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Pump scheduling is a decision-making problem in water distribution networks. The aim is to plan
the pumping operations to minimize the energy cost over the day ahead. Modelling the binary status of
the pumps and the nonconvex head-flow relations throughout the network results in nonconvex Mixed
Integer Nonlinear programs (MINLP) that could be particularly hard to solve. The branch-and-check
algorithm implemented on top of a commercial linear solver to guarantee the global optimization
paradigm is viable due to convexification of malign constraints. The looseness of convexifications
exacerbates the convergence of the optimization process. In response to these caveats, we propose a
tailored bound tightening and generation of valid inequalities at the preprocessing stage. The promising
computational results over a set of benchmarks indicate the effectiveness of our approach.
Mots-clés : integer nonconvex programming, bound tightening, cutting plane, pump scheduling

1 Introduction

This paper draws attention to strengthening mathematical formulations for global optimization of
the pump scheduling problem in drinking water distribution networks via bound tightening and cut
generation. The pump scheduling problem deals with satisfying a forecasted demand for a determined
time horizon, e.g., the day after, via discretized decision making (planning status on/off of the pumps)
for each time step within the horizon. Besides integrality, the mathematical formulations suffer from
the hydraulic nonlinear relationship between flow and head (pressure) in pipes and pumps. Despite
recent advances in global optimization solvers, simultaneous handling of both nonlinearity and inte-
grality remains intractable for relatively large-scale problems. To realize the global optimization of
the problem, [2, 9] present a branch-and-check framework : Given a polyhedral outer approximation
(OA) of the nonconvex head-flow constraints, the resulting MILP relaxation is solved with a standard
branch-and-bound. At each integer node of the search tree, the feasibility and the real cost of the
relaxed integer solution is checked. In case of infeasibility a no-good combinatorial cut is generated.
In this framework, a stronger MILP relaxation surely leads to check less infeasible solutions and to a
quicker convergence of the optimization process. As the OA relaxations directly rely on the variable
bounds, bound tightening may not only help to reduce the search domain but it allows to reshape the
MILP relaxation.

In this short paper, we first present applications of the optimization-based bound-tightening (OBBT) [3]
principle. We discuss how to define both efficient and effective auxiliary optimization problems by selec-
ting suited relaxations, restrictions, and conditions. Second, we propose to address the combinatorial
complexity of the pump scheduling problem, also by studying the substructures of the network, to
identify valid inequalities to improve the LP relaxation. Our experiments on two networks of the
literature show the deep impact of this enhanced preprocessing on the results of the exact method
from [2].



2 Mathematical formulation
We briefly present a mathematical model for the pump scheduling problem. More details can be

found, e.g., in [2, 9]. A water distribution network can be formalized as a directed graph G = (J, A) :
arcs a ∈ A are either pipes a ∈ AL or pumps a ∈ AK , and nodes j ∈ J represent either sources
j ∈ JS , or service nodes (also called junctions) j ∈ JJ , or water tanks j ∈ JR. The scheduling horizon
is discretized in typically T = 24 hourly time steps : t ∈ T, with T = {0, . . ., T − 1}. Some arcs are
controllable, namely fixed-speed pumps and pipes equipped with gate valves, and have two possible
states (i.e., on or off) at each time instant t. This is formulated as a boolean variable : xat = 0 if arc
a ∈ A is inactive (i.e., flow cannot pass) and xat = 1, otherwise. Each arc a ∈ A between the nodes i

and j is also associated with a function ϕa, which relates the flow qat ∈ R with the head (potential)
loss vat = hit − hjt ∈ R at time t ∈ T. The head hjt at a water tank j is proportional to the filling
level, which is limited by the tank capacity. The pump scheduling problem can be stated as :

(P ) : min
∑
T

∑
AK

c0
atxat + c1

atqat (1)

s.t. : qjt = Djt ∀j ∈ JL, t ∈ T (2)
hjt+1 = hjt + σjqjt, ∀j ∈ JT , t ∈ T (3)
Q

at
xat ≤ qat ≤ Qatxat ∀a ∈ A, t ∈ T (4)

ϕa(qat) + V at(1 − xat) ≤ vat ≤ ϕa(qat) + V at(1 − xat) ∀a ∈ A, t ∈ T (5)
Hjt ≤ hjt ≤ Hjt ∀j ∈ JT , t ∈ T (6)
x ∈ X ∈ {0, 1}A×T. (7)

The objective function is to minimize the electricity cost of pumping and the constraints describe,
at each time step : (2) demand satisfaction at junctions j where qjt =

∑
a∈A qat is the residual

flow, (3) flow conservation at tanks, (4) flow bounds w.r.t. arc status, (5) potential-flow relation
w.r.t arc status, (6) tank capacities, (7) any additional linear condition on the controllable arcs (e.g.,
dependencies between parallel pumps or usage limits). Disjunctions on the arc activity are modeled
in constraints (4)-(5) using ‘big-M’ values : Q ≤ Q denote bounds on the flows q in active arcs, and
V ≤ V denote bounds on the head loss v in inactive arcs. The exact method [2] for solving (P) is based
on a MILP relaxation, obtained by replacing in (5), the nonlinear term ϕa(qat) with polyhedral under-
and over-estimators ϕ

a
(qat) and ϕa(qat) as illustrated in Figure 1. We denote with R the LP-relaxation

feasible set.

3 Optimization-Based Bound tightening
In this section, we present feasibility-oriented and optimization-based bound tightening techniques

for preprocessing the LP relaxation R, i.e., we rely on minimizing/maximizing a variable on a suited
relaxation of (P) to derive the lower/upper bounds of the variable. For any such auxiliary problem,
we denote with O its relaxed feasible set, as opposed to the relaxed set R. The choice of relaxation
O is very sensitive : too tight and solving one auxiliary problem may be as hard as solving (P), too
loose and it provides no new information to R that the optimization process cannot infer alone. Still,
as the OBBT procedure runs all the auxiliary problems in a row, a bound reduction, even if obtained
with a loose relaxation, will be propagated to the next auxiliary problems.

3.1 Single-period relaxation for control variables
The only temporal coupling constraint is (3). Relaxing these constraints will decompose each time

step. Therefore, each time interval t ∈ T can go under scrutiny independently while the levels of the
tanks at time step t and t + 1 are within their box constraints [Hjt, Hjt] and still respect constraint
[Q

at
, Qat] merely for this time interval. We consider this single-period relaxation Ot to compute the

bounds on the stationary flow qat and head loss vat variables. It is still discrete and nonconvex but
of very small size. Furthermore, we enforce condition xat = 1 in Ot to compute the flow bounds



Q
at

, Qat of constraints (4). If the auxiliary problem is infeasible then xat can be turned into constant
0 in the MILP relaxation. Similarly, the head-loss bounds V at, V at of constraints (5) are computed
by enforcing xat = 0 in Ot, and, if infeasible, xat is fixed to 1 in the model. This principle, known as
probing [8], allows reducing both the big-M values and the number of binary variables in R.

3.2 Multi-period relaxation for state variables
One major feasibility issue in (P) comes from the tank capacities in constraints (6). Thus, tight

bounds H, H on the water level in the tanks impact the strength of both R and the single-step
relaxations Ot used in our iterative OBBT procedure (Sec. 3.1). We also evaluate the bounds on the
difference of level between two tanks as it fully determines the flow passing between them (if there is no
intermediate tank in the paths). The concluded bounds would be added as a new class of constraints
in the subsequent auxiliary problems of the OBBT procedure.

The single-step relaxation is not relevant to evaluate these bounds since the water level at time
t depends on the decisions made at the other periods. We thus consider a multi-period relaxation
O instead. The period length (from 2 to T) and the strength of O (with or without nonconvex or
integrality constraints) are chosen according to the size of the network.

4 Valid inequalities

4.1 Disjunctions and related network elements
In water networks, a tank j ∈ JT is often fed through a controllable arc a ∈ A (e.g. a pump or/and

a valve). We propose then to use probing to compute conditional bounds on the level of the tank and
strengthen constraints (6) with

hjt ≥ H1
jtxat + H0

jt(1 − xat).

We apply this principle also to relate the flow through a pipe a ∈ A with the status of controllable
arcs in a same branch. Probing on these status allows sometimes to significantly reduce the bounds on
qat and even result in disjunctive regions. The OA of constraints (5) can then be greatly improved using
these conditional bounds as depicted in Figure 1. Moreover, such conditional bounds can usually be
inferred for free from bounds computed in the OBBT procedure and flow conservation in the considered
branch.

FIG. 1 – OA for constraint (5) in orange and its refinement in blue from probing

4.2 Cardinality cuts
OBBT applies not only to decision variables y but also to any (linear) variable composition f(y).

The resulting bounds are then enforced in (P) with additional linear constraints, e.g., f(y) ≥ F . Again,



this procedure must be reserved for some promising compositions. We applied it to the minimum total
of active pumps

∑
a∈A,t∈T̄ xat with T̄ ⊂ T. The intuition behind this choice is : (i) pushing up this lower

bound mechanically increases the objective cost on R, (ii) limiting the period length in O (to [0, τ ]
or [τ, T ]) ensures its tractability, (iii) less flexibility is given to O when restricted to those intervals as
the level of the tanks is fixed at times 0 and T , (iv) since the number of active pumps (corresponding
to f(y) here) is an integer, we can apply a Mixed-Integer Rounding (MIR) technique [13] to lift the
constraint above as follows :

f(y) ≥ 1
F − ⌊F ⌋

∗ S(y − y∗) + ⌈F ⌉,

where y∗ denotes an optimal solution of the OBBT problem miny∈O f(y), F = f(y∗) is the optimum
value, and S is a gradient of f at y∗. If relaxation O is an LP, then gradient S is directly derived from
an optimal dual solution.

4.3 Flow cutset-based inequalities

By collapsing some demand nodes and at least one tank node j ∈ JT , we derive a supernode
v ⊂ J , the aggregate demand dvt =

∑
j′∈v dj′t, and the sets of ingoing arcs A−

v and outgoing arcs
A+

v (e.g, see figure 2). We then introduce a cutset-based inequality [4] at which the flow is projected
out by utilizing the capacities of each arc. Hence, combining constraints (2-4) over periods t ∈ T′ =
{t′, t′ + 1, ..., t′ + τ} ⊆ T, we get :

∑
a∈A−

v

∑
t∈T′

Qatxat −
∑

ij∈A+
v

∑
t∈T′

Q
at

xat + 1
σj

(hjt′ − Hj(t′+τ+1)) ≥
∑
t∈T′

dvt. (8)

To strengthen these cutset-based inequalities, initially, we select a subset of arcs to construct cover

FIG. 2 – The flow cutset-based inequality and a supernode in the Poormond network.

inequalities [1]. The definition of cover set with respect to (8) deviates from the original one for
knapsack inequalities due to the change of sign and the presence of negative coefficients. We handle
this by taking the complement x̄at = 1 − xat, then a cover set C = C− ∪ C+ ⊂ (A−

v ∪ A+
v ) × T′ for

(8) satisfies λC =
∑

t∈T′ dvt −
∑

at∈C− Qat +
∑

at∈C+ Q
at

> 0. At t′ = 0, the level in tank j is fixed
then variable hjt′ vanishes in (8), otherwise for the cover inequality to be valid, we consider intervals
T′ such that Hj(t′+τ+1) ≥ Hjt′ , then (hjt′ − Hjt′) ≥ (hjt′ − Hj(t′+τ+1))+ ≥ 0, and we get :

∑
at∈C−

min{Qat, λC}xat+
∑

at∈C+

min{Q
at

, λC}(1 − xat) + 1
σj

(hjt′ − Hjt′) ≥ λC . (9)

The cover inequalities can be further strengthened by lifting with variables in (8) not in cover C,
i.e. in the complement C⊤ = C−

⊤ ∪ C+
⊤ = (A−

v ∪ A+
v ) × T′ \ C. The multipliers of variables can be

derived either via superadditivity [1] or via Mixed integer rounding [7]. For instance, the lifted cover



inequality via MIR is represented as :∑
at∈C−

min{Qat, λC}xat+
∑

at∈C+

min{Q
at

, λC}(1 − xat) + 1
σj

(hjt′ − Hjt′) ≥ (10)

λC

(
1 +

∑
at∈C−

⊤

ΦMIR(Qat)(1 − xat) +
∑

at∈C+
⊤

ΦMIR(Q
at

)xat

)

where ΦMIR(Qat) = ⌊ Qat

Q∗ ⌋ + (Qat/Q∗−⌊Qat/Q∗⌋−1+λC/Q∗)+

λC/Q∗ with Q∗ = maxat∈C⊤{Qat} and Q∗ > λC .
We can take leverage from the dependencies of the arcs and make the inequalities tighter. For

instance, if the activity of the arc a2 is dependent on the activity of the arc a1 and they are parallel,
then instead of using the absolute capacities Qa1 and Qa2 , which will be a loose underestimator
or overestimator of the flow variable, we can consider two different capacities derived from possible
combinations. The next issue regarding these inequalities is how to select cover inequalities. Given
the topology of the network, the number of possible combinations of the elements in the network
graph to generate the cutset-based inequalities are limited. Since the inequalities introduced in 8 are
valid whenever the time steps are consecutive, the number of subsets for such inequalities is restricted
too. One major issue regarding the flow cutset-based inequalities in this framework is the presence
of continuous variables, which makes the lifted inequalities looser (note that lifted minimal cover
inequalities[1] without continuous variables are theoretically face-defining). To mitigate its effect, we
propose to generate the inequality at time t when the water level in tank j′ is close to its lower
bound in the solution of the LP relaxation. According to the mentioned consideration, we adopt the
separation problem introduced by [6] to select cover inequalities.

5 Computational Experiments
We assess the effect of bound tightening and cut generation at the preprocessing stage by defining

three formulations : without preprocessing (B0), with bound tightening (B1), and with bound tighte-
ning and cutting planes (B2) on the global optimization of the MILP relaxation. We consider groups
of 5 instances from the literature, for different time horizons T = 12, 24, 48 and for different networks :
Simple Network (S) consists of 3 pumps, 1 tank, and 2 pipes, and the realistic Poormond network (P)
consists of 7 pumps, 4 valves, 5 tanks, and 43 pipes. To have a fair comparison between formulations,
experiments for B1 and B2 formulations are run for 1 hour while we let it run over B0 for one additional
hour (the most time-consuming bound tightening takes less than 1 hour). The preprocessing Code and
experiments are available on github https://github.com/sofdem/gopslpnlpbb/tree/roadef. Table
1 illustrates the optimization performance with B0, B1, and B2 formulations over the benchmark.

In the smallest group S24, all formulations are able to solve the 5 instances in a few seconds. By
increasing the time horizon to 48, formulation B0 proves optimality for only one instance, B1 for 3
instances, and B2 for all 5 instances. For the larger network P, formulation B0 cannot even compute
one feasible solution within two hours. With bound tightening, B1 computes feasible solutions for all
instances and proves optimality once. With the additional valid inequalities, B2 solves all instances to
optimality. For P24 and P48, preprocessing helps to shrink the mean optimality gap from, respectively,
4% and 3% to roughly 2%. Furthermore, preprocessing B2 provides more feasible solutions during
the branch and check algorithm. The difference reaches to almost two times higher in P24 with B2
formulation with respect to B0. Besides, it reduces the time to compute a first feasible solution, for
P24 the average time is reduced from 693s in B0 to 172s in B1 and 104s in B2. Similar trend can be
observed in P48.

6 Conclusions
The problem-specific bound tightening and cutting generation at the preprocessing stage have re-

sulted in a noticeable improvement in the optimization of the pump scheduling problem, yet this
preprocessing could be costly. The main ideas introduced in this paper, that is relaxing the time inter-
vals and focusing on some deemed crucial elements and subgraphs over the network, would generalize

https://github.com/sofdem/gopslpnlpbb/tree/roadef


S24 S48 P12 P24 P48
#feas 5 5 0 4 5

B0 #opt 5 1 0 0 0
avg-gap 0% 0.5% inf 4.1% 3.2%
#feas 5 5 5 5 5

B1 #opt 5 3 1 0 0
avg-gap 0% 0.2% 2.3% 2.8% 2.8%
#feas 5 5 5 5 5

B2 #opt 5 5 5 0 0
avg-gap 0% 0% 0% 2.2% 2.1%

TAB. 1 – Experimental comparison of formulations B0 (no preprocessing), B1 (+ OBBT) and B2 (+cuts) : #feas : number of
instances for which at least 1 feasible solution is computed, #opt : number of optimality proofs, avg-gap : average optimality gap.

the approach for remarkably larger networks. The detection of crucial time instants and elements could
be controlled by a heuristic or a learning algorithm based on historical data to make the preprocessing
stage more effective and efficient. Due to the resemblance of the mathematical formulation of water
and gas networks, some ideas can be interchangeably adopted [5, 9].

Références
[1] Alper Atamtürk. Cover and pack inequalities for (mixed) integer programming. Annals of Opera-

tions Research, 139(1) :21–38, 2005.
[2] Gratien Bonvin, Sophie Demassey, and Andrea Lodi. Pump scheduling in drinking water distri-

bution networks with an lp/nlp-based branch and bound. Optimization and Engineering, pages
1–39, 2021.

[3] Ambros M Gleixner, Timo Berthold, Benjamin Müller, and Stefan Weltge. Three enhancements
for optimization-based bound tightening. Journal of Global Optimization, 67(4) :731–757, 2017.

[4] Stefan Gollowitzer, Bernard Gendron, and Ivana Ljubić. A cutting plane algorithm for the ca-
pacitated connected facility location problem. Computational Optimization and Applications,
55(3) :647–674, 2013.

[5] Jesco Humpola, Armin Fügenschuh, and Thorsten Koch. Valid inequalities for the topology opti-
mization problem in gas network design. OR spectrum, 38(3) :597–631, 2016.

[6] Konstantinos Kaparis and Adam N Letchford. Separation algorithms for 0-1 knapsack polytopes.
Mathematical programming, 124(1) :69–91, 2010.

[7] Adam N Letchford and Georgia Souli. Lifting the knapsack cover inequalities for the knapsack
polytope. Operations Research Letters, 48(5) :607–611, 2020.

[8] Martin WP Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6(4) :445–454, 1994.

[9] Byron Tasseff. Optimization of Critical Infrastructure with Fluids. PhD thesis, 2021.


	Introduction
	Mathematical formulation
	Optimization-Based Bound tightening
	Single-period relaxation for control variables
	Multi-period relaxation for state variables

	Valid inequalities
	Disjunctions and related network elements
	Cardinality cuts
	Flow cutset-based inequalities

	Computational Experiments
	Conclusions

