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Abstract
Diagnosis of head and neck squamous dysplasia and carcinomas is critical for patient care,
cure and follow-up. It can be challenging, especially for intraepithelial lesions. Even though the
last WHO classification simplified the grading of dysplasia with only two grades (except for oral
or oropharyngeal lesions), the inter and intra-observer variability remains substantial, especially
for non-specialized pathologists. In this study we investigated the potential of deep learning to
assist the pathologist with automatic and reliable classification of head and neck squamous
lesions following the 2022 WHO classification system for the hypopharynx, larynx, trachea and
parapharyngeal space. We created, for the first time, a large scale database of histological
samples intended for developing an automatic diagnostic tool. We developed and trained a
weakly supervised model performing classification from whole slides images. A dual blind
review was carried out to define a gold standard test set on which our model was able to
classify lesions with high accuracy on every class (average AUC: 0.878 (95% CI:
[0.834-0.918])). Finally, we defined a confidence score for the model predictions, which can be
used to identify ambiguous or difficult cases. When the algorithm is applied as a screening tool,
such cases can then be submitted to pathologists in priority. Our results demonstrate that the
model, associated with confidence measurements, can help in the difficult task of classifying
head and neck squamous lesions.

Introduction
Head and neck squamous cell carcinomas (HNSCC), ranked 6th cancer worldwide, constitute a
major public health issue because of their high mortality rate and the morbidity of their treatment
regimens (1–3). These poor figures can be explained by a late diagnosis, usually at an
advanced stage of the disease. However, it is estimated that early diagnosis of potentially
malignant head and neck lesions could prevent almost 90% of cancers (4). The early detection
of HNSCC could be allowed by a precise follow-up of precancerous lesions, or squamous
dysplasias, depending on their potential to become invasive. The classification of head and
neck dysplasias has been a highly controversial issue for many years. Indeed, since the first
classification proposed by Kleinsasser in 1963 (5), many different classifications have been
proposed by expert pathologists without achieving a strong consensus (6,7). Each of them had
different terminologies and methods of grading, but their reproducibility was always low to
moderate (6,8–12) (Table 1). Nevertheless, higher grades were associated with a higher risk of
transformation into carcinoma, confirming their significance (13).
In order to improve inter-rater and intra-rater reliability, the World Health Organization (WHO)
recommended to grade laryngeal squamous dysplasias with only two categories : low-grade
and high-grade. The high-grade category encompasses moderate, severe dysplasia and
carcinoma in situ. This system showed a large difference in terms of severity. In fact, Gale et al.
observed in their work that high grade dysplasia were ten times more at risk to evolve to
invasive carcinoma than low grade lesions (14). The last classification taken up by the (WHO) in
2022 (15,16) confirms the simplification of the grading proposed in 2017, even if the difference
between high-grade dysplasia and in situ carcinoma is questioned.
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For the oral cavity, the WHO grading system kept the distinction of moderate and severe
lesions. Interestingly, this is the only grading system keeping three separate grades, even if oral
squamous lesions share the same pathophysiology and are induced by the same carcinogens
than in the larynx, hypopharynx, trachea and parapharyngeal space. Notably, moderate and
severe lesions are reunited in a “high-grade dysplasia” category for squamous dysplasia
grading in the uterine cervix (17), the anus (18) and the esophagus (19). Two-grades systems
are also used for glandular dysplasias such as in colorectal adenomatous polyps or Barrett's
esophagus (19). In light of these considerations, the evaluation of oral dysplastic lesions could
benefit from a two-grades classification system.
Nevertheless, reproducibility between pathologists remains moderate for all grading methods
(20). This difficulty to classify is due to the multiple elements to take into account both at
cytological and architectural levels, on an epithelium that can have noticeable variations of
thickness depending on the anatomical location, and inflammatory and dystrophic alterations
that can sometimes be difficult to distinguish from true dysplasia (16). Finally, the arbitrary
classification categories imposed on a continuous spectrum of lesions that have no absolute
and clearly definable boundaries induces more subjectivity.

Given these considerations, the field is in need of new tools to help pathologists make robust
and consistent classifications of squamous head and neck lesions, for better clinical
management.

In order to help pathologists to perform precise and robust diagnoses, many artificial intelligence
(AI) algorithms have been developed these last years (21). Deep learning models can learn
meaningful patterns without explicit definition by an expert. Weak supervision has proven to be
a very powerful strategy for many classification tasks in computational pathology, from cancer
detection (22–24) to classifying carcinoma subtypes (25,26), grading (27), prognosis, prediction
of molecular signatures (28,29) and primary origins (30). Yet, only a few papers about grading
dysplasias have been published so far and studies applied to head and neck pathology are
even more scarce. This can be explained by the lack of a public database including dysplastic
lesion annotations and the difficulty to reach grading consensus, as shown by the low
reproducibility even between expert pathologists. Interestingly, most studies used classical
supervised machine learning methods rather than deep learning (4,31) and focused on the oral
cavity, with no study about laryngeal lesions (31).
Classification of head and neck squamous lesions could similarly benefit from
computer-assisted analysis by helping pathologists standardize and reduce bias of their
grading.
To be integrated in pathologists workflows, AI models should provide an assessment of the
models confidence for each prediction. Even though measuring AI model uncertainty has been
studied frequently in the past years (32–34), it was rarely applied to computational pathology.
Most works focused on segmentation (35–38) but less on diagnosis tasks (39,40). In a recent
work, Poceviciute et al. (41) stressed out the need for an AI reliability measure for diagnosis
and compared methods to assess it. Lu et al. (30) evaluated their prediction model by
computing the top-k differential diagnostic accuracy to determine the primary origin of
carcinomas. By integrating the prediction probabilities directly in their workflow, their model
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helped reduce the potential primaries to investigate. Finally Dolezal et al. (42) proposed a
thresholding paradigm not susceptible to domain shift for reliable use of uncertainty measure in
clinical practice.
As the grading of laryngeal dysplasia is often controversial, even for experts, tempering a
model's predictions with a measure of its confidence could help pathologists to integrate them
into their grading choice.

The aim of this work was to develop a fully automated, weakly supervised model for the
diagnosis of dysplasias and squamous cell carcinomas of the head and neck associated with a
method to assess the models confidence for each prediction. The classification followed the
WHO grading system for the hypopharynx, larynx, trachea and parapharyngeal space. We
compared the models reproducibility to pathologists and evaluated its performances on a gold
standard test set. We propose a measure of confidence of the model’s predictions providing
pathologists with a score indicating to which extent they can trust the prediction. We showed
that this score was consistent with pathologists' hesitations when grading dysplasia, and we
believe that it can greatly enhance acceptance of such an automatic grading system.

Material and Method
Selection of patients
Patients were selected retrospectively from 2000 to 2013 from the Hôpital Européen Georges
Pompidou (HEGP, Paris, France) clinical database (DxCare® software). Patients were at least
18 years old and diagnosed with head and neck squamous cell dysplasia or carcinoma, either of
the larynx, pharynx, nasopharynx, hypopharynx, lateral edge of the tongue or oral cavity.
Oropharyngeal cases were excluded from the study, since in this anatomical region most SCC
are related to the Human Papillomavirus, have specific aspects (43), and the existence of
dysplastic lesions is still debated with no diagnostic guidelines from the WHO. Carcinomas
sampled after chemotherapy or radiotherapy were excluded since the treatment modifies the
aspect of the lesion and the data do not fit the use case of the model.

Selection of samples and slides
The samples were identified in the HEGP Pathology Department database (Diamic® software).
Both biopsies and surgical samples were included, but not all the surgical samples of
carcinomas per patient that were available in the hospital’s archives. This selection was made in
order to keep a balance between classes in the dataset. When several slides of the same
sample were available, one investigator (YBH) selected the slide where the lesion was most
visible. Every pathology report was read to assess which types of lesions were present.
Samples were excluded if the pathologist mentioned in the report that it was impossible for him
to distinguish between high-grade dysplasia and invasive carcinoma because of tangent
inclusion. Verrucous carcinomas were also excluded. The slides were stained at the time of the
sampling with Hematoxylin Eosin and Saffron (HES) staining.
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Digitized dataset constitution
The slides were digitized with a pathology slide scanner (Hamamatsu NanoZoomer® s360) at
20X magnification (pixel resolution of 0.45 µm). All the sections present on the slide were
scanned. The quality of the digitization was checked for all the WSIs. Scans were excluded if
the digitization failed after two attempts. During digitization, each slide was given an
identification number for anonymization purposes.
After digitization, the WSIs were uploaded to the EyeDo© platform. Each slide was given a
global label corresponding to the most severe lesion in the sample, following the WHO
classification, according to the clinical report. These initial labels were thus provided by several
pathologists between 2000 and 2013. Slides with no surface epithelium and slides with strong
artifacts were excluded but slides with artifacts that did not impair a clear diagnosis were kept in
the dataset.

Review of “mild to moderate” dysplasias
Because the samples were selected from 2000 to 2013, many dysplasias were diagnosed at
this time with a “mild to moderate” grade. However, this grading does not follow the WHO
classification anymore, since mild dysplasia is synonymous with low grade and moderate
dysplasia with high grade. The 127 “mild to moderate” samples were reviewed jointly by the
pathologist investigators (YBH, CB) in order to assign a grade compatible with the latest WHO
grading system.

Blind review for assessment of a gold standard test set
Diagnosis of squamous dysplasias by pathologists lacks reproducibility (8). In order to assess
the model’s performance in the best conditions, pathologist investigators made a dual blind
review on a selected portion of the dataset. This portion was considered as a gold standard test
set. Only biopsies were selected for this test set, as they correspond to the use case of the
model (for surgical samples, the diagnosis is usually already known at the time of the surgical
resection). The data scientist investigators, not taking part in the grading, were in charge of
selecting the slides. The samples were selected based on their labels, such that classes were
balanced. To make sure the test samples were independent, slides were selected in the
following way: all the patients with only one slide present in the initial dataset were attributed to
the test set; then the patients associated with multiple slides (no more than two) were attributed
to the test set only if the slides were acquired multiple years apart. Slides from different samples
of the same patient but from the same year were discarded. Thus, all slides in the gold standard
test set are considered independent from the rest of the cohort. The reference standard for the
internal test dataset was determined in two rounds. Two raters, both with expertise in head and
neck pathology, but at different career stages (reviewer 1-CB: international expert, reviewer
2-YBH: early-career pathologist) independently reviewed the slides of the test set. The review
was carried out on the digitized slides, through the online viewer on the EyeDo© platform. The
raters were blind to any clinical information, the initial diagnosis, and the rating of the other
assessor. They were aware that the test set had been chosen to be balanced (according to the
initial labels). To avoid bias resulting from this information, the raters could not change their
diagnosis after a slide had been reviewed and assessed. The two raters finally met during a
consensus meeting to discuss the slides on which they disagreed. If the disagreement
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persisted, the slides were excluded. Label noise in the dataset was measured by comparing
final consensus labels with initial diagnosis from patient records.

Data management
To assess the diagnostic capacity of the model, 128 slides were selected from the entire dataset
and reviewed to constitute the gold standard test set as described above. The remaining slides
(2121 WSIs from 498 patients) were split into 5 randomly sampled training and validation sets
following the 80%-20% standard to train the deep learning model and fix hyperparameters
according to best practices. To ensure class balance between training and validation sets, the
splits were performed in a stratified manner by patients and grades using the Multilabel
Stratified K-Fold algorithm from Sedichis (44) (worst grade was kept for each patient). In the
training splits, low grades slides were upsampled (1.5 times) to reduce the effect of class
imbalance. There was no patient overlap between training, validation and gold standard test
sets.

Deep Learning Model
Implementation details are provided in the Supplementary Materials.
Tissue Selection
In order to train the WSI classification model, slides were divided into smaller images of
224x224 pixels at a resolution of 1 µm/pixel. When tiling the entire sample and removing only
the white background, WSIs contained up to 8800 tiles (with an average of 1300 tiles per slide),
giving a total of 3.9 millions of tiles across the dataset. To reduce the processing time, we
removed any tiles not containing epithelial cells (from surface epithelium or tumor). To do so, we
first trained a UNet (45) to perform binary segmentation between epithelium and carcinoma
tissue (the “foreground”) versus any other type of tissue or background (the “background”). The
UNet was trained at 10X resolution (1 µm/pixel) on 5439 annotated tiles of 512x512 pixels from
121 slides. The classification threshold was modified to 0.4 in order to minimize false negatives
and thus make sure all the tissue of interest was selected. Non-overlapping tiles were then
extracted from the selected tissue, resulting in 2.2 millions of tiles.
Multiple Instance Learning architecture
Our model was derived from the Attention-based Multiple Instance Learning (MIL) architecture
proposed by Ilse et al (46). It consisted of a feature extractor, a scoring module and a
classification module. Due to their size, WSIs have to be cut into smaller tiles. Features are
extracted from each tile through a frozen convolutional neural network (DenseNet121, (47)),
resulting in feature vectors of dimension 1024. A global label (the grade of the worst lesion on
the slide) is associated with the bag of tiles. Thanks to an attention mechanism, the network
learns which tiles within the bag are most important for the grading of the lesion and attributes a
score. The classification module aggregates the attention scores and the extracted tile
representations to obtain a slide representation (weighted sum of the tile representations, where
the weights are the attention scores) from which the slide-level label is predicted.
Cost-sensitive training
Due to the ordinal nature of our classes, we used a cost-aware classification loss introduced in
(48). The network was trained to predict a class-specific risk rather than a posterior probability.
The predicted class corresponds to the class minimizing this risk. The risk was defined
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according to the cost matrix, inspired by the TissueNet Challenge organized by the French
Society of Pathology in 2020 (49) and penalized large errors (e.g. benign vs high grade
dysplasia) more than small errors (e.g. low grade vs high grade). The cost matrix can be found
in the Supplementary Material (Table A).
Self-Supervised pre training
We initialized the feature extractor with pretrained weights obtained with self-supervised
training. SimCLR (50), a simple architecture relying on data augmentation, was trained on all
the tiles in the dataset (3.5 Millions tiles of 336x336 pixels) for 300 hours (143 epochs) on 8
GPUs. During the training, each tile was randomly cropped and resized to 224x224 pixels,
flipped and rotated. The H&E staining was modified with RGB to Haematoxylin-Eosin-DAB
(HED) color space conversion and colors were randomly altered (contrast, hue, brightness,
saturation).
Test and Evaluation
The deep learning model was trained on the five cross-validation training splits. Early stopping,
monitoring the validation loss, was used to stop the training (with a patience of 60 epochs). The
five models were assembled to make predictions on the gold standard test set. Overall
predictions were obtained by averaging the posterior probabilities of the five models. Class-wise
classification metrics were computed in a one-versus-all manner, the average of the class-wise
scores was performed to compute overall performances. Performances comparing models
predictions and consensus labels were measured. Metrics were reported with 95% confidence
intervals (CI) using a bootstrapping method (10 000 iterations).
Confidence score
In order to assess the certainty of the model’s predictions, a confidence score was computed for
every prediction of the model on the gold standard test set. The confidence score was derived
from the risk estimation output by the last layer of the network. The softmax of the inverted risk
(- risk vector) was computed, turning cost estimation into probabilities. The confidence score
was defined as the difference between the two highest risk probabilities: if the probabilities were
close, the network was hesitating between two classes, if they were far, the network was
considered more confident. As the confidence score is derived from the cost sensitive risk
estimation, it takes into account the ordinal characteristic of the classes; smaller confidence
values hence reflect pathologists hesitations.
This confidence score was designed for potential application of the model in the context of
screening. To exclude predictions with poor confidence, a threshold was set to filter out
uncertain predictions. The threshold was optimized on the validation set to reach an overall
AUC > 0.9. The performance of the model after filtering uncertain predictions was assessed on
the gold standard test set.
Analysis of misclassified slides
Attention scores learned by the MIL model reveal tiles that strongly influence the decision and
are thus supposed to be of diagnostic relevance. Heatmaps of attention scores were overlaid on
WSIs on the EyeDo© Platform in order to inspect important regions. Qualitative analysis of tiles
with high predictive value was performed.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521392doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ApaACo
https://www.zotero.org/google-docs/?woZ5xh
https://doi.org/10.1101/2022.12.21.521392


Results
Training dataset
The data used for training and validation of the model consisted of 2144 slides. The low-grade
dysplasia class was significantly underrepresented (10.7% of the total, 229 slides). Other
classes were present in balanced proportions. Patient characteristics and a summary of the
cohort are presented in Table 2.

Slides reviews
“Mild to moderate” dysplasia
Almost a third of the “mild to moderate” dysplasias were reclassified during the review as not
dysplastic. A summary of the review is shown in the Supplementary Materials.
Gold standard test set
After the first round of grading, the two graders independently agreed on 79 slides. The
remaining 52 slides were discussed at the consensus meeting. Three slides were excluded: one
slide for which it was impossible to distinguish high-grade dysplasia from invasive carcinoma;
one slide for which it was impossible to choose between low-grade dysplasia and artifacts; and
one slide for which there was a suspicion of carcinoma in the chorion but with no connection to
the surface epithelium, which was normal. Consensus was achieved for the 49 other slides,
resulting in 128 slides from 110 patients to be used as the gold standard test set. The labels of
the gold standard test set before and after review are shown in Supplementary Materials (Table
B).

Classification performance of the deep learning model
When considering the consensus labels as an absolute ground truth, the AI model achieved an
average AUC on the 4 classes of 0.878 (95% CI: [0.834-0.918]). The AI model reached an AUC
> 0.8 for all 4 classes. ROC AUC can be found in Figure 1. Average AUC dropped significantly
when using the initial labels as the ground truth rather than the consensus labels to evaluate the
AI model’s predictions. (AUC=0.832 [0.787-0.875]). This shows that the review reduced the
noise in the labeling, leading to better classification performances. Classification performances
are summarized in Table 3 and confusion matrices are shown in Figure 2. The misclassified
slides are listed in Table C in Supplementary Materials. The majority of the misclassifications
came from the “low grade” dysplasia class, with seven slides misclassified as benign. The initial
label of all of these slides was “benign”, suggesting that there is some ambiguity in these cases.
As many slides in the gold standard test set were classified as low grade dysplasias and had a
“benign” initial label, these misclassifications could be explained by a significant difference of
grading between the validation set and the test set.
Four slides of carcinoma were missed by the AI model and predicted as low-grade or
high-grade dysplasia, but with a low confidence score beneath the threshold which would have
filtered them out. Three of these slides had significant artifacts and the other showed carcinoma
under a non-dysplastic epithelium, which could be more difficult for the model to identify
because of the rarity of this presentation.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521392doi: bioRxiv preprint 

https://docs.google.com/spreadsheets/d/11m2NAPWGAf_B2fST4Drt8X_qnZKhSs3BaDjBCUIIBq4/edit#gid=0
https://doi.org/10.1101/2022.12.21.521392


Analysis of misclassified slides
In the test set, three high grade dysplasias were misclassified as carcinomas, two of them with a
high confidence score. For two of these slides, the tiles with the highest attention score showed
similar aspects, with marked atypia restricted to the basal layers and a corrugated aspect of the
lamina propria. This aspect was identified with a high attention score on a slide labeled low
grade dysplasia and confidently classified as high grade dysplasia by the model (Figure 3).
These lesions were sampled in the larynx. In the validation sets, analysis of five slides
misclassified from high grade to carcinoma or from low grade to high grade revealed the same
aspects on high attention tiles.

Assessment of inter-rater agreement
To assess the noise present in our ground truth labels we measured the agreement between the
reviewers (reviewers 1 and 2), the initial labels and the AI model (Table 4). The main metric
used to measure agreement was the linear Cohen’s kappa. Agreement between the AI model
and the initial labels was slightly lower (linear Cohen’s kappa = 0.641 [0.546-0.726]) than the
agreement between reviewer 1 or 2 versus the initial labels (linear Cohen’s kappa = 0.689
[0.606-0.764] and 0.723 [0.634-0.803] respectively), however it remained substantial (51).
Agreement between reviewer 1 and reviewer 2 led to a linear Cohen’s kappa of 0.676
[0.592-0.753]. These figures were of the same order of magnitude as in the literature (8).

Confidence score assessment
For the correct predictions, the confidence score was on average 0.73 +/- 0.303 compared to
0.418 +/- 0.303 for incorrect predictions. The confidence threshold, optimized to reach an overall
AUC > 0.9 on the 5 validations sets, was set to 0.5. On the gold standard test set, at this
threshold, 52 slides (40.6%) were considered as uncertain, most of them being low grade
dysplasias. On the remaining slides, the Invasive Carcinoma AUC was 0.987 [0.962-1.000]. No
carcinoma slides were missed by the model (Negative Predictive Value of 1.000 [1.000-1.000]).
The overall AUC improved by 4.5% (0.931 [0.892-0.965]) when removing slides with low
confidence. Conversely, overall AUC computed on the uncertain slides was equal to 0.764
[0.672-0.848] (-12.2% compared to the overall AUC on the full gold standard test set). In Figure
1 (C and D) we see that the confusion matrix on the confident slides is almost diagonal. The
confidence score being the difference between the 2 highest probabilities, we observed that the
model was always hesitating between two adjacent classes. Additionally, in the Supplementary
Figure D we show that when removing slides from the gold standard test set according to their
confidence score, the metrics on the remaining slides were consistently increasing, while
removing randomly picked slides led to erratic evolution of the performances. In Figure 4, we
compared the confidence score distributions for slides dependent on whether the two reviewers
agreed or not. The figure suggests that the confidence level of the model reflects the probability
of disagreement between reviewers. We note that even for a confidence score of 0, we would
expect disagreement in only 50% of the cases. This explains why the distributions are
overlapping.
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Discussion
To the best of our knowledge, we propose the first deep learning model for the grading of head
and neck squamous lesions following the WHO classification system. In the literature, studies
about grading dysplasia with deep learning are scarce. Most of them focus on cervix Pap
Smears (52,53), which does not take into account the epithelial architecture. A model for
classification of esophageal lesions was proposed in Tomita et al (54) but didn’t differentiate
low-grade from high-grade dysplasias.
Because no public database with annotated head and neck dysplasias nor “benign” epithelium
was available, we collected a large scale dataset of head and neck samples and clinical data
from the HEGP, a renown center for head and neck diagnosis and medical care in France.

As dysplasia grading is difficult and reproducibility between pathologists is low to moderate, a
blind reviewed test set was generated in order to properly assess the AI model performance.
We observed that the agreement between the two reviewers on this test set was in line with
previous reports (6,8–11), illustrating once more the difficulty to obtain objective and robust
grading of head and neck dysplasia and the need for new tools to help pathologists make
reliable diagnoses. We developed and trained a weakly supervised deep learning model that
was able to accurately grade head and neck dysplasia, offering a first tool for assisted
diagnosis.
Even though measuring a diagnostic test reliability is mandatory in pathology (for example,
controls for immunomarkings), very few studies in computational pathology developed a
confidence score to accompany the model’s predictions. In this work, we propose a novel
confidence score that is defined as the difference between the posterior probability of the two
top classes, ranging between 0 if the two top classes were equally likely for the network, to 1 if
the network had maximal confidence in the top class.
Our confidence score showed that the model, when uncertain, was always hesitating between
adjacent classes, mimicking pathologists doubts. This observation is in line with the fact that
epithelial dysplasia belongs to a continuous spectrum of lesions. Our confidence score can be
useful to mitigate artificial sharp borders imposed by the WHO grading system and help
pathologists decide on the grade with more objectivity. Moreover, we believe that such
confidence scores can greatly improve real-world applicability and acceptance: for screening
purposes, the application of the tool can be restricted to cases with high confidence, and thus
identify the slides for which review by a pathologist would be recommended in priority.
Misclassified slides were analyzed regarding their confidence scores. We observed that for
slides with low confidence predictions pathologists were more likely to disagree.
The analysis of the four false negative carcinoma samples showed that severe technical
artifacts (tangent cuts, staining artifacts…) have the potential to negatively impact the
classification results. But we also found that they ultimately also lead to low confidence scores
and would have been filtered out according to our procedure.
Misclassified slides associated with high confidence scores were mostly upgraded by one class
(low grade classified as high grade, high grade classified as carcinoma). The analysis of the tile
attention scores revealed that the model placed strong attention on severe atypia located in the
lower half of the epithelium, with a corrugated lamina propria. The two pathologists reviewed
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these highlighted tiles together and agreed that these aspects are challenging to interpret and
were present only focally in the slides. Since pathologists analyze epithelial surface in its
globality, focal severe atypia can be missed. The attention heatmap analysis, associated with
the confidence score, could be of great use by pathologists as a tool to focus on the most
severe dysplastic aspects, guiding their final grading.

The presented study is monocentric and retrospective. For this reason, it will be necessary to
establish an external cohort for further validation. However, we note that the large time range of
patient recruitment (13 years) conveys the dataset already a high degree of heterogeneity and
thus limits the risk of overfitting.

To conclude, we propose a reliable and powerful deep learning model for the classification of
head and neck squamous cell lesions, especially helpful in a context of lack of available experts
to screen enough samples or give a second read on difficult interpretations. The confidence
score is an original and efficient way to assess the reliability of the model’s predictions, making it
closer to medical tests standards of use. We believe this method is a significant milestone
towards reliable AI assisted diagnosis in digital pathology workflow, especially for subjective
tasks such as grading of head and neck squamous lesions.
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Figure 1 - AUC ROC for each class on the reviewed gold standard test set - ROC curves
were obtained by bootstrapping of the AI model predictions (10 000 bootstrap samples). They
were computed for each class in a One vs Rest manner  using consensus labels as a ground
truth. ROC = receiver operator characteristic. AUC area under the curve. ROC AUC of the
Carcinoma class is better than for the other classes, certainly because the diagnosis of this
class is often less ambiguous than for the other grades. Thus, the training data contains less
noise on this class, as well as the test data. Misclassification on Carcinoma class concerned
microinvasive lesions.
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Figure 2 - Confusion Matrices - AI model’s performances are evaluated on the gold standard
test set on the reviewed labels (A) and the initial labels (from patient’s records) (B). Numbers 0,
1, 2, 3 corresponds respectively to classes Benign, Low Grade, High Grade and Carcinoma.
Classification performances are superior when using reviewed labels indicating that the review
helped reduce noise in the labels. Confusion matrices show that the model is more confused on
the Low Grade (1) and High Grade (2) classes, rather than the Carcinoma class (3) for instance
which is justified by the ambiguity carried by this classes, on which even pathologist can
struggle. Matrix C corresponds to the confusion matrix on the high confident slides at
threshold=0.5, matrix D corresponds to the low confident slides. Matrix C is almost diagonal,
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and the overall AUC on the confident slides subset is higher by more than 10% than on the
unconfident subset. Additionally, we see that most of the Carcinoma slides are considered
confident by the model.

Figure 3 - Misclassified slides: attention score analysis - Tiles with high attention scores
attributed by the MIL model. Left column: 20X magnification, right column: 10X magnification. A.
and B. : slide_1597. High grade dysplasia predicted as invasive carcinoma. The model focused
on marked basal atypia with a corrugated lamina propria C. and D.: slide_237. High grade
dysplasia predicted as invasive carcinoma. The model focused on marked basal atypia and
bulky rete ridges. E. and F.: slide_2712. Low grade dysplasia predicted as high grade. The
model focused on marked basal atypia with a corrugated lamina propria. The three lesions are
located in the larynx.
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Figure 4 - Confidence level distributions - Comparison of confidence level and agreement
between Reviewer 1 and Reviewer 2. The model is more confident on slides on which reviewers
agreed during the dual blind review and is less confident on slides on which they disagreed.
This suggests that the confidence score reflects the difficulties inherent to the slides, as
pathologists would experiment with it. Significance: Mann-Whitney-Wilcoxon test two-sided with
Bonferroni correction, p-value=1.095e-02 U-stat=2.455e+03.
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Table 1 - History of dysplasia classification
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Table 2 - Cohort description
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Table 3 - Classification performances
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Table 4 - Inter rater agreement
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