
HAL Id: hal-03907757
https://minesparis-psl.hal.science/hal-03907757v1

Submitted on 4 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing generation expansion planning with
operational uncertainty: A multistage adaptive robust

approach
Adam Abdin, Aakil Caunhye, Enrico Zio, Michel-Alexandre Cardin

To cite this version:
Adam Abdin, Aakil Caunhye, Enrico Zio, Michel-Alexandre Cardin. Optimizing generation expansion
planning with operational uncertainty: A multistage adaptive robust approach. Applied Energy, 2022,
306, pp.118032. �10.1016/j.apenergy.2021.118032�. �hal-03907757�

https://minesparis-psl.hal.science/hal-03907757v1
https://hal.archives-ouvertes.fr


Optimizing Generation Expansion Planning With Operational

Uncertainty: A Multistage Adaptive Robust Approach

Adam F. Abdina,∗, Aakil Caunhyeb, Enrico Zioc,d, Michel-Alexandre Cardine

aLaboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay
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Abstract

This paper presents a multistage adaptive robust generation expansion planning model,

which accounts for short-term unit commitment and ramping constraints, considers

multi-period and multi-regional planning, and maintains the integer representation of

generation units. The uncertainty of electricity demand and renewable power gener-

ation is taken into account through bounded intervals, with parameters that permit

control over the level of conservatism of the solution. The multistage robust opti-

mization model allows the sequential representation of uncertainty realization as they

are revealed over time. It also guarantees the non-anticipativity of future uncertainty

realizations at the time of decision-making, which is the case in practical real-world

applications, as opposed to two-stage robust and stochastic models. To render the

resulting multistage robust problem tractable, decision rules are employed to cast the

uncertainty-based model into an equivalent mixed integer linear (MILP) problem. The

re-formulated MILP problem, while tractable, is computationally prohibitive even for

moderately sized systems. We, thus, propose a solution method relying on the re-

duction of the information basis of the decision rules employed in the model, and

validate its adequacy to efficiently solve the problem. The importance of considering
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multistage robust frameworks for accounting for net-load uncertainties in generation

expansion planning is illustrated, particularly under a high share of renewable energy

penetration. A number of renewable penetration scenarios and uncertainty levels are

considered for a case study covering future generation expansion planning in Europe.

The results confirm the effectiveness of the proposed approach in coping with multifold

operational uncertainties and for deriving adequate generation investment decisions.

Moreover, the quality of the solutions obtained and the computational performance

of the proposed solution method is shown to be suitable for practical policy-making

generation expansion planning problems, seeking to evaluate the impact of uncertainty

on future system-wide performance.

Keywords:

Multistage adaptive robust optimization, Uncertainty treatment, Generation

Expansion Planning, Unit commitment, High renewable energy systems
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Acronyms:

CCGT Combined Cycle Gas Turbine

CF Capacity Factor

CMIP5 Coupled Model Intercomparison Project phase 5

DRO Distributionally Robust Optimization

GEP Generation Expansion Planning

HVAC High Voltage Alternating Current

HVDC High Voltage Direct Current

IGEP-UC Integrated Generation Expansion Planning and Unit Commitment

IRES Intermittent Renewable Energy Sources

LHS Left Hand Side

LNS Load Not Served

MILP Mixed Integer Linear Programming

MS-AARC Multistage Affinely Adjustable Robust Counterpart

MS-RC Multistage Robust Counterpart

PV Photo-Voltaic

RCP Representative Concentration Pathway

RHS Right Hand Side

RO Robust Optimization

SO Stochastic Optimization

UC Unit Commitment

UR Uncertainty Range

WCD Worst-Case Deterministic

1. Introduction

The planning of power systems expansions to accommodate intermittent renewable

energy sources (IRES), such as wind and solar power, has received extensive attention

in recent years (Pereira et al., 2017; Dagoumas and Koltsaklis, 2019). The challenges

brought by the variability of IRES production emphasize the need to account for oper-

ational flexibility as an integral part of power systems planning models (Alizadeh et al.,

3



2016). Operational flexibility is a time-and-state specific attribute of the power system

that most notably relates to its short-term ramping abilities to adequately respond

to changes in net-load. This net-load variation is significantly increasing in modern

power systems because of changing user patterns driven by smart-devices (Li et al.,

2018a), the increase of renewable energy production (Neetzow, 2021) and the expected

prevalence of electric vehicles with vehicle-to-grid capabilities (Gunkel et al., 2020),

among others.

Long-term generation expansion planning (GEP) in an environmentally conscious

way remains one of the most challenging and critical problems facing system planners.

In the literature, different modeling frameworks have been proposed to hedge for the

shortages in operational flexibility in future power systems expansion, among which,

a new class of integrated generation expansion planning (GEP) and unit commitment

(UC) models (IGEP-UC) (Palmintier and Webster, 2011). As opposed to the prior

prevalent modeling simplification of averaging the short-term operational conditions

within long-term planning models, these integrated models combine long-term invest-

ment decisions and short-term hourly operational decisions within a single optimization

framework. This way, ramping requirements characterizing the system flexibility are

explicitly accounted for. Examples of these models can be found in: (Koltsaklis and

Georgiadis, 2015) in which a multi-regional IGEP-UC model is presented with fea-

tures that allow the evaluation of different policy targets, (Pereira et al., 2017) which

consider a similar integrated IGEP-UC planning model and investigate a number of

planning scenarios with high level of IRES integration, and (Abdin and Zio, 2018) in

which a comprehensive assessment framework with adequate metrics is proposed to

optimize the IGEP-UC problem with high IRES penetration. However, because each

of the GEP and UC models is itself large and computationally intensive, particularly

if realistic integer decisions such as investment and commitment of generation units

are to be maintained, most of the literature integrating both models within a single

optimization have been limited to deterministic instances.

Accounting for the uncertainty in IRES supply and in system load, however, is a
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significant concern for ensuring adequate system operation. Uncertainties in power sys-

tems can be classified into short-term and long-term uncertainties (Zhang and Conejo,

2017). Long-term uncertainties include investment costs, policy incentive schemes and

fuel prices. Short-term uncertainties are more concerned with operational parame-

ters such as hourly load variations, hourly renewable resource availability as well as

transmission lines and generation system failures, among others. Power systems are

increasingly facing both supply and demand uncertainties in addition to the inter-

temporal intermittency of renewable production. If these uncertainties are not taken

into account when planning power system expansion, severe consequences may occur.

Two examples clearly stand out in modern power systems: the first is the large amount

of load shedding that occurred in Texas in 2008 due to the unexpected drop in wind

power generation (National Renewable Energy Laboratory U.S. and United States.

Department of Energy. Office of Scientific and Technical Information, 2008) and, the

second is the more recent blackout caused by the cold-spell in the ERCOT-Texas power

system (Smead, 2021).

Two popular approaches have been often applied to address the supply and demand

uncertainties in power systems. The first is stochastic optimization (SO), which models

the uncertain parameters by means of scenarios generated from pre-defined probability

distributions and solve for an expected value over the uncertainty realizations. SO

models have been widely employed to handle uncertainties both for the GEP problem

(Koltsaklis and Nazos, 2017; Park and Baldick, 2015) and for the UC problem (Quan

et al., 2015; Wang et al., 2013; Shi and Oren, 2018), separately. However, one of

the important limitation of the SO approach is that it assumes that the probability

distribution of the uncertain parameters are known or can be estimated with high

accuracy, which is not always the case, particularly within long term-planning models.

The other popular approach for handling uncertainty is Robust Optimization (RO),

which models uncertain parameters by means of distribution-free bounded intervals.

RO methods typically attempt to ensure protection against worst-case uncertainty

realizations, as opposed to expected ones. In addition, when considering RO with
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adjustable decisions, usually formulated as two-stage or multistage models with re-

course, the model can be reformulated as a convex optimization problem and handled

efficiently.

Because of these characteristics, RO methods have been widely used in the power

systems literature. However, most of the research has focused on proposing models to

treat uncertainty-driven power system expansion or short-term uncertain operational

problems, separately. (Chen et al., 2019) proposes a two-stage RO planning and op-

eration method for Energy Hub design, considering precise energy storage models. In

(Caunhye and Cardin, 2018), a two-stage adaptive RO model is proposed for long-term

generation and transmission expansion under supply uncertainties but with no explicit

consideration of short-term system performance. (Moret et al., 2020) develops and

uses an RO energy planning model to investigate the risk of over-capacity in power

systems investment. More recently, research has started to explore the use of a model-

ing paradigm closely related to RO, called distributionally robust optimization (DRO).

DRO seeks to overcome one of the important criticism for RO methods which is the

over-conservatism of the solutions obtained by incorporating partial knowledge about

the probability distribution of the uncertain parameters, when available. In power sys-

tem planning, this approach has been also used to address the transmission expansion

planning problem (Guevara et al., 2020). On the other hand, explicit short-term oper-

ational uncertainties have been considered in robust unit commitment models, such as

in (Zhou et al., 2019; Ye and Li, 2016; Bertsimas et al., 2013; Lorca et al., 2016; Lorca

and Sun, 2017), as well as robust power system flexibility assessment methods (Zhao

et al., 2015, 2014), but without considering the power systems expansion planning.

Short-term operational constraints were, however, considered in (Li et al., 2018b) for

power system planning but only through an aggregation of the time-steps that does

not consider the hourly chronological evolution of the system.

Research work that considers the integrated long-term expansion planning and

short-term operational optimization under uncertainty is much less explored in the

literature. Among the recent research work that treats this problem is the work of
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(Verastegui et al., 2019), which proposes an RO power system planning model with

short-term dispatch constraints. However, in their work they only consider a two-stage

robust model and do not consider the integer nature of the investment and unit com-

mitment decisions. Other work, such as (Zhang and Conejo, 2017), propose a robust

model for transmission expansion planning combining short-term and long-term uncer-

tainties using a three-level optimization approach, and (Velloso et al., 2020) presents

a DRO approach, also for the transmission expansion planning, considering both long-

term and short-term uncertainties in the system; yet, both papers do not consider the

generation expansion problem.

Despite recent progress, some important gaps remain in the literature treating GEP

under uncertainty. Most notably, to the best of our knowledge, no research work has

considered a multistage robust treatment for the integrated IGEP-UC problem. Mul-

tistage robust models were developed in the work of (Dehghan et al., 2018) which only

deals with transmission and not generation expansion planning, in (Liu et al., 2018)

which considers a multistage stochastic generation expansion with no consideration for

UC constraints, and in (Lorca et al., 2016) in which only the short-term UC model is

treated but without the generation expansion.

The distinction between two-stage and multistage robust models is important and

is, sometimes, not clearly understood. Multistage models are non-anticipative in that

the uncertainty realization is revealed sequentially and the decision-maker (the opti-

mization model) cannot anticipate future uncertainty realizations for taking current

decisions. Two-stage models assume a look-ahead into the whole uncertainty real-

izations to adjust decisions at each time step, which does not reflect how decisions

are taken in practice. Clearly, this leads to a different model formulation and out-

come. Indeed, for the short-term unit commitment problem, (Lorca et al., 2016) has

demonstrated how two-stage robust models, as a modeling framework, may lead to in-

feasibility in the dispatch problem when the generation ramping capability is actually

limited. This motivates the major relevance of this work in addressing the IGEP-UC

planning problem within a multistage robust optimization setting, where uncertainty

7



realizations are non-anticipative and are revealed sequentially, as is especially the case

for planning systems with a high share of IRES penetration.

Finally, while recognizing that many studies treating uncertain power systems plan-

ning problems work with stochastic programming techniques, for the multistage case

treated in this paper stochastic programming would require time-evolving probability

distributions, which significantly adds to the problem complexity. Multistage stochas-

tic programs are, to our current knowledge, computationally intractable, even when

medium-level accuracy is required, and Monte-Carlo sampling is used for scenario gen-

eration. Shapiro and Nemirovski (2005) show how the computational efforts to solve

multistage stochastic programming with sample average approximation increase expo-

nentially when the number of stages grow. In our case, we have the same number of

stages as the shortest-time period throughout the time horizon. This makes it prob-

lematic to conceive the problem in a multistage stochastic programming setting.

To address these challenges, this paper proposes a multistage, multi-period and

multi-regional robust IGEP-UC model to help policymakers make decisions about fu-

ture generation investments informed by IRES and system load uncertainty consider-

ations1. The model integrates long-term integral GEP decisions with short-term unit

commitment constraints and linearized optimal power dispatch in the power network.

We develop a tractable form of the multistage robust model and propose a novel

solution method relying on the reduction of the information basis of the decision rules

employed. The information basis reduction method proposed in our work is different

than other approaches that have been proposed in the literature (see for example (Lorca

et al., 2016) and (Ben-Tal et al., 2004)) since the information about the values of the

1The type of centralized planning model considered in this paper may not necessarily give the

same results as a game-theory market-based planning model, where each company decides on its own

investment decisions in a competitive environment. However, centralized planning models are widely

used by policymakers and regulators to identify a system-wide optimal investment strategy, and thus,

ensure that the market outcome does not deviate significantly from this optimal strategy by setting

proper policy incentives.
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uncertainty realizations and the decision variables at the most recent time step is always

maintained to inform the decisions in the subsequent time-step. This is a unique feature

to our solution approach that, to best of our knowledge, has not been explored in the

robust power systems planning literature. Other computational reduction methods

proposed relies on different information reduction concepts including the reduction of

spatial information or of temporal information without maintaining information about

the most recent state of the system. We show that, for our integrated power system

planning problem, our proposed approach leads to close to optimal solutions with a

significant reduction in computational time.

We validate the performance of the proposed model and solution method on a

case-study based on the European power system spanning 8 European countries. We

highlight a number of insights regarding the uncertainty impact on IGEP-UP models,

notably related to the investment decisions, generation mix, renewable energy integra-

tion and shedding, and transmission lines utilization and congestion, among others.

The proposed model and solution framework are shown to be relevant for practical

decision-making in planning highly uncertain, future power systems.

In summary, the main contributions of this work are:

• The paper proposes a multi-period, multi-regional and multistage adaptive robust

optimization model for the long-term integrated generation expansion planning

and unit commitment (IGEP-UC) problem to explicitly accommodate net-load

uncertainties due to a significant shares of renewable energy production. To

the best of the authors knowledge, this is the first treatment of the integrated

(IGEP-UC) problem within a multistage adjustable robust optimization setting.

Moreover, unlike other models that similarly treat long-term planning and short-

term operation under uncertainty in a single optimization, our model maintains

firm integer representation of both investment and unit commitment decisions.

• Within the presented multistage adaptive robust model, we propose a novel de-

scription of the uncertainty set combining the uncertainty describing the system
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load and renewable energy capacity factors within a single set. This reduces the

burden for the decision maker of estimating the conservativeness level of each

source of uncertainty separately.

• To resolve the computational complexity of the fully adaptive multistage model,

we propose a novel solution method by introducing a new parameter which con-

trols the level of information considered within the decision rules implemented

in the model. We fully investigate the outcome given by the solution method

proposed and show that significant computational gains can be achieved while

maintaining the significance of the results within, at most, a 1% optimality tol-

erance.

• Moreover, the results obtained by the proposed solution method empirically sug-

gest the Markovian nature of the IGEP-UC model where only information about

the most recent state of the system is sufficient to fully inform the decisions

in the following time-step. While this observation may need to be further in-

vestigated, it could have significant practical implications in understanding and

treating similar models.

2. Deterministic IGEP-UC model

The full formulation of the deterministic IGEP-UC model can be found in Ap-

pendix A. Briefly, the multi-period integrated IGEP-UC model proposed seeks to

minimize the total discounted system costs over the planning horizon. These costs in-

clude: the annualized investment costs in conventional and renewable generation units

(A.1a), yearly operational and maintenance costs (A.1b) and variable operational costs

of the power system, such as start-up costs for conventional generation units (A.1c),

production costs and cost of load-not-served (lns) (A.1d). The investment decisions

are subject to long-term constraints including the budget limit, adequacy requirement,

renewable penetration level, and short-term constraints including supply-demand bal-

ance, generation limits, unit commitment decisions, ramping limits and minimum up
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and down times. The model is formulated as a mixed integer linear program (MILP)

considering annual long-term generation expansion planning constraints and hourly

short-term unit commitment decisions.

The proposed formulation explicitly considers discrete generation units investment

and commitment decisions, and employs the integer clustering method to allow a

tractable optimization of large-sized systems with a high number of generation units

(Palmintier and Webster, 2014). Typically, many decision variables, such as the in-

vestment, start-up and shut-down decisions, are binary variables calculated for each

generation unit. The integer clustering method groups the decisions for similar and/or

identical units in a single integer variable represented by a technology cluster. In this

approach, each generation unit is still represented individually for each decision vari-

able, but handled collectively within the cluster. To achieve this, for the mathematical

formulation, each generation technology is represented by a cluster identifier. Discrete

variables in the problem can, then, take any positive integer value to account for indi-

vidual generation units, i.e.: q,x,u, z,v ∈ Z+
0 . Other modeling adjustments necessary

to properly use the integer clustering methods are directly employed in the proposed

formulation. A full discussion about this approach can be found in (Palmintier and

Webster, 2014).

3. Robust IGEP-UC model formulation

Generation expansion planning and operation is subjected to significant uncertain-

ties, particularly, with regards to the short-term power demand and availability of

renewable resources. The accumulation of errors in considering these uncertainties

for long-term planning can lead to significant errors in investment decisions. Specific

policy targets such as the desired levels of renewable production in the system and

the desired levels of carbon reduction could be failed to be reached. In particular,

the uncertainties in the ramping capabilities of the system can only be considered if

the unit commitment problem is properly integrated within the long-term generation

expansion planning. To ensure investment plans that are robust to these uncertainties,
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this section develops a robust counter-part of the proposed model which is adequate for

practical usage by decision makers and capable of properly capturing the most salient

features of the short-term uncertainties in the system.

3.1. Definition of the uncertainty set

The robust IGEP-UC model considers a distribution-free characterization of both

the electricity demand and the IRES supply uncertainties in each location and at each

hour of the planning horizon. Those uncertainties, in addition to posing a significant

challenge for the hourly dispatch decisions of thermal and nuclear units, also implic-

itly result in uncertainties in ramping requirements, start-up and shut-down decisions

from one time-period to the next. To characterize these uncertainties, the hourly load

vector, L, takes on a range of possible values bounded by a lower (
¯
L) and upper (L̄)

bounds. Similarly, the capacity factor CF , which models IRES supply uncertainty,

varies in the range [
¯
CF , C̄F ]. Different from the commonly employed separate defini-

tion of uncertainty sets for each source of uncertainty, in this work, a unique polyhedral

uncertainty characterization that combines both IRES supply and load demand uncer-

tainties is proposed. For this formulation of the uncertainty set, the decision maker

has to estimate a single level of conservatism for both uncertainty sources, which re-

duces the burden of estimating the conservativness level for each source of uncertainty

separately. We reasonably assume that under a high share of IRES penetration, the

decision maker primarily cares about the worst-case uncertainty realization in which

the highest system load and lowest IRES availability occur simultaneously, to ade-

quately plan and operate the remaining thermal and nuclear units in the system. The

uncertainty set is, then, defined for the worst case net-load realization (highest load

(L̄) - lowest IRES-CF (
¯
CF ). The uncertainty set is, therefore, formulated as:

Uysti (Γ) =

{
βysti ∈ R+, CF

yst
ig ∈ R|G(res)| :

¯
βysti ≤ βysti ≤ β̄ysti ,

¯
CF yst

ig ≤ CF yst
ig ≤ ¯CF yst

ig ,∀g ∈ G(res),
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βysti −
∑

g∈G(res)

CF yst
ig ≤ Γi · (β̄ysti −

∑
g∈G(res)

¯
CF yst

ig )

}
,∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (1)

Where, β represents the normalized load time-series such as
(
β = L/LMax

)
, and LMax

is the maximum load value of the load time-series. This is done to ensure the numerical

consistency for the calculation of the uncertainty set in which both the normalized load

time-series vector (β) and IRES-CF vector (CF ) vary in the same range. For this

formulation, β varies in the range
[
¯
β, β̄

]
.

Γ (≤ 1), represents the level of conservatism of the decision maker. In this setting,

Γ = 1 signify that the load and IRES-CF can take on their full range of possible

values. For Γ < 1, the uncertainty set excludes the absolute worst-case situations,

which is where all sub-period loads are at their highest values and all IRES-CF are

at their lowest values. The lower bound of the uncertainty budget Γ can be derived

through the observation that:
¯
βysti −

∑
g∈G(res)

¯CF yst
ig ≤ βysti −

∑
g∈G(res)

CF yst
ig ≤ Γi · (β̄ysti −∑

g∈G(res)
¯
CF yst

ig ),∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T This implies that:
¯
βysti −

∑
g∈G(res)

¯CF yst
ig ≤ Γi ·

(β̄ysti −
∑

g∈G(res)

CF
¯
yst
ig ), ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T . Hence, Γi ≥ ¯

βysti −
∑

g∈G(res)
¯CF yst

ig

β̄ysti −
∑

g∈G(res) CF
¯
yst
ig

,

∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T , from which we can calculate the lower bound of Γi as:

Γi ≥ max
y,s,t

{
¯
βysti −

∑
g∈G(res)

¯CF yst
ig

β̄ysti −
∑

g∈G(res)
¯
CF yst

ig

}
,∀i ∈ I.

3.2. Robust Model Formulation

The planning problem under uncertainty is formulated as a multistage adaptive

robust optimization model, where uncertainties are revealed sequentially over time,

and the decision maker cannot anticipate the uncertainty realization before their oc-

currence. In this model, investment and unit commitment decisions are here-and-now

decisions required to be robust to uncertainty realizations and the optimal power dis-

patch decisions are wait-and-see decisions required to be subject to (and thus, flexible

to) uncertainty realizations. The objective of the uncertainty-driven robust model is

to minimize the total cost of the investment decisions plus the worst-case cost of the

recourse dispatch decisions while ensuring full immunization of the investment plans
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and their operational schedules over all possible uncertainty realizations. To formu-

late the uncertainty-driven robust model, we let Vyst(= {βyst,CF yst}) to denote the

uncertainty realizations from the first time-period up to the current time-period t, re-

specting the non-anticipativity assumption. Given that recourse decisions
(
pystig (Vyst) ,

lnsysti (Vyst), f ystij (Vyst) and θysti (Vyst)
)

made in a time period t are adaptable on the

full history of uncertainty realization from the first time period up to t, the formula-

tion of the multistage robust counterpart (MS-RC) of problem the IGEP-UC problem

(A.1a)-(A.3k) is:

Objective function

min
Ω,Θ(·)

{
(A.1a)-(A.1b) +

∑
y∈Y

∑
s∈S

∑
t∈T

max
Vyst∈ Uyst

∑
i∈I

[
∑
g∈G

(
Marg Cy

g

(1 +DF )y
· pystig (Vyst)

)
+

Lns C

(1 +DF )y
· lnsysti (Vyst)

]}
(2a)

subject to:

investment and commitment constraints

constraints (A.2a)-(A.2g) (2b)

full immunization against uncertainty constraint

s.t. ∀Vyst ∈ Uyst,

Uyst , ∏
i∈I
t′∈[t]

Uyst
′

i , [t] , {1, ..., t}

 ,

∃pystig (·), lnsysti (·), f ystij (·), θysti (·) ∈ R+, ∀i, j ∈ I, g ∈ G, y ∈ Y, s ∈ S, t ∈ T (2c)

dispatch constraints (multistage recourse decisions)∑
g∈G

pystig (Vyst) + lnsyst(Vyst)−
∑
j∈N+

(i)

f ystij (Vyst)+

∑
j∈N−

(i)

f ystji (Vyst)− βysti · LMax = 0, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (2d)

∑
s∈S

∑
t∈T

∑
g∈G(res)

pystig (Vyst) ≥ Res(lvl) ·
∑
s∈S

∑
t∈T

β̄ysti · LMax, ∀i ∈ Ic, y ∈ Y (2e)

pystig (Vyst) ≤ uystig · P̄g, ∀i ∈ I, g ∈ G(th),∀y ∈ Y, s ∈ S, t ∈ T (2f)
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pystig (Vyst) ≥ uystig · ¯Pg, ∀i ∈ I, g ∈ G(th),∀y ∈ Y, s ∈ S, t ∈ T (2g)

pystig (Vyst)− pyst−1
ig (Vyst−1) ≤ uyst−1

ig · ¯URg + zystig · St Pg,∀i ∈ I,

g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T \ {1} (2h)

pyst−1
ig (Vyst−1)− pystig (Vyst) ≤ uyst−1

ig · D̄Rg,∀i ∈ I, g ∈ G(th),

y ∈ Y, s ∈ S, t ∈ T \ {1} (2i)

pystig (Vyst) ≤ xyig · P̄g · CF
yst
ig , ∀i ∈ I, g ∈ G(res),∀y ∈ Y, s ∈ S, t ∈ T (2j)

−2θ̄ ≤ θysti (Vyst)− θystj (Vyst)−Xij · f ystij (Vyst) ≤ 2θ̄,

∀(i, j) ∈ F , y ∈ Y, s ∈ S, t ∈ T (2k)

− f̄ij ≤ f ystij (Vyst) ≤ f̄ij, ∀(i, j) ∈ F , y ∈ Y, s ∈ S, t ∈ T (2l)

− θ̄ ≤ θysti (Vyst) ≤ θ̄, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (2m)

θysti (Vyst) = 0, ∀i ∈ Iref , y ∈ Y, s ∈ S, t ∈ T (2n)

3.3. Multistage affinely adjustable robust counterpart of the IGEP-UC problem

Notice that the multistage objective definition of (2a) (not to be confused with

the multiperiod aspect of the problem) is the compact form of the equivalent nested

“min-max-min” formulation, for each time period within the uncertainty set (Lorca

et al., 2016):

min
Ω∈X

{
c>Ω + max

V1∈U1
min

Θ1∈Ψ1(Ω,V1,Θ0)

{
c>Θ1 + . . .+ max

VT∈UT
min

ΘT∈ΨT (Ω,VT ,ΘT−1)
c>ΘT

}}
(3)

where Ψt(Ω,V t,Θt−1) , {Θt : (A.3a)-(A.3k) are satisfied}.

This definition separates the uncertainty set over each time period. Because of the

full immunization constraint (2c) and the fact that the uncertain parameters are real-

valued, the robust counterpart is semi-infinite. Linear decision rules are conventionally

implemented to make the problem tractable (Kuhn et al., 2011). Applying this method,

which results in a multistage affinely adjustable robust counterpart (MS-AARC), is

appealing in that it results in an MILP model that can be solved using available

solvers and conventional Bender’s type decomposition methods, and does not require
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significant tailor-made development of solution methods. In this paper, the MS-AARC

of the proposed model is obtained by replacing the vector of recourse variables using

the following linear relationship:

Θyst(Vyst) = Θ0
yst +

∑
i′∈I

∑
t′∈[t]

Θl
ystt
′

i′
· βyst

′

i′
+

∑
g′∈G(res)

∑
i′∈I

∑
t′∈[t]

Θc
ystt
′

i′g′
· CF yst

′

i′g′
(4)

where [t] , {1, ..., t} and
(
Θ0

yst,Θl
ystt
′

i′
,Θc

ystt
′

i′g′

)
are the coefficients of the linear deci-

sion rule. Then, in the resulting model, the constraints can be processed into a finite

number of linear constraints, relying on a duality-based reformulation to obtain the

final MILP problem. An illustration of how the processing is achieved for one equality

and one inequality constraints under our proposed definition for the uncertainty set is

given below.

Equality constraint: Consider the supply-demand equality constraint (A.3a). Re-

placing the uncertainty dependent variables pystg (Vyst) and lnsyst(Vyst) following equa-

tion (4), and re-arranging the terms, we obtain:

(∑
g∈G

p0
yst
ig + lns0

yst
i −

∑
j∈N+

(i)

f0
yst
ij +

∑
j∈N−

(i)

f0
yst
ji

)
+

∑
i′∈I,i′ 6=i

∑
t′∈[t−1]

(∑
g∈G

pl
ystt
′

ii′g
+ lnsl

ystt
′

ii′
−
∑
j∈N+

(i)

fl
ystt
′

ii′j
+
∑
j∈N−

(i)

fl
ystt
′

jii′

)
· βyst

′

ii′
+

(∑
g∈G

pl
ystt
iig + lnsl

ystt
ii −

∑
j∈N+

(i)

fl
ystt
iij +

∑
j∈N−

(i)

fl
ystt
jii − LMax

)
· βystii +

∑
i′∈I

∑
t′∈[t]

∑
g′∈G(res)

(∑
g∈G

pC
ystt
′

ii′gg′
+ lnsc

ystt
′

ii′g′
−
∑
j∈N+

(i)

fc
ystt
′

ii′jg′
+
∑
j∈N−

(i)

fc
ystt
′

jii′g′

)
· CF yst

′

ii′g′
= 0,

∀(i, j) ∈ F , y ∈ Y, s ∈ S, t ∈ T (5a)

From this, we know that equality (5a) is valid iff equations (5b)-(5e) are satisfied:

∑
g∈G

p0
yst
ig + lns0

yst
i −

∑
j∈N+

(i)

f0
yst
ij +

∑
j∈N−

(i)

f0
yst
ji = 0,∀(i, j) ∈ F , y ∈ Y, s ∈ S, t ∈ T (5b)
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∑
g∈G

pl
ystt
′

ii′g
+ lnsl

ystt
′

ii′
−
∑
j∈N+

(i)

fl
ystt
′

ii′j
+
∑
j∈N−

(i)

fl
ystt
′

jii′
= 0, ∀(i, j) ∈ F , i′ ∈ I, i′ 6= i,

y ∈ Y, s ∈ S, t ∈ T, t′ ∈ [t− 1] (5c)∑
g∈G

pl
ystt
′

ii′g
+ lnsl

ystt
′

ii′
−
∑
j∈N+

(i)

fl
ystt
′

ii′j
+
∑
j∈N−

(i)

fl
ystt
′

jii′
= LMax, ∀(i, j) ∈ F , i′ ∈ I, i′ = i,

y ∈ Y, s ∈ S, t ∈ T, t′ = t (5d)∑
g∈G

pC
ystt
′

ii′gg′
+ lnsc

ystt
′

ii′g′
−
∑
j∈N+

(i)

fc
ystt
′

ii′jg′
+
∑
j∈N−

(i)

fc
ystt
′

jii′g′
= 0, ∀(i, j) ∈ F , i′ ∈ I, g′ ∈ Gres,

y ∈ Y, s ∈ S, t ∈ T, t′ ∈ [t− 1] (5e)

Inequality constraint: For the maximum generation production limit inequality (2f),

the constraint, after applying the affine relationship (4), becomes:

p0
yst
ig +

∑
i′∈I

∑
t′∈[t]

pl
ystt
′

ii′g
· Lyst

′

i′
+
∑
i′∈I

∑
t′∈[t]

∑
g′∈G(res)

pc
ystt
′

ii′gg′
· CF yst

′

i′g′
≤ P̄g · uystig ,

∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T (6a)

Re-arranging the terms of the constraint, given that an uncertainty-affected con-

straint LHS ≤ RHS, where LHS contains all uncertainty terms and RHS contains the

rest, is valid ∀Vyst ∈ Uyst, t ∈ T , iff max
Vyst∈Uyst

LHS ≤ RHS, and applying this logic to

inequality (6a), we get:

max
Vyst∈Uyst

∑
i′∈I

∑
t′∈[t]

pl
ystt
′

ii′g
· Lyst

′

i′
+
∑
i′∈I

∑
t′∈[t]

∑
g′∈G(res)

pc
ystt
′

ii′gg′
· CF yst

′

i′g′
≤ P̄g · uystig − p0

yst
ig ,

∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T (6b)

Dualizing the left-hand side of the constraint by referring to the definition of the

uncertainty set (1), and because of strong duality, this set of non-linear inequalities

can be replaced by the set of linear inequalities (7a)-(7d), where π is the vector of dual

variables associated with the bounds of the uncertainty set (1), such as:

¯
βysti ≤ βysti :πA (6c)
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−β̄ysti ≤ βysti :πB (6d)

¯
CF yst

ig ≤ CF yst
ig :πC (6e)

− ¯CF yst
ig ≤ CF yst

ig :πD (6f)

βysti −
∑

g∈G(res)

CF yst
ig ≤ Γi · (β̄ysti −

∑
g∈G(res)

¯
CF yst

ig ) :πE (6g)

The dual linear equalities, thus, are formulated as:

∑
i′∈I

∑
t′∈[t]

(πA
ystt
′

ii′g
· β̄yst

′

i′
− πBystt

′

ii′g
·
¯
βyst

′

i′
) +

∑
i′∈I

∑
t′∈[t]

∑
g′∈G(res)

(πC
ystt
′

ii′gg′
· ¯CF yst

′

i′g′
− πDystt

′

ii′gg′
·

¯
CF yst

′

i′g′
)

+
∑
i′∈I

∑
t′∈[t]

πE
yst

ii′g
· Γi · (β̄yst

′

i′
−

∑
g′∈G(res)

¯
CF yst

′

i′g′
) ≤ P̄g · uystig − p0

yst
ig ,

∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T (7a)

πA
ystt
′

ii′g
− πBystt

′

ii′g
+ πE

yst

ii′g
≥ pl

ystt
′

ii′g
,

∀i, i′ ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T, t′ ∈ [t] (7b)

πC
ystt
′

ii′gg′
− πDystt

′

ii′gg′
− πEystii′g

≥ pc
ystt
′

ii′gg′
,

∀i, i′ ∈ I, g ∈ G(th), g
′ ∈ G(res), y ∈ Y, s ∈ S, t ∈ T, t′ ∈ [t] (7c)

πA
ystt
′

ii′g
, πB

ystt
′

ii′g
, πC

ystt
′

ii′gg′
, πD

ystt
′

ii′gg′
, πE

yst

ii′g
≥ 0,

∀i, i′ ∈ I, g ∈ G(th), g
′ ∈ G(res), y ∈ Y, s ∈ S, t ∈ T, t′ ∈ [t] (7d)

Applying the same principle to all inequality and equality constraints, the semi-infinite

robust counterpart is converted into a finite mixed-integer linear programming problem.

4. Solution method - Reduction of the information basis

As discussed in the previous section, in a multistage problem, recourse decisions

made in a time period, t, depend on V t (= {V1, ...,V t}), i.e., the history of load and

IRES-CF uncertainty realizations from the first time period up to t. In terms of

model formulation, for each of the uncertainty realizations, an additional number of
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dual variables and dual constraints are added to the MILP dual reformulation. The

duality-based approach used to define the MS-AARC problem, therefore, can lead to an

extremely large MILP problem that is not computationally feasible for practical-sized

instances. In particular, for each set of constraints in the deterministic problem, the

number of the respectively dualized MS-AARC additional variables and constraints are

polynomially increasing in the number of time periods (T ) and number of IRES units

(G(res)) considered.

The most important contributor to the above dimensionality issue in the MS-

AARC is the increase of the number of variables and constraints by a triangular factor(
|T |·(|T |+1)

2

)
of the number of periods considered. This factor arises because of the full

dependency of the recourse variables on the entire history of realized uncertainty at

every time period up to t. Following (Ben-Tal et al., 2004), we call this full affine

dependency the “on-line information basis” since all historical information revealed

about the uncertainties are taken into account to adapt the recourse decisions at the

current time period.

We propose a solution method based on the reduction of the information basis

for the decision rules, where only the most recent information about the uncertainty

realizations are taken into account to adjust the recourse variables at the current time

period. For this, a new parameter representing the information level, denoted h (≤ |T |),

is introduced. This parameter represents the number of the most recent uncertainty

realization to be taken into account in adjusting the recourse variable at the following

time period. The full affine dependency is equivalent to setting h = |T |, whereas, if

h < |T |, only the most recent uncertainty realizations are considered. In this case, the

size of the equivalent MS-AARC set of constraints, the associated dual variables and

the affine coefficient variables are reduced by an order of h2, as shown in Table (1).

In the proposed information basis reduction method, the recourse decisions at each

time step would implicitly maintain information on the full uncertainty realizations

through the value attributed to the recourse actions at the most recent time step. In

fact, the observations of the sensitivity analysis of the performance of the proposed
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Table 1: Reduction factor of the number of variables and constraints via adjusting the information

level “h”

Reduction factor:

Dual Variables / Dual Constraints /

Coefficient Variables

( |T | − 1

2
− h+

h2 + h

2|T |

)

solution method under different information levels, implies the Markovian nature of

the IGEP-UC problem where only information on the most recent state of the system

are sufficient to inform the decisions for the following state. In this way, the reduction

method proposed is expected to simplify the problem structure (i.e. reduce the number

of variables and constraints) with no impact on the quality of the solutions obtained.

These propositions are confirmed by the analysis presented in the next sections.

To implement this information basis reduction method, the running index [t] should

be re-defined such as:

[t] ,

{1, ..., t}, if t ≤ h

{t− h, ..., t}, if t > h

(8)

The decision maker can, then, select the desired level of h to decide on the information

level considered in the solution of the planning problem, if needed.

5. Validation of the proposed solution method on a multi-period single-

region IGEP-UC problem

5.1. Power system description and implementation notes

We first consider a case study on a single-region multi-annual planning horizon cov-

ering 10 years from 2036 to 2045 for the validation of the solution method proposed. We

consider the case of generation expansion planning in France, where the hourly system

load is obtained through linear regression of the historical load time series of France for
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the years 2006 to 2015 (publicly available at (RTE-France, 2017)), assuming a growth

of 1.5% throughout the planning years. Wind and Solar-PV capacity factors are calcu-

lated from the wind speeds and solar irradiance data obtained from the Coupled Model

Intercomparison Project phase 5 (CMIP5) climate experiments (Taylor et al., 2012),

for the same time period, and for the geographical region of France. The grid level

values obtained from the CMIP5 are, then, averaged for the whole geographical area

of France. We consider wind and solar data from the Representative Concentration

Pathways (RCP) 8.5 which assumes an increase in radiative forcing of +8.5 Wm−2,

compared to pre-industrial level. The dynamic operating conditions for the generation

units are determined through representing each planning year by a number of uncer-

tain representative days optimally obtained to allow the chronological representation

of the system hourly state (Poncelet et al., 2017). The cost data for the power genera-

tion technologies are based on the IEA/NEA Projected Costs of Generating Electricity

report (2015) (IEA/NEA, 2015). Table (2) summarizes the costs considered and the

remaining technical characteristics of the power generation units.

Table 2: Technical and economic characteristics for the different generation technologies

Technology P̄g
¯
Pg

¯URg D̄Rg UMg DMg Inv Cg Marg Cg St Cg

[i] [MW] [MW] [MWh/min] [MWh/min] [hrs] [hrs] [Me/MW] [e/MWh] [ke]

Nuclear 1400 700 0.5%P̄/min 0.5%P̄/min 12 48 3.95 9.33 15.0

Coal 1100 550 1.5%P̄/min 1.5%P̄/min 6 10 2.08 36.67 11.26

CCGT 550 165 5%P̄/min 5%P̄/min 3 5 1.02 69.00 7.53

On-Shore Wind 240 0 / / / / 1.9 0 /

Solar-PV 180 0 / / / / 1.5 0 /

For the uncertainty set, hourly load uncertainty is set to vary within 10% of the

nominal values, while hourly IRES-CF uncertainty is set to vary within 20% around

their nominal values. The MILP optimization models are coded in the Python pro-

gramming language using the Pyomo software package (Hart et al., 2012) and solved

on a PC with Intel Core i7 at 3.2GHz and 8GB memory using IBM ILOG-CPLEX

with an optimality gap of 0.001%.
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5.2. Worst-case analysis for robust power systems planning under net-load ramping

uncertainty

In this section we illustrate the importance of considering a multistage robust prob-

lem compared to only solving the worst-case deterministic problem of the IGEP-UC,

assuming a given uncertainty range. Indeed, it should be noted that according to the

definition of the uncertainty set (1) and letting the uncertain parameters take on their

full range of values (Γ = 1), the robust solution should be equivalent to the worst-case

deterministic solution of the planning problem. This is because a worst-case solu-

tion that operationally satisfies all the highest hourly load occurrences (β̄) and lowest

IRES-CF (
¯
CF ) should be readily feasible to satisfy any combination of lower load and

higher IRES-CF in the uncertainty range. We show that this is, indeed, the case if

the time-coupling ramping constraints are ignored. However, enforcing the ramping

constraints, in a multistage setting, implicitly re-defines the worst-case dispatch deci-

sions in the IGEP-UC problem so that they are no longer defined by the worst load

and IRES-CF, but also constrained to ensuring the ramping feasibility under all other

uncertainty realizations of those parameters. This effect is not properly accounted for

in non-causal operational models such as two-stage robust models or worst-case deter-

ministic models, as has been shown in (Lorca et al., 2016). An example for this effect

is the requirement to satisfy the system ramping needed in the case of the occurrence

of the lowest IRES availability (
¯
CFt−1) at t − 1 and the successive occurrence of the

highest IRES availability ( ¯CF t) at t, if the uncertainties are to be realized in such

a way. In this case, even a solution that is feasible to satisfy the net-load when the

IRES availability are always at its lowest (worst-case uncertainty realization), might

not be feasible in terms of ramping capacity available to meet all other combinations

of IRES-CF realizations that are revealed sequentially. This is visually illustrated in

Fig (1).
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Figure 1: Illustration of non-causal worst-case ramping (e.g. as given by worst-case deterministic

or two-stage robust models) and actual worst-case ramping (as sequentially revealed in a multistage

temporal setting)

To evaluate this effect on the power system investment and operational decisions,

the results of the case study are compared between the worst-case deterministic problem

solution (denoted WCD) and the proposed MS-AARC planning model, for both the

ramping-relaxed and ramping-enforced cases.

First, considering the ramping-relaxed case: as expected, both WCD and MS-

AARC solutions are identical. The total objective value in both cases amounts to

112.38Be. The breakdown of the investment, operational and load not served (LNS)

costs is shown in Fig. (2). On the other hand, by enforcing the ramping constraints,

the solutions of both models are no longer identical. As shown in Fig. (2), the robust

solution given by the MS-AARC model is +7.25% and +4.29% higher than the WCD

solution, for the investment and operational costs, respectively.

In terms of investment decisions, Table (3) illustrates the total capacities installed

per technology type for the cases considered. Similarly, it is shown that the new invest-

ments are the same for both WCD and MS-AARC solutions when ramping is ignored.

Enforcing the ramping constraints leads to a shift in the installed capacities from the

least flexible nuclear technology, to the most flexible CCGT technology. However, the

ramping-enforced MS-AARC results confirm that neglecting the net-load uncertainties

underestimates the actual flexible capacity needed for ensuring supply under the im-

plicit worst case ramping realizations, revealed sequentially. This is shown as per the
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investment results in an even lower nuclear capacity and higher CCGT ones.

The optimal WCD investment solution in these cases will, in fact, result in many

infeasibilities for meeting the actual worst-case net-load ramping, as previously ex-

plained. The multistage decision making of the MS-AARC model accounts for those

implicit worst-case rampings by adjusting the amount of flexible capacity installed, and

how they are operated in terms of UC and dispatch decisions. This leads to a higher

cost but more robust planning decisions.

36.74 36.74 37.22 39.92

75.64 75.64 77.83 81.17

0.00 0.00 2.97 0.29

0.00

50.00

100.00

150.00

WCD MS-AARC WCD MS-AARC

Ramping-relaxed Ramping-enforced

B
€

Investment Cost Operating Cost LNS Cost

Figure 2: Breakdown of (annualized) investment, operational and LNS solution costs for the ramping-

relaxed and ramping-enforced problems. Comparison between the WCD and MS-AARC solutions.

Table 3: Breakdown of total installed capacity per technology type for the ramping-relaxed and

ramping-enforced problems. Comparison between the WCD and AARC solutions.

Capacity Installed [GW]

Ramping-relaxed Ramping-enforced

Technology WCD MS-AARC WCD MS-AARC

Nuclear capacity 74.2 74.2 71.4 60.2

Coal capacity 11.0 11.0 18.7 19.8

CCGT capacity 14.3 14.3 8.8 13.2

Wind capacity 1.68 1.68 8.4 82.8

Solar capacity 85.32 85.32 90.54 10.44

Moreover, it is important to, also, quantify the performance of the MS-AARC

model in terms of the amount of IRES shedding. This is because IRES shedding is
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another means for managing inter-temporal ramping uncertainty. Notice in Table (4)

the improved IRES shedding amounts as given by the MS-AARC (total of 1.46%)

compared to WCD solution (total of 13.72%), when net-load ramping is accounted for.

Table 4: Breakdown of IRES shedding for the ramping-relaxed and ramping-enforced problems. Com-

parison between the WCD and MS-AARC solutions.

Ramping-relaxed Ramping-enforced

WCD MS-AARC WCD MS-AARC

Wind power shedding 2.15% 2.15% 5.97% 1.51%

Solar power shedding 1.47% 1.47% 23.90% 0.07%

Total IRES shedding 1.49% 1.49% 13.72% 1.46%

5.3. Sensitivity of MS-AARC results to IRES penetration requirements and robustness

levels

The previous section analyzed the importance of considering the uncertainties in

net-load ramping within a multistage robust planning model. However, the results

focused on the full robustness against uncertainty realization by setting the budget of

uncertainty (Γ) to its maximum value. This part analyzes the solution of the proposed

MS-AARC model for various levels of IRES penetration requirement (0%, 50% and

75%) and for various levels of conservativness level Γ (25%, 50% and 100%), to illustrate

the relevance of the proposed approach for different planning contexts.
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Table 5: Total number/capacity of generation units installed, per technology type, at the end of the

planning horizon. Comparison between different levels of IRES penetration and of the budget of

uncertainty Γ.

Number of installed units Total capacity installed [in GW]

Nuclear Coal CCGT Wind Solar Nuclear Coal CCGT Wind Solar

0% IRES
enforced

Γ = 25% 40 14 15 69 0 56.0 15.4 8.25 16.56 0.00

Γ = 50% 41 15 16 117 0 57.4 16.5 8.8 28.08 0.00

Γ = 100% 43 17 24 253 14 60.2 18.7 13.2 60.72 2.52

50% IRES
enforced

Γ = 25% 35 8 29 308 0 49.0 8.8 15.95 73.92 0.00

Γ = 50% 36 10 29 300 30 50.4 11.0 15.95 72.00 5.40

Γ = 100% 42 12 33 342 45 58.8 13.2 18.15 82.08 8.10

75% IRES
enforced

Γ = 25% 31 10 26 420 585 43.4 11.0 14.3 100.80 105.30

Γ = 50% 32 11 28 453 601 44.8 12.1 15.4 108.72 108.18

Γ = 100% 38 11 34 516 712 53.2 12.1 18.7 123.84 128.16

The results summarized in Table (5) illustrate the total number of generation units

installed, per technology type, at the end of the planning horizon and for each case

considered. Table (5) also summarized the total capacity installed in GW (number

of units * capacity of each unit). Notice, first, how the increased IRES penetration

in the system has the global impact of shifting the investment decisions from nuclear

generation to CCGT, under all budgets of uncertainty levels considered. Those units

are characterized by better ramping capabilities, as per the assumptions used in the

case study, and therefore, are deployed to ensure the adequacy of the system in response

to the inter-temporal ramping uncertainties. Moreover, the results confirm that more

of the flexible CCGT units are deployed as the robustness level of the system planning

increases (i.e., higher Γ values) within each IRES scenario.

The temporal distribution of the planning decisions are shown in Fig (3) for the

median IRES penetration case (IRES = 50%) and for Γ = 25% and Γ = 100%, respec-

tively. It is seen that, in all cases, the bulk of the investments are made in the first

planning year. Notice that for the less conservative scenario (Fig. (3a), Γ = 25%), there

is an overall lower capacity investment and more distributed throughout the planning
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horizon, compared to the more conservative case (Fig. (3c), Γ = 100%). Particularly,

more IRES capacity, both wind and solar, is commissioned in the early planning pe-

riod of the latter case in response to the robustness requirement against higher CF

uncertainty ranges.

(a) Γ = 25%

(b) Γ = 50%

(c) Γ = 100%

Figure 3: New capacity installed per technology type throughout the planning horizon for IRES

penetration level = 50% and under different levels of Γ

5.4. Performance of the proposed solution method

The case studies presented in the previous sections were solved using the reduction

of the information basis method proposed, setting the information level h = 12. Be-

yond this level, the problems is computationally challenging to be solved in practical
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Table 6: Performance of the proposed solution method: comparison of the solutions obtained for

different values of information level h parameter for the MS-AARC problem, compared to the fully

affine dependent solution.

Information level (h) 1 2 3 4 5 6

Objective function difference 0.94% 0.95% 0.31% 0.50% 0.23% 0.05%

Information level (h) 7 8 9 10 11 12

Objective function difference 0.04% 0.49% 0.04% 0.48% 0.51% 0.26%

Information level (h) 13 14 15 16 17 18

Objective function difference 0.01% 0.03% 0.95% 0.48% 0.67% 0.61%

Information level (h) 19 20 21 22 23 24

Objective function difference 0.95% 0.50% 0.02% 0.97% 0.03% 0.03%

calculation time. To validate the choice for this information level and the effective-

ness of the proposed solution method, we conduct a sensitivity analysis on the impact

of varying the information level parameter h on the solution time and quality of the

planning problem. The horizon considered for this purpose covers two planning years,

each represented by 4 uncertain days of 24 hours. The parameter h, therefore, can vary

from 1 to 24, representing the lowest to the highest historical information levels taken

into account in the linear decision rules, respectively. The sensitivity is conducted by

solving the resulting problems to an optimality gap of 1× 10−7 for the highest possible

accuracy for validation purposes. For each choice of the information level, the solution

obtained is compared to the solution of the fully affine dependent problem (i.e. with

no information reduction h = 24).

Table (6) shows the difference in the objective values obtained for solving the prob-

lem under different values of the information level parameter h, compared to the non-

approximated problem. It is shown that in all cases, the objective function difference

is at most 1%, with respect to the non-approximated solution.

With respect to the computational performance, Figure (4) shows that, indeed, the

computational time significantly decreases as lower values of the historical information

level h are considered. The solutions for the lowest h values is obtained within 10 to
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40 seconds, and significantly increase as h increases. For the fully adjustable problem

(h = 24), the solution time is 4375 seconds, compared to 11, 15 and 31 seconds for the

three lowest h values considered.

It should be noted that the difference in the solution time across problems employing

different information levels (h) is not strictly increasing as the problem size increase

(higher values of h). As previously discussed, for each value of the information level

h, a new MILP problem instance is created with a different number of variables and

constraints. The resulting MILP problems are, then, solved using commercial solvers.

The solution time for each instance depends on several factors, such as the speed of

the initial heuristic in finding a good solution and the quality of the branching and

cuts generated by the solver for each particular instance. This solution time does not

necessarily correlate with the size of the problem instance, leading to a non-monotonous

increase in computational time as larger problem instances are solved.

Figure 4: Impact of varying h on the computational time of the MS-AARC problem solution

The experimental results obtained for our case study confirm that the solutions ob-

tained for different values of information level h, as per the proposed scheme, remain

significantly representative of the solution of the fully affine dependent problem while

gaining significant computational time. These results point out the Markovian nature

of the MS-AARC model, i.e., that knowledge about the uncertainty realization for the

most recent time step is sufficient to inform the decisions at the current time step, with

no noticeable gains from considering older information about the uncertainty realiza-
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tions (higher values of h) on the quality of the solution. The presented framework may,

therefore, serve the decision maker to benchmark a wide range of practical planning

scenarios under a robust approach, with a significant reduction in computational times.

6. Application to a multi-regional IGEP-UC planning problem with trans-

mission constraints: European based case study

6.1. Extended case study with transmission network constraints

In this section, we illustrate a practical application for our proposed modeling and

solution approach on an extended case study considering the transmission network and

a multi-regional IGEP-UC planning problem. We consider a case study for the power

system connecting neighboring mainland European countries, and in particular: Bel-

gium, France, Switzerland, Luxembourg, the Netherlands, Germany, Italy and Spain.

The data for the case study is obtained from the database of the model of the Euro-

pean electricity system at the transmission level, PyPSA-Eur, which is fully described

in (Hörsch et al., 2018). Particularly, for the set of countries considered, data on net-

work buses, transmission lines and their capacities are obtained from the database of

PyPSA-Eur. The database of the PyPSA-Eur model contains all existing high-voltage

alternating current (HVAC) and direct current (HVDC) lines in the European sys-

tem. It also contains the lines planned by the European Network of Transmission

System Operators for Electricity (ENTSO-E) in the Ten Year Network Development

Plan (TYPNDP) (ENTSO-E, 2018). Moreover, hourly load data are obtain from the

Open Power System Data project (OPSD, 2019) and calculated for each bus of each

country based on the population and GDP data. We consider the historical hourly

load data for the year 2019 and consider a projected 25% increase for these time series

to project the demand for the year 2030. Conventional generation capacity existing

at each bus is obtained from the powerplantmatching (PPM) database (Hofmann and

Hörsch, 2019) and generation for wind and solar plants are based on data from the

ERA5 reanalysis dataset (Hersbach et al., 2020). More information on the database
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of PyPSA-Eur and the data gathering methods can be found in (Hörsch et al., 2018;

Frysztacki et al., 2021).

(a) Full power network for the set of European countries selected.

FR 0

FR 1

FR 2

ES

CH

IT

LU

BE

NL

DE 1

DE 0

DE 2

(b) Equivalent power system after applying clustering to calculate an

equivalent reduced number of buses and transmission lines.

Figure 5: Power system considered for the case study.

For the set of countries considered in the case study, the full power system con-

sists of 2069 buses distributed among countries, and 3154 HVAC transmission lines

connecting them. The full power system is illustrated in Figure (5a). For long-term

generation expansion planning at this scale, it is not practical to consider every bus

in the system. It is very common for studies in the literature to aggregate the genera-

tion buses based on administrative boundaries such as country borders to significantly

reduce the size of the network considered (Rodriguez et al., 2014; Gils et al., 2017;

Victoria et al., 2020; Pavičević et al., 2020). PyPSA-Eur itself consists of a power sys-

tem optimization-based planning model that uses a number of clustering techniques to

significantly reduce the size of the network. Moreover, as previously noted, unlike most

planning models in the literature, the scope of our model is different since it considers

explicit integer formulation for the investment decisions and the integration of the unit
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commitment problem within the optimization framework, as well as, the modeling of

the uncertainties of the load and IRES-CF. We, thus, similarly implement the clus-

tering method proposed in (Hörsch and Brown, 2017) to reduce the network size to

a computationally manageable -yet representative- equivalent system. The equivalent

power system shown in Figure (5b) consists of 12 buses distributed along the 8 selected

countries and 20 equivalent 380kV transmission lines connecting them. The cluster-

ing method used groups close-by buses together, so that, multiple buses representing

neighboring cities are merged into one bus. Buses from different synchronous zones are

not merged together to maintain the realistic representation of transmission corridors

between separate synchronous zones.

Table (7) summarizes the transmission lines technical characteristics for the equiv-

alent power system shown in Figure (5b). Each line is indicated based on the nodes

it connects and characterized by the inductance, the number of parallel circuits in-

stalled and the total power carrying capacity it can transmit between the two nodes.

The number of generation units existing at the beginning of the planning horizon at

each node is given in Table (8a). These numbers of units are calculated based on the

data for the total existing capacity at each node, obtained from the PPM database,

divided by the maximum generation capacity per unit considered in this paper, shown

in Table (2).

Here, we also consider a number of representative days to characterize the future

planning year. In particular, we consider 4 uncertain days to represent a range of

time series for wind and solar capacity factors and for the power demand. Figure (6)

illustrates an example for one selected day for the capacity factor of wind (Figure (6a))

and solar (Figure (6b)) at each bus. It can be seen that, even for one selected day,

a wide range of wind and solar profiles are covered for consideration in the planning

process. Moreover, since the MS-AARC model proposed considers the uncertainty in

wind and solar availability, Figure (7) illustrates an example of one wind and one solar

profiles and the uncertainty range considered for each. Notice that the robust MS-

AARC model provides a solution that is feasible for all the uncertainty realizations
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Table 7: Transmission lines characteristics

From To Total transmission capacity [MW] Reactance [Ohm] Number of parallel circuits

i j f̄ij Xij

BE FR2 11,327 63.07 7

BE LU 1,138 44.13 1

CH NL 6,792 56.09 4

CH DE0 16,981 80.86 10

CH DE1 3,396 140.44 2

CH FR1 10,207 111.25 6

CH FR2 3,380 117.89 2

CH IT 8,500 139.46 5

DE0 DE1 34,541 87.76 20

DE0 DE1 11,887 135.58 7

DE1 DE2 14,723 105.07 9

DE1 FR2 9,629 106.01 6

DE1 LU 3,984 56.27 2

DE1 NL 6,792 68.63 4

ES FR0 2,836 232.49 2

ES FR1 1,698 246.82 1

FR0 FR1 13,044 149.44 8

FR0 FR2 23,802 123.25 14

FR1 FR2 22,085 147.34 13

FR1 IT 5,663 175.12 3

of wind and solar capacity factor in the uncertainty range, i.e., for all the possible

combination of points within the shaded areas. This, indeed, accounts for a significant

number of wind and solar capacity factors, as well as, load profiles in the model.

6.2. Results and analysis: multi-regional generation expansion planning with opera-

tional uncertainty

The proposed MS-AARC model is used to solve the case study based on the Euro-

pean system described in the previous section. The case study is solved for a number

of scenarios covering different targets for renewable penetration levels in the system ex-

pansion: (i) IRES = 25%; (ii) IRES = 50% and (iii) IRES = 75%. For each renewable

penetration level, three levels of uncertainty ranges in the hourly renewable capacity

factor and power demand at each node are considered, these uncertainty ranges, de-
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Table 8: Number of generation units/generation capacity existing at each node (number of unites cal-

culated as the total existing capacity divided by the maximum generation capacity per unit considered

in Table (2))

(a) Number of generation units

Technology [BE] [CH] [DE0] [DE1] [DE2] [ES] [FR0] [FR1] [FR2] [IT] [LU] [NL]

Nuclear 5 3 4 6 2 6 13 10 23 1 0 1

Coal 2 4 3 18 6 6 2 1 2 9 0 6

CCGT 7 11 7 22 6 45 1 4 7 64 1 25

On-Shore Wind 9 1 42 63 81 100 19 11 13 36 1 15

Solar-PV 18 7 66 72 82 27 13 10 10 103 1 12

(b) Total installed capacity [in GW]

Technology [BE] [CH] [DE0] [DE1] [DE2] [ES] [FR0] [FR1] [FR2] [IT] [LU] [NL]

Nuclear 7.00 4.20 5.60 8.40 2.80 8.40 18.20 14.00 32.20 1.40 0.00 1.40

Coal 2.20 4.40 3.30 19.80 6.60 6.60 2.20 1.10 2.20 9.90 0.00 6.60

CCGT 3.85 6.05 3.85 12.10 3.30 24.75 0.55 2.20 3.85 35.20 0.55 13.75

On-Shore Wind 2.16 0.24 10.08 15.12 19.44 24.00 4.56 2.64 3.12 8.64 0.24 3.60

Solar-PV 3.24 1.26 11.88 12.96 14.76 4.86 2.34 1.80 1.80 18.54 0.18 2.16

(a) On-shore Wind (b) PV-Solar

Figure 6: Example of one representative day (24 hours) of the capacity factor of wind and solar energy

at each generation bus.

noted as UR, are calculated as percentage variations around the hourly nominal values.

The uncertainty ranges considered are: (i) no uncertainty (UR= ±0);(ii) 20% range of

uncertainty around the nominal value (UR= ±10%) and (iii) 50% range of uncertainty
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(a) On-shore Wind (b) PV-Solar

Figure 7: Example of the uncertainty range considered for the capacity factors of renewable resources

at bus FR0. Notice that the robust MS-AARC model gives a solution that is feasible for every possible

combination of all the points of the shaded areas.

around the nominal value (UR= ±25%).

6.2.1. Investment capacities and generation mix

Figure (8) shows the breakdown of the the generation capacities existing in the

power system before any expansion. The total installed capacity is around 448GW dis-

tributed roughly equally among Nuclear (23.12%), CCGT (24.55%) and Wind (20.94%)

capacities, and to a lesser extent Coal (14.48%) and Solar (16.91%) capacities. As can

be seen in the figure, nuclear capacity is primarily concentrated in the nodes in France,

while wind and solar capacities are primarily concentrated in the European south at

Italy and Spain, and the northwestern nodes in Germany.

Figure (9) shows the breakdown of generation investment as per the solution of

the MS-AARC model, for the different scenarios of IRES penetration level (moving

vertically along the graphs) and the different scenarios of uncertainty ranges (moving

horizontally along the graphs). First, in terms of the total capacity installed, notice

the significant increase in capacity compared to the initial system before expansion.

For the lowest IRES penetration scenario, the capacity installed almost doubles from

448.12 GW in the initial system to around 1082.78GW for the expansion plan obtained
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Figure 8: Breakdown of generation capacity per technology and their distribution in the power system

before expansion.

at IRES = 25% and no consideration of uncertainty (Figure (9a)). This is, on one hand,

due to the assumed increase in the system load, as discussed in the previous section,

and, on the other hand, due to the requirement to satisfy a percentage of the load

using renewable technologies, which generally have a lower output per MW installed.

As seen in Figure (9), the investment capacities increase when the uncertainty in

IRES-CF and system load are considered. For example, for the case of 25% IRES

penetration, there is an increase of 112GW and 341.2GW for the solutions considering

an uncertainty range of ±10% (Figure (9b)) and ±25% (Figure (9c)), respectively,

compared to when no uncertainty is considered. A similar increase can be observed for

the other scenarios of IRES penetration, notably 50% and 75% IRES levels, when the

uncertainty ranges are increased. These differences in the total capacity installed can

be observed on Figures (9d) to (9f) for IRES = 50% and Figures (9g) to (9i) for IRES

= 75%.

The total capacity increase for the uncertain scenarios is expected since the renew-
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able capacity installed should be robust to the realization of lower capacity factors.

Moreover, the whole system is dimensioned adequately, with enough fast ramping gen-

eration units online, capable of handling the ramping uncertainties.

In addition to the total installed capacity, the generation mix resulting for each

scenario clearly reflects the respective policy choice. More wind and solar capacities

are installed when considering uncertainty in the system operation. As an example

for the scenario of 50% IRES penetration, the share of wind capacity in the system

increases from 58.87% if no uncertainty is considered ((Figure (9d))) to 62.97% and

67.62% for the UR of ±10% (Figure (9e)) and ±25% (Figure (9f)), respectively. Notice

that this increase also coincides with the overall increase in the total capacity of the

system. Fossil technologies, on the other hand, maintain a relatively constant share

across the different uncertain scenarios, and provide a counterbalance to the operational

uncertainty of the system because of their dispatchable nature.

Finally, notice that the total installed capacity in the system increases significantly

as the IRES penetration level increases (i.e. moving vertically in Figure (9). For

example, for the case of UR: ±25% (Figures (9c), (9f), (9i)), the total capacity slightly

increases from 1424.2GW to 1440.2GW for 25% to 50% IRES, while it significantly

increases to around 3186.96GW for the scenario enforcing 75% IRES penetration. This

significant increase highlights the non-linear nature of capacity investment required to

increase the renewable levels in the system. Indeed, in all scenarios optimized, the

results indicate that increasing the IRES penetration to 75% more than doubles the

capacity required compared to a system with 50% renewable penetration. In addition,

the generation mix heavily shifts towards renewable and is significantly reduced for

the fossil and nuclear technologies. Notice in Figure (9) how the combined effect of

considering uncertainty and a high penetration of IRES (moving to the right and down)

shifts the mix heavily towards wind and solar power, and to a lesser extent nuclear, at

the expense of the fossil technologies.
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(a) IRES = 25%, UR: ± 0% (b) IRES = 25%, UR: ± 10% (c) IRES = 25%, UR: ± 25%

(d) IRES = 50%, UR: ± 0% (e) IRES = 50%, UR: ± 10% (f) IRES = 50%, UR: ± 25%

(g) IRES = 75%, UR: ± 0% (h) IRES = 75%, UR: ± 10% (i) IRES = 75%, UR: ± 25%

Figure 9: Breakdown of generation capacity per technology and their distribution in the power system

for different expansion scenarios.
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6.2.2. Investment costs

The results for the investment costs reflects similar trends previously observed for

the investment capacities. Figure (10) illustrates the results for the total investment

costs (in Billion Euros) for all IRES and UR scenarios considered, as well as, a break-

down for the IRES share of investment costs and percentages across scenarios.

Figure 10: Results for the total investment costs (in Billion Euros) for all IRES and UR scenarios

considered + IRES share of investment costs and percentages across scenarios.

As expected, considering uncertainty leads to an increase in the total investment

costs in the system. This is primarily due to the increase in the renewable capacity

installed, as seen in the previous section. The total investment cost for the case of

25% IRES increase from 34.43Beto 42.72 Beand 56.47Be, for the cases of UR: ±0%,

UR: ±10% and UR: ±25%, respectively. This represents an increase of 5.28Beand

19.04Becompared to the base-case scenario with no uncertainty. Similar increases are

observed for the different uncertain scenarios of the 50% IRES and 75% IRES cases.

Notice how the significant increase in capacities installed for the 75% IRES scenario

observed in the previous section is reflected in the investment costs seen in Figure (10).

Compared to the average investment costs of around 45Beand 47Befor the 25% IRES

and 50% IRES cases, respectively, the 75% IRES case results in an average investment

cost of 110Beacross UR scenarios; more than double of that of the other penetration

levels.

Renewable sources represent a significant percentage of the investment costs for all

scenarios considered as can be seen in the scatter plot in Figure (10). For the 25%
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and 50% IRES cases, the percentage of IRES investments reaches levels of 68.87%

and 73.16% of the total new investments, respectively. The percentage of renewable

investments in the 75% IRES case represents almost the entirety of the new total

investments, going up to 99.55%, as can be seen in the figure.

Notice the slight decrease in the respective percentage of IRES investments as the

UR increases for the 50% and 75% IRES cases. The percentage of IRES investments

decrease from 73.16% for UR: ±0% to 68.11% for UR: ±10% for the 50% IRES case.

Similarly, the percentage of IRES investments decrease from 99.55% for UR: ±0%

to 94.70% for UR: ±10% for the 75% IRES case. This can be explained by observing

that, as the uncertainty in the system increases, more dispatchable units are required in

the system to ensure its operational flexibility against the ramping uncertainty. In our

results, this is reflected in more nuclear units installed across these uncertain scenarios.

While these results may depend on the characteristics assumed for the generation units

(for example the ramping rates and minimum up and down times, etc.), the overall

observation for the need of more conventional units to hedge against the operational

uncertainty should remain valid.

6.2.3. IRES shedding

Figure (11) summarizes the IRES shedding amount assuming the system is operated

under the worst-case hourly capacity factor realization as given by the MS-AARC

model. Notice that, as previously explained, the worst-case uncertainty realization

cannot be readily estimated to be the lowest capacity factor for the renewable energy

at every hour. Instead, this has been shown to be driven by less obvious interactions

of ramping uncertainties that are explicitly considered within the proposed MS-AARC

framework. The multistage nature of the model ensures that time-coupling uncertainty,

between each time step and the next, is properly accounted for.

The results show how the percentage of IRES shedding in the system increases as

the IRES level in the system increases. For example, for the case without considering

any uncertainty, IRES shedding reaches levels of 8.16%, 11.53% and 19.54% for the
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25%, 50% and 75% IRES scenarios, respectively. Notice, however, how these shedding

values decrease as the model is solved considering uncertainties. As seen in Figure (11),

for the 25% IRES scenario, the shedding percentage decrease from 8.16% to 5.69% and

down to 3.02% for the UR: ±0%, UR: ±10% and UR: ±25%, respectively. Similar

trends are observed for the other IRES penetration levels as can be seen in the figure.

First, recall that the total renewable capacity in the system is higher for the results

considering higher uncertainty levels. Moreover, the generation mix in the respective

cases is optimized by the MS-AARC model to handle the uncertainty, for example, by

adding more conventional units that can provide base load or ramp quickly. The lower

IRES shedding is, thus, a result of an overall higher investment in the system capacity

and the generation mix to properly account for the uncertainties.

Figure 11: Total IRES shedding in the power system for each scenario considered.

While the IRES shedding is not explicitly optimized in the model (it could be

easily incorporated as an objective in the optimization), these results can help the

policymaker evaluate the possible benefit of the different investment schemes and gen-

eration mixes obtained from the MS-AARC in accounting for different levels of system

uncertainties.

6.2.4. Transmission lines utilization and congestion.

Power flow in the transmission lines connecting the different buses has an important

effect on the generation capacities installed at each bus. Indeed, if lines are not ade-
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quately dimensioned, the congestion in those lines may lead to sub-optimal generation

investments at nodes on both ends of the connection. While transmission expansion

planning is beyond the scope of this paper, it can be easily incorporated in the MS-

AARC optimization model proposed. However, here we show the model capability

in providing insights into identifying congested lines and their impact on generation

expansion planning.

Hourly power flows in each transmission line are obtained from the MS-AARC

model solution. These results are studied to identify lines that are loaded at, or close

to, their maximum carrying capacities. Lines that are consistently operated at their

maximum carrying capacities can be regarded, with high confidence, as congested lines

that can be a subject of transmission expansion consideration.

Figure (12) illustrate an example of selected transmission lines that are consistently

operating near to or at their maximum capacities for the 50% IRES penetration sce-

nario. The illustration is for the power flow during the day with the highest average

IRES capacity factor. Each graph, also, groups the results obtained for the solution

under different uncertainty level. As seen in the figure, the selected lines: 2, 7 and 16,

are operating at their maximum capacities for more than 18 to 23 hours of the daily

operations. There is a significant probability that those lines, and similarly performing

ones, represent a bottle neck for power transmission that can reduce the overall system

costs if adequately treated. Such an investigation can be a relevant extension for the

results shown here.

7. Conclusions

The proper treatment of uncertainties in planning future electric power systems is

critical for policymakers and practitioners. Generation expansion planning models with

a high share of intermittent renewable energy penetration must be able to account for

both short-term inter-temporal variability and uncertainty in renewable production and

load levels. To address this issue, this paper proposes a novel multistage robust opti-

mization model for the integrated generation expansion planning and unit-commitment
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(a) Line 2: BE to LU (b) Line 7: CH to FR2 (c) Line 16: ES to FR1

Figure 12: Example of power flow level in selected transmission lines (most congested) for the 50%

IRES penetration scenario and considering different uncertainty levels.

(IGEP-UC) problem. Different from two-stage robust or stochastic models, multistage

robust optimization allows the sequential representation of uncertainty realizations as

they are revealed over time. It also considers the non-anticipativity of future uncer-

tainty realizations at the time of decision-making, which is the case in practical real-

world applications. Moreover, the IGEP-UC problem formulated is multi-period, i.e.

spanning several years, and mutli-regional, i.e. considering different investment loca-

tions and the transmission network connecting them. The integrated unit-commitment

problem means that the short-term characteristics of the system, such as the start-up

and shut-down of units and the their ramping capacities, is explicitly considered in the

planning model. We develop a tractable form of the multistage robust model and pro-

pose a solution method relying on the reduction of the information basis of the decision

rules that map the uncertainty realizations to the changes in recourse variables.

We, first, validate the performance of the proposed solution method on a reduced-

size case study, and show that the model is computationally tractable and that sig-

nificant gains in computational times can be achieved by the proposed information

basis reduction, while maintaining the quality of the solution. In particular, we show

that the results of the results obtained by the proposed reduction approach are within

1% at most compared to the results obtained from the non-reduced problem. Thereof

ensuring that the results remain optimal within a very low tolerance, with significant
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gains in computational time.

Moreover, a comprehensive analysis on a case-study based on the European power

system spanning 8 European countries is presented. The results obtained show the

model capability in providing useful insights to the investment decisions, in terms of

generation mix, renewable shedding, power flow in the transmission lines, among oth-

ers. Moreover, we show the importance of considering the short-term uncertainties of

the system load and renewable production in a multistage setting, and how those un-

certainties re-define the worst-case operational requirements in such a way that would

not be captured within non-causal planning models.

It should be noted that a number of important assumptions have been made in

this work. Most notably, the use of a limited number of representative days to account

for net-load variations, the use of the integer clustering method for handling identical

generation units and the assumption of linear relationships in the model formulation.

To best of our capabilities, all our assumptions are made based on validated methods in

the literature that have investigated their effectiveness and validated their relevance for

solving power system planning problems. However, it should be highlighted that, while

these assumptions are made with the aim of ensuring a high quality tractable solution

to the large-scale planning problem under uncertainty, a more in-depth analysis is

required to identify their limitations towards real application. This will be considered

in future improvements of this work.

Moreover, future extensions of this work may consider the treatment of long-term

uncertainties in system planning, such as fuel prices or investment costs or policy in-

centive schemes. Another relevant extension is the consideration of finer temporal

resolution for the net-load variation as, in our work, only hourly resolution have been

considered. Sub-hourly resolution might be relevant particularly since the availability

of renewable energy sources might vary significantly in shorter periods of time. Finally,

since our focus in this work is the generation expansion problem, decisions for trans-

mission grid expansion may, also, be integrated to the uncertain planning problem in

future extensions.
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Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5

global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–

2049, 2020.
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Appendix A. IGEP-UC deterministic model formulation

Objective function

min
Ω,Θ

∑
y∈Y

∑
i∈I

(1 +DF )−y ·

 ∑
g∈G(new)

Inv Cg · P̄g · qyig (A.1a)

+
∑
g∈G

COMg · P̄g ·
y∑
l=1

qlig (A.1b)

+
∑
s∈S

∑
t∈T

∑
g∈G(th)

(
St Cg · zystig

)
(A.1c)

+
∑
s∈S

∑
t∈T

[∑
g∈G

(
Marg Cyg · p

yst
ig

)
+ Lns C · lnsysti

]]
(A.1d)

where Ω = {q, x, u, z, v} is the set of the investment and commitment decision variables

and Θ = {p, lns, f , θ} is the set of generation and network power dispatch variables,

respectively.

IGEP-UC model constraints

The minimization of the objective is subject to long-term investment constraints, and

short-term hourly unit commitment and dispatch constraints as follows:

investment and commitment constraints

xyig ≤
y∑
l=1

qlig, ∀i ∈ I, g ∈ G(new), y ∈ Y (A.2a)

∑
i∈Ic

∑
g∈G(new)

Inv Cg · P̄g · qyig ≤ Inv Maxy, ∀y ∈ Y (A.2b)

∑
i∈Ic

∑
g∈G(th)

(
P̄g · xyig

)
≥
(

1 + r(min)
)
· LMax, ∀y ∈ Y (A.2c)

uystig ≤ x
y
ig, ∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T (A.2d)

uystig − u
yst−1
ig = zystig − v

yst
ig , ∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T \ {1} (A.2e)

uystig ≥
t∑

τ≥t−UMg

zysτig , ∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T \ {1, ..., UMg} (A.2f)

xyig − u
yst
ig ≥

t∑
τ≥t−DMg

vysτig ,∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T \ {1, ..., DMg} (A.2g)

The variable xyig in Eq. (A.2a) keeps track of the cumulative investment decisions made for

each new generator belonging to the set G(new), at each node i over the years y up to the
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end of the planning horizon. The maximum annual budget for investment in new generators

within a specific region belonging to the set Ic (e.g. a specific region or country) is limited in

Eq (A.2b). Similarly, Eq (A.2c) ensures that the adequacy reserve margin for conventional

(dispatchable) generation units is respected for a specific region or system. Eq (A.2d) ensures

the coupling between investment and operational decisions, indicating that only existing

units may be committed for operation and power dispatch. Eq (A.2e) defines the hourly

unit commitment state of the generation units through the start-up and shut-down decisions.

Finally, Eq. (A.2f) and Eq. (A.2g) constraint the minimum allowable up- and down-times for

thermal and nuclear units.

Power dispatch constraints

∑
g∈G

pystig + lnsysti −
∑
j∈N+

(i)

fystij +
∑
j∈N−

(i)

fji = Lysti ,∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (A.3a)

∑
s∈S

∑
t∈T

∑
g∈G(res)

pystig ≥ Res
(lvl) ·

∑
s∈S

∑
t∈T

L̄ysti , ∀i ∈ Ic, y ∈ Y (A.3b)

pystig ≤ u
yst
ig · P̄g, ∀i ∈ I, g ∈ G(th),∀y ∈ Y, s ∈ S, t ∈ T (A.3c)

pystig ≥ u
yst
ig · ¯Pg, ∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T (A.3d)

pystig − p
yst−1
ig ≤ uyst−1

ig · ¯URg + zystig · St Pg, ∀i ∈ I, g ∈ G
(th),

y ∈ Y, s ∈ S, t ∈ T \ {1} (A.3e)

pyst−1
ig − pystig ≤ u

yst−1
ig · D̄Rg, ∀i ∈ I, g ∈ G(th), y ∈ Y, s ∈ S, t ∈ T \ {1} (A.3f)

pystig ≤ x
y
ig · P̄g · CF

yst
ig , ∀i ∈ I, g ∈ G(res), ∀y ∈ Y, s ∈ S, t ∈ T (A.3g)

− 2θ̄ ≤ θysti − θ
yst
j −Xij · f

yst
ij ≤ 2θ̄, ∀(i, j) ∈ F , y ∈ Y, s ∈ S, t ∈ T (A.3h)

− f̄ij ≤ fystij ≤ f̄ij , ∀(i, j) ∈ F , y ∈ Y, s ∈ S, t ∈ T (A.3i)
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− θ̄ ≤ θysti ≤ θ̄, ∀i ∈ I, y ∈ Y, s ∈ S, t ∈ T (A.3j)

θysti = 0, ∀i = iref , y ∈ Y, s ∈ S, t ∈ T (A.3k)

Regarding power dispatch, the hourly supply and demand balance is ensured by Eq. (A.3a).

In this constraint, the total power generated, the total load-not-supplied and the total power

flow from and to each node, is equal to the power demand at this node. Eq (A.3b) ensures

a minimum of IRES production required in the system, according to the particular policy

of the decision maker, based on a maximum estimate for the forecasted demand time-series.

The hourly maximum and minimum production levels for thermal and nuclear units, once

committed, are given in Eq (A.3c) and Eq. (A.3d), respectively. Eq. (A.3e) and Eq. (A.3f)

limits the hourly upwards and downwards ramping capabilities for thermal and nuclear units,

respectively, to their maximal technical capabilities. If the generation unit is starting-up, its

ramping upwards is also constrained by the maximum start-up generation level, as seen in

Eq. (A.3e). IRES generation at each node is limited by the hourly available capacity factor

CF , which is related to wind speeds and solar irradiance, as described in Eq (A.3g).

Bi-directional power flow between network nodes is described by constraints (A.3h)-

(A.3k). Eq. (A.3h) sets the power flow magnitude and direction between nodes based on the

difference in voltage angles and the susceptance of the transmission line. The maximum flow

in each transmission line is limited by constraint (A.3i) in both power flow directions. Simi-

larly, the voltage angle is constraints within the physical limits set in Eq. (A.3j). Finally, the

voltage angle for the selected reference node is set to zero, as indicated by constraint (A.3k).
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