 17, 2023 - Published by rnajournal.cshlp.orgDownloaded from 

mailto:Thomas.Walter@mines-paristech.fr
mailto:fmueller@pasteur.fr
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/cgi/doi/10.1261/rna.079073.121
http://www.rnajournal.org/site/misc/terms.xhtml
http://www.rnajournal.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.rnajournal.org/site/misc/terms.xhtml
http://rnajournal.cshlp.org/
http://www.cshlpress.com


cell, such as the nucleus, the cytoplasm or any organelle
that might serve as a reference, depending on the focus
of the study.
These scalable imaging techniques produce extremely

large and complex image data sets exploring spatial distri-
butions of large portions of the transcriptome.While large-
scale imagingmethods provide a systematic tool to under-
stand RNA localization at a systems level, they come at a
price: the need for fully automated, robust image analysis
and user-friendly software tools to analyze such data sets
and to fully exploit their potential (Pichon et al. 2018;
Das et al. 2021).
Several specifications can be defined a priori for such an

analysis tool. It should be simple enough to be mastered
by non-experts, especially noncoders. Yet, it should be
flexible enough to address different experimental designs
and rely on a common algorithmic backbone. With the
same modules, users should be able to both perform a
high content screening analysis in a remote cluster, and
a local analysis of a single image. Finally, the software
should integrate the latest generation of computer vision
algorithms, in particular deep-learning-based methods
for image segmentation (Ronneberger et al. 2015; Falk
et al. 2019; Stringer et al. 2021).
Here, we introduce a Python-based version of our widely

adopted software package FISH-quant (Mueller et al.
2013) for the analysis of smFISH images. Contrary to the
first version of FISH-quant in Matlab, we address and im-
prove on each of the specifications mentioned above.
The switch to Python allows us to develop a flexible, free
and fully open-source software. FISH-quant v2 enjoys a
better integration to other open source tools and frame-
works, from data analysis to web-based user interaction.
Importantly, FISH-quant v2 facilitates the use of machine
learning or deep learning algorithms with the import of
dedicated packages, such as scikit-learn (Pedregosa
et al. 2011) or TensorFlow (Abadi et al. 2016). We also im-
prove the scalability and the modularity of the package:
the software has now been applied to several High
Content Screening projects (Chouaib et al. 2020; Pichon
et al. 2021; Safieddine et al. 2021). Lastly, by using
ImJoy (Ouyang et al. 2019), a recently developed data
analysis framework, we provide web-based graphical
user interfaces (GUI) for both launching image analysis
and downstream analysis of the results, and the computa-
tion can be performed locally or seamlessly scale to pow-
erful remote computing servers.

RESULTS

Theanalysis of smFISH images aims at localizing and count-
ing individual RNAs with respect to single cells and other
subcellular landmarks. It typically encompasses a sequence
of interconnected steps: (i) segmenting cells and the rele-
vant cellular compartments such as nuclei (depending on

the focus of the study and the markers used), (ii) detecting
isolated and clustered RNA molecules, (iii) assignment
of spots to cells, and (iv) analysis of expression levels and
RNA localization patterns (Battich et al. 2013; Mueller
et al. 2013; Stoeger et al. 2015; Tsanov et al. 2016;
Samacoits et al. 2018), potentially in combination with oth-
er phenotypic features (Battich et al. 2015; Safieddine et al.
2021).

Overview of existing analysis solutions

While several tools exist for each of these steps, there is
currently—to our knowledge—no tool available that per-
mits performing the entire analysis in one framework (see
Supplemental Note 4). A complete analysis pipeline has
then to be built by mixing these tools and requires some
in-house developments, which can be daunting for non-
specialists and may provide solutions that are unstable
and difficult to scale.
For the first step of object segmentation, deep-learning

has become the method of choice with dramatic improve-
ments in segmentation accuracy as compared to tradi-
tional methods. Several approaches exist that allow
segmentation of cells and/or nuclei with minimal adjust-
ment on new data sets, thanks to optimized models and
large and diverse training data (Schmidt et al. 2018;
Hollandi et al. 2020; Lalit et al. 2021; Stringer et al.
2021). The second step, fluorescence spot detection,
has been addressed by a number of approaches in the lit-
erature, and more recently solutions specifically adapted
to smFISH have been proposed. RS-FISH allows robust
and accurate detection of fluorescent spots in 2D and
3D through radial symmetry but requires parameter tuning
before being scaled to a large set of images (Bahry et al.
2021). DeepLink is a parameter-free deep-learning-based
method, but is currently only available for 2D data and
might require retraining (Eichenberger et al. 2021).
Lastly, assigning spot counts to segmentation results and
the subsequent analysis of RNA levels and/or RNA locali-
zation requires custom-written code (Stoeger et al. 2015;
Samacoits et al. 2018).
General image analysis tools such as CellProfiler

(McQuin et al. 2018) permit us to establish an analysis
framework daisy-chaining some of these analysis steps,
but do not permit us to perform the entire analysis. A num-
ber of approaches, specifically dedicated to the analysis of
smFISH are available. In our own software FISH-quant v1
(Mueller et al. 2013) and also (Stoeger et al. 2015), the
core of the analysis was performed inMatlabwhile cell seg-
mentation was performed with the Python-based
CellProfiler. DypFISH (Savulescu et al. 2021) permits the
study of the spatial distribution of mRNAs and proteins of
micropatterned cells, mixing tools implemented in
Python and Icy (de Chaumont et al. 2012). Lastly,
StarFISH (Perkel 2019) is an ongoing software

FISH-quant v2
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development mainly aiming at solving problems related to
multiplex smFISH data for application in spatial
transcriptomics.

FISH-quant v2: a complete toolbox for smFISH
analysis

While an impressive range ofmethods already exists, a uni-
fied framework is lacking, which prevents users, especially
non-specialist, from performing their smFISH analysis. To
address this, we designed FISH-quant v2 to fulfill the
above-described requirements in a flexible and efficient
way. This version is entirely open-source and hosted on
GitHub under the FISH-quant organization (Fig. 1, https
://github.com/FISH-quant). Using a GitHub organization
allowed us to provide dedicated repositories with well de-
fined and dedicated scope. Further, it gives the flexibility
for future extension where new projects can be integrated
as new, independent repositories, without affecting and
complexifying the already existing code. The user can
choose the adequate code for the analysis needs, without
the overhead of installing unnecessary packages.

This GitHub organization is organized in several resourc-
es with dedicated repositories and documentation. First, a
Python package (Big-FISH) providing the core code for
performing computation and analysis. Second, detailed in-
teractive examples with test data for each analysis step im-
plemented in Jupyter notebooks. These examples can be
run directly on Binder (Project Jupyter et al. 2018), a free
and reproducible Jupyter notebook service, without local
installation. Third, a repository containing code to simulate
different subcellular RNA localization patterns (Sim-FISH).
We recently showed how such images can be used to

develop and validate analysis pipelines with the goal to
quantify such intracellular RNA distributions (Samacoits
et al. 2018; Dubois et al. 2019). Fourth, ImJoy plugins
(Ouyang et al. 2019) provide a graphical user-interface
for the most commonly used workflows, and an interactive
tutorial that can also run directly without local installation.
Lastly, code from future projects either using or further im-
proving FISH-quant will also be hosted here, creating a
valuable, centralized resource for the community. A land-
ing page (https://fish-quant.github.io/) directs new users
to the most relevant resource for their analysis needs.

Big-FISH: Python package for smFISH analysis

We chose Python for the implementation of the core anal-
ysis package for several reasons: it allows the development
of a free and fully open-source software, it provides estab-
lished libraries for data and image analysis and is the lan-
guage of choice for deep-learning implementations.
Lastly, it can be interfaced with other tools and frame-
works, from data analysis to web design, for instance
with ImJoy (Ouyang et al. 2019) to provide interactive tools
for user interaction and data inspection.

Our Python package includes several independent sub-
packages fitting the described workflow (seeMaterials and
Methods for more details): preprocessing, segmentation,
detection, and analysis. We designed each subpackage
with clearly defined input and output data formats, which
will be automatically checked. This then allows using
each of these packages independently in a modular fash-
ion. Users can thus create a customized analysis workflow,
starting from preprocessing of images to statistical inter-
pretation of results. These workflows can be implemented
in Python and Bash scripts and run both on local and re-
mote computational resources. The modular design also
permits the easy integration of external methods, for in-
stance, a new segmentation method can be combined
with our spot detection algorithm. Lastly, weprovide a sub-
package to visualize the results of each intermediate step in
the analysisworkflowand thus provide valuable visual qual-
ity control.

Here, wewill only provide an overview of these subpack-
ages (Fig. 2). For a more detailed description of algorithms
and methods, we refer to the documentation (https://big-
fish.readthedocs.io/en/stable/) and the dedicated tutorials
(https://github.com/fish-quant/big-fish-examples). These
tutorials can be run directly in the browser with provided
test data, and thus allow new users to immediately test
these tools. The described methods were developed and
validatedwith the data from two large-screen smFISH stud-
ies (Chouaib et al. 2020; Safieddine et al. 2021) (see
Materials and Methods).

For image handling and preprocessing, we implement-
ed a number of different utility functions to read, write, nor-
malize, cast, filter, and project images. Different image file

FIGURE 1. Organization of FISH-quant. FISH-quant is hosted on
GitHub and consists of several interconnected repositories. The
Python core package contains the entire analysis code, which is
used by both the ImJoy plugins and the example and tutorial
repository.
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formats are natively supported and both 2D and 3D imag-
es can be processed.
The detection subpackage implements the methods re-

quired to detect spots in 2D or 3D images (Figs. 2, 3A–E).
An important aspect of thedetection subpackage is its abil-
ity to detect spotswithout setting anypixel intensity thresh-
old. We implemented a method to automatically infer this
threshold from the image. The curve describing the num-
ber of detected spots as a function of the intensity thresh-

old (Fig. 3A,B) has an elbow shape,
resulting from the superposition of
the fast decreasing false positive de-
tections (low intensity noise) and the
slowly decreasing true positives. The
threshold selected corresponds to
the kink in the elbow, and corresponds
thus to the highest threshold outside
the high-noise regime. In order to val-
idate this approach,wesimulated real-
istic smFISH imageswith varying noise
levels (Fig. 3A,B; Supplemental Note
1). We found that our method only
leads to a moderate over-estimation
of detected spots (<5%–10%) for
images with moderate to high SNR
values (>5). Such automatization over-
comes human intervention and allows
scaling to large data sets, such that the
subpackage can process thousands of
images. While initially designed to
detect individual mRNAs, the same
methods can also be used to detect
other spot-like structures (Safieddine
et al. 2021), such as centrosomes, P-
bodies, etc (Fig. 3E).This subpackage
further permits us to perform localiza-
tion of RNAs with subpixel accuracy
by using a Gaussian fitting (Mueller
et al. 2013). Lastly,weprovide thepos-
sibility to perform a colocalization
analysis between spot detection per-
formed in multiple channels (Cornes
et al. 2021).

Strong local accumulation of RNAs,
for example, active transcription sites,
RNA foci, or areas of local translation
(Chouaib et al. 2020), can lead to an
underdetection since such accumula-
tions are counted as single RNAs.
For such cases, we provide tools to
decompose these dense regions and
estimate the number of spots based
on our earlier work (Fig. 3C; Samacoits
et al. 2018). We validated this ap-
proach again on simulated data (Fig.

3D; see Supplemental Note 1), and found consistent per-
formance across relevant noise levels.
The segmentation subpackage contains several

algorithms and utility functions for segmentation and
post-processing. It provides deep-learning-based ap-
proaches to segment cells and nuclei (Figs. 2, 3F,G;
Supplemental Note 2). Furthermore, we provide post-
processing tools to refine and clean the segmentation re-
sult, such as boundary smoothing, removal of small

FIGURE 2. Big-FISH: the core analysis Python analysis package. (Upper part) Main modules
illustrated with a typical analysis workflow. Shown are also the inputs and outputs that are cre-
ated at the different steps. (Lower part) As a final result of the analysis of Big-FISH, each cell is
described with a set of features reflecting RNA abundance and localization. These features can
then be used to perform analysis on the cell population. Shown are results from our RNA local-
ization screen where cells are grouped based on their RNA localization pattern (Chouaib et al.
2020). The t-SNE plot projects 15 localization features for smFISH experiments against 27 dif-
ferent genes. Each dot is one cell. The color-coded dots aremanual annotations of six different
localization patterns. Images are examples of individual cells displaying a typical localization
pattern of this region of the t-SNE plot.

FISH-quant v2
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objects or filling of small holes. Lastly, morphological
properties, such as the area of cells, nuclei or protrusions,
can be computed for these components (Supplemental
Note 3).

The cell matching subpackage allows combining results
fromdetection and segmentation, permitting us to analyze
RNA abundance and distribution at the single-cell level.
Detected spots can be assigned to a specific region of in-
terest, for instance, a cell or a nucleus. Using the same
method, RNA clusters can be assigned to a nucleus and
thus be considered as transcription sites. RNA expression
levels are extracted within this subpackage, as this is usual-

ly the minimum information that is extracted from this kind
of image.

The localization feature extraction subpackage permits
the extraction of further information to study the subcellular
spatial distribution of mRNA molecules. It gathers methods
to format spot positions and coordinates of cellular land-
marks and compute several spatial features at the single-
cell level (Fig. 2; Supplemental Note 3). These features allow
a statistical description of the cell population (Pichon et al.
2021; Safieddine et al. 2021) or can feed a classification
model permitting us to classify individual cells based on
their RNA localization patterns (Fig. 2; Chouaib et al. 2020).

E F

BA

C D

G

FIGURE3. (A) Automated spot detection. Simulated image (left) and detection results (right) with detected spots in red and ground truth in white.
(B) Elbow curve used for automated threshold setting, red dot indicates identified intensity threshold. (C ) Decomposition of dense regions.
Simulated image (left) and decomposition results (right) with detected spots in red and ground truth in white. Number of simulated and detected
spots are shown in white and red, respectively. (D) Algorithm to decompose dense regions was evaluated with 100 simulated images containing a
cluster of 15 spots and different noise levels. (E) Example of automated detection of BICD2mRNAs (left) and centrosome (right) in HeLa cells. (F )
Example of nucleus segmentation from a DAPI image. (G) Example of cell segmentation from a CellMask image.
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Sim-FISH: simulation of smFISH images and RNA
localization patterns

Simulations can be used to validate different steps of the
analysis pipeline, ranging from the spot detection
(Tsanov et al. 2016) to a statistical framework to quantita-
tively study RNA localization (Samacoits et al. 2018;
Dubois et al. 2019). As mentioned above, we validated
both our spot detection and our decomposition method
for dense regions with this package (Fig. 3A–D;
Supplemental Note 1). We simulate realistic smFISH imag-
es in three steps (see Supplemental Note 1). First, we ran-
domly generate 2D or 3D spot coordinates, which can be
random or display a specific subcellular RNA localization
pattern. Further, clustered RNAs can be added. Second,
we simulate a realistic image from these coordinates by
modeling a RNA spot with a Gaussian function. Third, we
add a noisy background to this image.

ImJoy: interactive user interfaces and data
exploration

Our Python core analysis package provides flexibility and
scalability since its components can be adapted to the
specific analysis need of a given project. However, they re-
quire at least a minimum knowledge of Python to establish
a complete workflow by using the provided tutorials.
To provide simpler access for users with no computa-

tional background and no programming skills, we imple-
mented several plugins with graphical user interfaces for
our computational platform ImJoy (Ouyang et al. 2019).
These plugins provide the most commonly used analysis
workflow, as we determined from the usage of the Matlab
version of FISH-quant, and will thus be suited for a large
number of use cases (Fig. 4). First, a plugin to perform
deep-learning-based segmentation. This is currently built
on top of CellPose (Stringer et al. 2021), but thanks to
our modular design, this can be easily exchanged if more
performant methods are available in the future. Second,
detection of both isolated and clustered RNA. Detection
results can be conveniently inspected with the Kaibu im-
age viewer plugin in ImJoy and different detection settings
interactively investigated. Batch processing of entire fold-
ers is also possible. Lastly, detection results can be as-
signed to segmented cells and nuclei. We provide an
interactive demo version of this plugin that can run directly
in the browser without any local installation (https://fish-
quant.github.io/fq-interactive-docs/#/fq-imjoy).
Using ImJoy provides several advantages beyond sim-

ply providing a user interface. Due to its distributed design
that separates GUI from computation plugins, it natively
supports user-friendly remote computing which allows ac-
cess tomassive data storage and powerful computation re-
sources including GPUs. ImJoy is a browser-based app
where the user-interface plugin is implemented with

JavaScript/CSS/HTML. ImJoy then transparently calls the
computation functions in the Big-FISH package running
on a Python plugin engine (e.g., Jupyter server) to perform
the actual smFISH analysis task (Fig. 4). While this plugin
can run on a local workstation, it can be executed on a
computational cluster or even in the cloud or seamlessly
switching between them. This is illustrated by the demo
version, where the engine is running on Binder (Project
Jupyter et al. 2018). Once the plugin engine is installed
on the remote resource, the end-user can connect with
ImJoy and will be confronted with the same interface, in-
dependently of where the analysis is actually performed.
Interestingly, this front-end interface can also be opened
with mobile devices, providing easy access.
ImJoy plugins implemented in JavaScript not only pro-

vide modern and reactive user-interfaces, but also profit
from the extensive JavaScript data visualization libraries
to build interactive data-inspection tools. Such interactiv-
ity is becoming increasingly important, especially
when large and complex data sets are analyzed where
static plots are too limited. As a case example, we pro-
vide an interactive t-SNE plot for the data shown in
Figure 2 (https://fish-quant.github.io/fq-interactive-docs/
#/rnaloc-tsne). This plugin can be run without local instal-
lation and enables the user to explore and interact with
these complex data.

Case studies

We developed and validated FISH-quant v2 for two large-
scale smFISH studies (see Materials and Methods). These
two examples are typical use cases and exemplify the
kind of quantitative results provided by this software.

FIGURE 4. ImJoy. Schematic view of Imjoy’s architecture. ImJoy’s
core is a Progressive Web App whose functionalities are provided
by plugins that can be written in different programming languages.
ImJoy can perform computations in the browser (including offline), lo-
cally or remotely via plugin engines.
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In Chouaib et al. (2020), we performed a high-content
screen in HeLa cells and analyzed 10,000 segmented cells.
FISH-quant v2 was used for spot detection, cell segmenta-
tion and the computation of localization features that al-
lowed us to apply supervised and unsupervised machine
learning to identify localization patterns and classify single
cells into predefined pattern classes. We observed several
distinct mRNA localization patterns, including RNA accu-
mulating (i) in foci, (ii) in cytoplasmic protrusions, (iii) in
the perinuclear area (which could be subdivided in endo-
somal, RE, Golgi and centrosome associate), (iv) forming
a rim at the nuclear edge, or (v) inside the nucleus
(Fig. 2). Interestingly, automated classification done on a
single-cell level revealed a high degree of cell-to-cell het-
erogeneity in RNA localization, with 10% to 80% of the
cells displaying the expected pattern depending on the
RNA (Fig. 5A). In addition, for each pattern, only a fraction
of themRNA appeared to localize, revealing a high degree
of plasticity in RNA localization mechanisms. This appears
to be specific to cell lines as RNA localization in embryos is
usually much more stereotyped. We also quantified how
translation inhibition affected RNA localization and found
that most mRNAs localize in a translation-dependent man-
ner, which is unexpected (Fig. 5B). This also enabled us to
discover translation factories, small cytoplasmic structures
where specific mRNAs accumulate to be translated.

In Safieddine et al. (2021), we studied RNA localization
at centrosomes (3600 images and 54,000 cells). Here,
we added an automated detection for centrosomes
(Fig. 3E), and implemented localization features describ-
ing this localization pattern (Fig. 5C). This enabled us to
discover a family of eight centrosomalmRNAswhose local-
ization to centrosome is cell cycle dependent and con-
served from humans to drosophila.

Altogether, these analyses demonstrate the power of
FISH-quant v2 in processing large smFISH data sets, and
classifying RNA localization patterns in an automated way.

DISCUSSION

Here, we present FISH-quant v2, a user-friendly Python-
based software for the complete analysis of smFISH imag-
es. It is built around a core-analysis package, implemented
following rigorous software development guidelines, with
detailed interactive documentation and tutorials. This
package consists of several interchangeable modules per-
mitting the construction of highly flexible workflows for
specific analysis needs. For standard workflows, we pro-
vide user interfaces in ImJoy accessible to biologists with-
out programming skills, which can be used locally or scaled
to larger remote computational resources. Finally, FISH-
quant hosts a simulation package to generate smFISH

BA

C

FIGURE 5. (A) Heatmap depicting the fraction of cells classified in the indicated pattern, for the different genes analyzed by the automated pipe-
line. (B) Impact of treatment with translational inhibitor puromycin on the number of detected RNA clusters. HMMR shows a similar number of
clusters, while all other genes have significantly fewer, indicating an implication of translation in cluster formation. (C ) Proportion of mRNAs within
2000 nm of a centrosome. Distance threshold was empirically defined as the typical distance between clustered RNAs and the centrosomes.
Compared are untreated cells, and cells treated with two different translation inhibitors: cycloheximide, blocking ribosome elongation, or puro-
mycin, inducing premature chain termination. BICD2 has a centrosomal localization pattern, while TRIM59 is a negative control with a random
intracellular localization. Results are displayed with different treatments.
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images with nonrandom intracellular RNA localization pat-
terns. These simulated images can be used to develop and
evaluate analysis pipelines to study such RNA localization
(Samacoits et al. 2018; Dubois et al. 2019). As demonstrat-
ed in two recently published studies (Chouaib et al. 2020;
Safieddine et al. 2021), FISH-quant v2 can be used for
large screening data sets thanks to its scalability. Spot
detection, segmentation, feature extraction and pattern
recognition can be performed over thousands of cells with-
out fine-tuning parameters for every image.
We designed FISH-quant v2 based on the successful

previous implementation in Matlab (Mueller et al. 2013) in-
tegrating new features and user feedback we obtained
from several projects over several years. The entire core
package is written in Python since this allowed us to ad-
dress the above-mentioned requirements for a smFISH
analysis tool. We use established scientific libraries (see
Materials and Methods), and keep these dependencies
to a minimum facilitating installation, maintenance and
the integration with other analysis frameworks. These li-
braries are developed, validated and maintained by a
large scientific community, ensuring long-term support
and availability. We further use strict version control, guar-
anteeing reproducibility. Lastly, all dependencies, as well
as FISH-quant v2, are open-source, thus can be used free
of charge, both on local and remote computational infra-
structures, and thus analysis can easily be scaled to larger
data volumes.
The organization of the analysis subpackages in the core

package matches key steps in smFISH image analysis, with
a special focus on flexibility. All steps (preprocessing, RNA
detection, segmentation as well as data inspection and
analysis) can be run independently or replaced by external
code, by respecting a strict data format. This allows FISH-
quant to be adapted to the respective analysis needs, and
build custom workflows.
While this flexibility is important, many users require a

standard workflow and do not have programming experi-
ence. For these cases, we provide ImJoy plugins with a
convenient user interface running in the browser
(Ouyang et al. 2019). These interfaces are built with mod-
ern web libraries and are thus intuitive, and no experience
in Python is required to analyze data. Lastly, these ImJoy
plugins can be readily extended by more experienced us-
ers to further adapt them to their needs. A detailed docu-
mentation and interactive tutorial further help new users to
get started quickly.
In summary, we present with FISH-quant v2 a rigorous-

ly validated analysis platform for smFISH data, developed
to match the analysis requirements of large data sets. Its
modularity permits the creation of flexible workflows
ranging from the analysis of small data sets with the
help of a graphical user-interface to custom-tailored in-
vestigation of large-scale screens requiring computation-
al clusters.

MATERIALS AND METHODS

Python core packages

The repository Big-FISH contains the Python code used for the ac-
tual analysis. It is organized in several subpackages performing
dedicated steps:

- I/O operations, images preprocessing and (bigfish.stack)

- mRNA spot detection (bigfish.detection)

- nucleus and cell segmentation (bigfish.segmentation)

- post-processing and analysis of results from different channels,
such as the merging of RNA detections and segmentation
masks or colocalization analysis (bigfish.multistack)

- feature computation, point cloud analysis and classification
(bigfish.classification)

- visual reports of the obtained results (bigfish.plot)

- application of deep learning algorithms for segmentation
(bigfish.deep_learning)

The repository Sim-FISH contains the Python code used for simu-
lations. It includes several modules to generate 3D spots coordi-
nates (both random and with a specific subcellular localization
pattern). From these coordinates, simulated smFISH images
with a noisy background can be generated.
Dependencies are limited to standard Python scientific librar-

ies: scientific computing (numpy [Harris et al. 2020] and
SciPy [Virtanen et al. 2020]), data wrangling (pandas
[McKinney 2010]), image analysis (scikit-image [van der Walt
et al. 2014]), visualization (matplotlib [Hunter 2007]), parallel
computing (joblib, https://github.com/joblib/joblib) and ma-
chine learning (scikit-learn [Pedregosa et al. 2011],
TensorFlow [Abadi et al. 2016]).
The GitHub repositories are using continuous integration pro-

viding increased robustness of the released code, through unitary
testing, version control and automatically generated up-to-date
documentation. Packages are hosted under a BSD 3-Clause
License.

Example data sets

Two data sets were used for the development and validation of
FISH-quant. First, from a screen studying local translation and
consisting of 526 fields of view (DAPI and smFISH channels)
from 57 separate experiments (27 different mRNAs under differ-
ent experimental conditions [Chouaib et al. 2020]). For this
screen, 3D images with a z-spacing of 0.3 µm were acquired
on two different systems: (i) a Zeiss AxioimagerZ1 wide-field mi-
croscope equipped with a motorized stage, a camera scMOS
ZYLA 4.2 MP, using 63× and 100× oil objectives, (ii) Nikon Ti
fluorescence microscope equipped with ORCA-Flash 4.0 digital
camera (HAMAMATSU). Second, from a screen focusing on local
translation of centrosomal mRNAs. The data set consisted of
3678 fields of view (Dapi, smFISH, CellMask and GFP channels)
from 218 experiments (Safieddine et al. 2021). 3D images were
acquired with an automated spinning disk microscope (Opera,
PerkinElmer), equipped with a 63× water objective. Z-spacing
was 0.3 µm.
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DATA DEPOSITION

The entire code for the analysis described in this paper is available
on GitHub: https://github.com/fish-quant. This study includes no
data deposited in external repositories.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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