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ABSTRACT 9 
 10 

We are performing the digital transition of industry, living the 4th industrial 11 
revolution, building a new World in which the digital, physical and human dimensions are 12 
interrelated in complex socio-cyber-physical systems. For the sustainability of these 13 
transformations, knowledge, information and data must be integrated within model-based and 14 
data-driven approaches of Prognostics and Health Management (PHM) for the assessment and 15 
prediction of structures, systems and components (SSCs) evolutions and process behaviors, so 16 
as to allow anticipating failures and avoiding accidents, thus, aiming at improved safe and 17 
reliable design, operation and maintenance. 18 

There is already a plethora of methods available for many potential applications and 19 
more are being developed: yet, there are still a number of critical problems which impede full 20 
deployment of PHM and its benefits in practice. In this respect, this paper does not aim at 21 
providing a survey of existing works for an introduction to PHM nor at providing new tools or 22 
methods for its further development; rather, it aims at pointing out main challenges and 23 
directions of advancements, for full deployment of condition-based and predictive 24 
maintenance in practice. 25 
Keywords: Prognostics and Health Management (PHM), predictive maintenance, Recurrent 26 
Neural Networks (RNNs), Reservoir Computing (RC), Generative Adversarial Networks 27 
(GANs), Deep Neural Networks (DNNs), Optimal Transport (OT) 28 
 29 
NOMENCLATURE 30 
AAKR Auto-Associative Kernel Regression 
AANN Auto-Associative Neural Networks 
ADNN Adjacency Difference Neural Network 
AE  Auto-Encoder 
AE-
GAN Auto-Encoder aided GAN 
ALE Accumulated Local Effect 
ANNs Artificial Neural Networks  
ARM Association Rule Mining 
ARMA Auto-Regressive Moving Average 
BN Bayesian Network 
CatAAE Categorical Adversarial Autoencoder 
CBM Condition-Based Maintenance 
CDT Cumulative Distribution Transform 
CNN Convolutional Neural Network  
CVNN Complex Valued Neural Network 
DAE Denoising Auto Encoder 
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DBN Deep Belief Network 
DL Deep Learning 
DNNs Deep Neural Networks 
DT Decision Trees 
ELM Extreme Learning Machine 
EM Expectation Maximization 
EMD Earth Mover’s distance 
ESNs Echo-State Networks 
FCM Fuzzy C-Means 
FFT Fast Fourier Transform 
GANs Generative Adversarial Networks 
GLRT Generalized Likelihood Radio Test 
GRU Gated Recurrent Unit 
HI Health Indicator 
HMM Hidden Markov Model 
ICE Individual Conditional Expectation 
ICT Information and Communication Technology 
IoTs Internet of Things 
KD Kantorovich distance 
KF Kalman Filtering 
KNN K-Nearest Neighbor 
LDA Linear Discriminant Analysis  
LIME Local Interpretable Model Explanation 
LS Least Square  
LSTM Long Short Term Memory 
MAR Missing At Random 
ML Machine Learning 
MODE Multi-Objective Differential Evolution 
NPPs Nuclear Power Plants 
OC-
SVM One Class-Support Vector Machine 
OT Optimal Transport  
OTT Optimal Transport Theory 
PCA Principle Component Analysis 
PDP Partial Dependence Plot 
PF Particle Filtering 
PFSA Probabilistic Finite State Automation 
PHM Prognostics and Health Management 
PPIs Prognostic Performance Indicators 
RC Reservoir Computing 
RF Random Forest 
RNNs Recurrent Neural Networks 
RUL Remaining Useful Life 
RVM Relevance Vector Machine 
SA Sensitivity Analysis 
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SaNSDE Self-adaptive Differential Evolution with Neighborhood Search 
SC Spectral Clustering 
SOM Self-Organizing Map 
SPRT Sequential Probability Ratio Test 
SSCs Structures, Systems and Components 
STPN Spatio-Temporal Pattern Network 
SVM Support Vector Machine 
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 

 31 
 32 

1. INTRODUCTION 33 
 34 

Prognostics and Health Management (PHM) is a computation-based paradigm that 35 
elaborates on physical knowledge, information and data [1] of structures, systems and 36 
components (SSCs) operation and maintenance, to enable detecting equipment and process 37 
anomalies, diagnosing degradation states and faults, predicting the evolution of degradation to 38 
failure so as to estimate the remaining useful life (Figure 1). The outcomes of the PHM 39 
elaboration are used to support condition-based and predictive maintenance decisions for the 40 
efficient, reliable and safe operations of SSCs [2]–[5]. In fact, the capability of deploying 41 
these maintenance strategies provides the opportunity of setting efficient, just-in-time and 42 
just-right maintenance strategies: in other words, providing the right part to the right place at 43 
the right time. This opportunity is big because doing this would maximize the production 44 
profits and minimize all costs and losses, including asset ones [6]. As a result, in the past 45 
decade PHM research and development has intensified, both in academia and industry, 46 
involving various disciplines of mathematics, computer science, operations research, physics, 47 
chemistry, materials science, engineering, etc. [7], [8].  48 
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Figure 1. PHM tasks. The data collected from industrial component sensors feeds 52 
three major PHM tasks: fault detection (anomaly detection), fault diagnostics (degradation 53 
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level assessment) and fault prognostics (remaining useful life prediction). The successful 54 
deployment of PHM provides solid foundations for the optimal maintenance decisions, and 55 

thus improve the safety of industrial SSCs while reducing cost. 56 
 57 

For making reliability and safety decision using PHM outcomes in practice, 58 
identifying, understanding and quantifying the impacts and benefits that the development of a 59 
PHM system can have on the health management of a SSC is necessary (e.g. avoid 60 
unexpected catastrophic failures, reduce maintenance frequency, optimize spare parts and 61 
storage, optimize resources, etc.). Then, the practical implementation of PHM includes data 62 
acquisition to enable detection, diagnostics and prognostics tasks, and maintenance decision 63 
making [9] (Figure 1). The supporting PHM development framework (Figure 2) and its 64 
requirements must, then, be properly defined to perform well in real industrial scenarios [9]–65 
[11]. Given the increasing complexity, integration and informatization of modern engineering 66 
SSCs, PHM can no longer be an isolated addition for supporting maintenance but must be 67 
closely linked to the other structure, power, electromechanical, information and 68 
communication technology (ICT), control parts of the systems. Then, PHM must be included 69 
at the beginning of the system conceptualization, and carried through its design and 70 
development in an integrated framework capable of satisfying the overall operation and 71 
performance requirements [12], [13]. 72 

Finally, for the use of PHM in practice, the question of which methods to use is 73 
fundamental. For example, referring, in particular, to the prognostic task of PHM, the 74 
prediction capability of a prognostic method refers to its ability to provide trustable 75 
predictions of the Remaining Useful Life (RUL), with the quality characteristics and 76 
confidence level required for making decisions based on such predictions. Indeed, this heavily 77 
influences the decision makers’ attitude toward taking the risk of using the predicted RUL 78 
outcomes to inform their decisions [14]. The choice of which method to use is typically 79 
driven by the data available and/or the physics-based models available, and the cost-benefit 80 
considerations related to the implementation of the PHM system. A set of Prognostic 81 
Performance Indicators (PPIs) must be used to guide the choice of the approach to be 82 
implemented, within a structured framework of evaluation. These PPIs measure different 83 
characteristics of a prognostic approach and need to be aggregated to enable a final choice of 84 
prognostic method, based on its overall performance [15]. For this reason, various 85 
performance metrics have been defined to enable the evaluation of the performance of PHM 86 
methods [16]. These metrics are needed to guide the PHM system development (Figure 2).  87 
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Figure 2 PHM development framework for informed decision-making 91 
 92 
Up to now, for the maturation of PHM, the main efforts have been mainly devoted to 93 

the development of hardware (i.e., Internet of Things (IoTs), smart meters, etc. [17]–[20] and 94 
software for tracking the health state of monitored equipment (e.g., data analytics, platforms 95 
for IoT interconnection and clouding for computing, etc. [21]–[23]). On the other hand, the 96 
full deployment of PHM in practice involves other aspects, including design (e.g. the use of 97 
smart components may lead to different reliability allocation solutions), and impacts various 98 
work units involved in maintenance decisions and actuations (e.g., workers can use smart 99 
systems, maintenance engineers can analyze big data), including the supporting logistics 100 
(spare parts availability and warehouse management can be driven by the PHM results) [17]. 101 

In this paper, we present some main challenges for the development of PHM in 102 
practice, corroborated by practical examples, and associate to some of them the developments 103 
of Recurrent Neural Networks (RNNs), Reservoir Computing (RC), Generative Adversarial 104 
Networks (GANs), Deep Neural Networks (DNNs), Optimal Transport Theory (OTT), as 105 
potential directions to successfully address them. 106 

 107 
 108 

2. CHALLENGES TO PHM IN PRACTICE 109 
 110 

Main challenges to the deployment of PHM in practice still remain, coming from 111 
different sides: 112 

• the physics of the problem 113 
• the data available 114 
• the requirements of the solutions. 115 

The challenges related to the physics of the problem derive from the complexity of the 116 
SSCs degradation processes, which are not completely known, dynamic and highly non-117 
linear, and hence their understanding, characterization and modelling are difficult. 118 

The challenges related to the data relate to multiple aspects (Figure 3): 119 
• the many anomalies in the real data collected in the field (including missing 120 

data and erroneous data from malfunctioning sensors) 121 
• the scarcity and incompleteness of data recognizably related to the state of 122 

degradation of the SSC of interest (labelled patterns) 123 
• the difficulty of managing and treating big data, with a large variety of signals 124 

collected by sensors of different types 125 
• the changing operational and environmental conditions which affect the data 126 

used to train the PHM models and calibrate their parameters, and on which the 127 
models are applied. 128 

 129 
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Figure 3 PHM challenges from data. Fault detection is affected by the challenge of 132 
missing data and erroneous data from malfunctioning sensors; fault diagnostics is affected by 133 

the challenge of missing labels relating to the state of degradation of the SSCs; fault 134 
prognostics is affected by the challenge that data are collected in event-based scenarios 135 

because of the difficulty of managing and treating big data. 136 
 137 

The challenges related to the requirements of the PHM solutions come from the 138 
multiple objectives that they must achieve, depending on the applications. The obvious ones 139 
are accuracy and precision, quantified with defined performance indicators and measured 140 
against the decisions that they support: in some cases, very high accuracy and precision is 141 
required to be able to take confident decisions (e.g. of stopping a system upon an alert of fault 142 
detection, of replacing a component upon a fault diagnosis, of anticipating or postponing a 143 
scheduled maintenance based on accurate remaining useful life predictions); in other cases, 144 
accuracy and precision need not be so high, and may be compromised for other objectives. 145 
For example, transparency, explainability and interpretability of PHM models are attributes of 146 
particular interest, if not demanded, for decision making in safety-critical applications, for 147 
which they may also be a regulatory prerequisite. Also, PHM as a data-dependent enabling 148 
technology for smart condition-based and predictive maintenance has issues regarding 149 
security. Indeed, the technological network supporting PHM is made of devices, 150 
communication technologies and various protocols, so that security issues regarding 151 
availability, data integrity, data confidentiality and authentication exist. As these issues 152 
hamper operational efficiency, robustness and throughput, they must be adequately addressed. 153 

Finally, an enveloping challenge to the deployment of PHM in practice comes from 154 
the fact that the PHM tasks of fault detection, diagnostic and prognostic are inevitably 155 
affected by various sources of uncertainty, such as incomplete knowledge on the present state 156 
of the equipment, randomness in the future operational usage profile and future evolution of 157 
the degradation of the equipment, inaccuracy of the PHM model and uncertainty in the values 158 
of the signal measurements used by the PHM model to elaborate its outcomes, etc. Therefore, 159 
any outcome of a PHM model should be accompanied by an estimate of its uncertainty, in 160 
order to confidently take robust decisions based on such outcome, considering the degree of 161 
mismatch between the PHM model outcomes and the real values. 162 

As these issues hamper operational inefficiency, robustness and throughput, they must 163 
be adequately addressed. 164 

With specific reference to data-driven methods and models for the tasks of fault 165 
detection, fault diagnostics and failure prognostics in PHM, the next section addresses some 166 
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of the above challenges with the focus on advanced methods that are proving as promising for 167 
their solution.  168 
 169 

3. ADVANCING METHODS OF FAULT DETECTION, FAULT DIAGNOSTICS 170 
AND FAILURE PROGNOSTICS FOR MEETING THE CHALLENGES OF 171 
PHM IN PRACTICE 172 

 173 
Methods of fault detection, fault diagnostics and failure prognostics within the PHM 174 

framework are continuously being developed and advanced, and applications to various SSCs 175 
are being deployed, supported by the technology of sensors and monitoring systems, the 176 
techniques of data analytics, image processing and text mining, mostly based on the Artificial 177 
Intelligence (AI) and Machine Learning (ML) paradigms, and the computational power [24]. 178 
The objective of fault detection is to recognize abnormaities/anomalies in SSCs behavior. The 179 
objective of fault diagnostics is to identify the SSCs degradation states and the causes of 180 
degradation. Prognostics aims at predicting the SSCs Remaining Useful Life (RUL), i.e. the 181 
time left before it will no longer be able to perform its intended function. Fault detection and 182 
diagnostics, and failure prognostics are the enablers of condition-based and predictive 183 
maintenance, which offers major opportunities for Industry 4.0 and smart SSCs, as they can 184 
allow reducing failures, increasing SSCs usage, and reducing operation and maintenance 185 
costs, with tangible benefits of reduction of production downtime, risk and asset losses, and 186 
consequent increase of production profit [24]. 187 

A number of challenges still remain, arising from the complexity of the physics which 188 
PHM is addressed to in practice, from the data available and from the requirements to the 189 
PHM solutions for practical applications. In this Section, we go through some of these 190 
challenges, to see where we stand, and where we are going and need to go.  191 
 192 

3.1 Data Challenges 193 
3.1.1 Fault detection 194 

As mentioned above, fault detection is the PHM task which aims at identifying the 195 
presence of abnormalities/anomalies during the operation of a SSC. While such 196 
abnormalities/anomalies are commonly referred to as faults in certain disciplines, such as 197 
energy and mechanical engineering, the term damage is commonly used in some other 198 
disciplines such as structural engineering. In practical applications, fault/damage detection is 199 
challenging because it is necessary to assess the presence of the fault/damage based on signals 200 
of physical variables measured during the SSC operation and such process is complicated by 201 
the various sources of uncertainty that can render the signal processing extremely difficult. 202 

Fault detection methods are classified as model-based and data-driven [25]. Model-203 
based methods use first principles and physical laws to describe the physical phenomena and 204 
processes of interest [26][27][28]. For example, [26] builds a model of the behavior of a rotor 205 
using the finite element method and successfully applies it to fault detection. [27] introduces a 206 
model-based fault detection and isolation technique for manufacturing machinery based on a 207 
defined relationship between a fault signal and observer theory. [28] presents a two-level 208 
Bayesian approach based on the use of Hidden Markov Model (HMM) and Expectation 209 
Maximization (EM) to detect early faults in a milling machine. However, the practical 210 
application of model-based methods is limited by the difficulty of developing accurate 211 
mathematical models of the processes and behaviors of complex modern SSCs [29]. 212 

For this reason, data-driven fault detection methods are more popular than model-213 
based ones, as they rely only on data for the recognition of anomalous patterns attributable to 214 
faults [30][31][32][33][34][35]. For example, [30] develops a fault detection method for 215 
power generation systems, by combining Principle Component Analysis (PCA) for feature 216 
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extraction and Random Forest (RF) for fault behavior pattern learning. Support Vector 217 
Machine (SVM) techniques are introduced to detect faults considering concept drift in nuclear 218 
power plants [31], and to detect faults in high speed train brake systems in case of highly 219 
imbalanced data [35]. Neural Network based approaches attract attention in fault detection, 220 
e.g. [32] combines a set of Artificial Neural Networks (ANNs) through Bayesian statistics for 221 
heavy-water nuclear reactor fault detection and uncertainty quantification, [34] uses ANN to 222 
detect false alarms in wind turbines for reliability centered maintenance, [33] introduces a 223 
Recurrent Neural Network (RNN) with optimized hyperparameters for the detection of 224 
software faults.  225 

These methods can be divided in those which rely on one-class classification models 226 
and those which use residuals, i.e., the differences between the real measurements and the 227 
reconstructed values of the signals in normal conditions, to identify the normal/abnormal 228 
conditions [36]. 229 

The former require training of a one-class classification model on signal 230 
measurements collected from both normal (healthy) and abnormal/anomalous (faulty) 231 
conditions of SSCs. However, in practical applications, faults are rare and the data have 232 
manifold distributions embedded in high-dimensional spaces. Distributions with non-smooth 233 
densities and the curse of dimensionality of the data in the long-term multivariate time series 234 
collected from sensors on real industrial SSCs, can cause model overfitting and render 235 
difficult the empirical reconstruction of the data distribution, which, therefore, leads to 236 
unsuccessful detection of abnormal/anomalous conditions in SSCs behavior. These technical 237 
issues hamper the successful deployment of one-class classification methods for fault 238 
detection in practical applications. The need is, then, to develop methods able to detect 239 
anomalous (faulty) conditions given data in normal conditions, and to deal with the manifold 240 
distribution and large dimensionality of real data. In this direction, Generative Adversarial 241 
Networks (GANs) are an interesting perspective as they can be used to reproduce complex 242 
distributions, e.g. manifolds [37], [38]. An example is given in the work by [39], which 243 
proposes an Auto-Encoder aided GAN (AE-GAN) model for the detection of 244 
abnormal/anomalous conditions in the behavior of a SSC,  in which the generator of the GAN 245 
and an auxiliary encoder form an AE module, and the reconstruction error generated by the 246 
AE is used as score to detect abnormalities/anomalies in the SSC behavior. Adaptive noise is 247 
added on the data and AdaBoost ensemble learning is adapted to integrate the AE-GANs 248 
applied to detect anomalies in each small time slice of the long-term multivariate time series 249 
collected by the sensors [40]. Furthermore, this work derives a lower bound of Jensen-250 
Shannon divergence between generator distribution and normal data distribution as an 251 
objective to optimize the AE-GANs hyperparameters; by probing, the optimization works 252 
without test data, as commonly needed by other methods. Extensive experiments are 253 
conducted on real industrial datasets to demonstrate the usefulness of the developed Adaboost 254 
ensembled AE-GAN method for abnormality/anomaly detection in practice. 255 

Residual-based fault detection methods rely on the use of normal-conditions (healthy) 256 
data, only [41]. These methods reconstruct the values of the signals expected in normal 257 
conditions and use the residuals, i.e., the differences between the real measurements and the 258 
reconstructed signals, to identify the normal/abnormal conditions. Examples of residual-based 259 
methods include Auto-Associative Kernel Regression (AAKR) [42]–[44], Principal 260 
Component Analysis (PCA) [45], One Class-Support Vector Machine (OC-SVM) [46], and 261 
Artificial Neural Networks (ANNs) [47]. The empirical model, fitted to the data so as to 262 
provide accurate signal reconstructions, plays an essential role in the above procedure. 263 
However, its training may require a large amount of healthy data collected under various 264 
operating conditions [48]. Besides, different choices of the reconstruction model may yield 265 
different detection results [49].  266 
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Eventually, the detection of an abnormal condition is confirmed by considering 267 
whether the obtained residuals exceed a threshold or by statistical tests. For example, [43] 268 
uses the Sequential Probability Ratio Test (SPRT) on the residuals obtained from an AAKR 269 
model; [50] applies T2- and Q-statistics of the PCA residuals to detect damages in structures; 270 
[51] establishes a statistical hypothesis model in the residual subspace of PCA transform, to 271 
detect and isolate sensor faults based on a Bayesian formulation and the generalized 272 
likelihood radio test (GLRT). Notice that, although these methods assume a certain 273 
distribution of the residuals, most distributions of real-world data may be a priori unknown or 274 
may not actually follow the assumed distributions [52]. 275 

Another challenge of fault detection lies in the data pre-processing [53] to extract 276 
features providing the information useful for enabling the detection. Various pre-processing 277 
techniques, such as Fast Fourier Transform (FFT) [54], Continuous Wavelet Transform [55], 278 
Mathematical Morphology [56], have been applied to raw signals, and the processed 279 
outcomes have been fed to fault detection [57]. The quality of the features selected by pre-280 
processing strongly impacts the detection results, but unfortunately there is no universal rule 281 
for choosing the optimal pre-processing method. 282 

Recently, transport-related methods are being considered for applications in PHM. 283 
They have already been successfully employed in other domains [58], involving signal and 284 
image processing [59], computer vision[60], machine learning and statistics [61], [62]. 285 
Commonly used optimal transport distances include Wasserstein distance (or Kantorovich 286 
distance) [63] and Earth Mover’s distance (EMD) [64]. Wasserstein distance has proved a 287 
promising statistic for the nonparametric two-sample test [65].  288 

In the PHM area, [66] has studied the bearing diagnostics problem using EMD 289 
combined with dynamical system reconstruction. [67] has used a PCA scheme combined with 290 
the Kantorovich distance (KD) for fault detection in the process industry. [68] has developed a 291 
method of OT in which the abnormality score is built using the Wasserstein distance and has 292 
verified its performance considering the detection of abnormal conditions in bearings. The 293 
method differs from other state-of-the-art methods for fault detection, since it directly deals 294 
with raw signals and does not require the use of signal reconstruction methods or feature 295 
extraction; it is also distribution-free, i.e., it does not require to formulate any a priori 296 
hypothesis on the distribution of the data. The basic idea behind the method is to generate an 297 
abnormality score, based on Wasserstein distance, to quantify the dissimilarity between the 298 
probability distributions of the currently monitored and healthy data. The Cumulative 299 
Distribution Transform (CDT) [69] is used to find the univariate Optimal Transport (OT) 300 
solution. The method has been applied to a real bearing dataset and successfully compared 301 
with two other fault detection methods of literature: a Z-test based method [70] and a PCA-302 
based method for signal reconstruction, combined with the Q-statistic for residual analysis 303 
[71]. The Adaboost ensembled AE-GAN method mentioned earlier [39] can also be adapted 304 
for application to normal-conditions data only. The generator of the GAN and the auxiliary 305 
encoder form the AE module, and the reconstruction error generated by the AE is used as the 306 
score to detect abnormalities/anomalies in SSC behavior. For the abnormality/anomaly 307 
detection, it is assumed, as usual, that the probability distribution of the abnormal/anomalous-308 
conditions data is significantly different from that of the normal-conditions data: as the 309 
generator can only reproduce the distribution of the normal-conditions data, the AE always 310 
successfully reconstruct the normal data but fails to reconstruct the abnormal ones. So, any 311 
test sample processed through the AE-GAN is declared anomalous if the AE reconstruction 312 
error is larger than a certain predefined threshold. For dealing with the high dimensionality of 313 
the data, again, an ensemble framework can be used. Non-overlapped sliding time windows 314 
are introduced to partition the multivariate time series and a separate data sample for each 315 
time window is analyzed by AE-GAN for abnormal/anomaly detection. Finally, the AdaBoost 316 
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algorithm is used to aggregate the abnormality/anomaly detection results for each time 317 
window. The GAN-based method for addressing the challenge of missing fault data in fault 318 
detection is shown in Figure 4. 319 
 320 

 321 
Figure 4 Illustration of GAN-based method in fault detection w.r.t. the challenge of 322 

missing fault data [39]. GAN-based method is a type of distribution reconstruction method 323 
which reproduces the normal-conditions data distribution by the Generator and uses an extra 324 
Encoder to form an Auto-Encoder, which can obtain anomaly scores (reconstruction errors) 325 

to distinguish whether samples are anomalous or not.  326 
 327 

 Table 1 summarizes the fault detection techniques, with specific regard to the 328 
challenge of missing fault data. 329 
Table 1 Fault detection techniques with regard to the challenge of missing fault data. 330 
Model-based Data-driven 

Supervised 
learning 

(Limitation: need 

both healthy and 

fault condition 

data) 

One-class classification 
(Advantage: addressing the challenge of missing fault 

data) 

Residual-based  
(Limitation: need 

to apply statistical 

test) 

Transport-
related 

Distribution 
reconstruction-

based 

Finite 

Element 

Method:  

[26] rotor 
crack 
diagnostics  

RF: 

[30] power 
generators fault 
detection 

AAKR: 

[42] non-linear 
multimode 
processes fault 
detection   
[43] reactor coolant 
pump fault detetion   
[44] power plant 

EMD: 

[66] bearing 
fault detection 

GAN-based: 

[39] high-
speed train 
automatic door 



11 
 

fault detection  
Observer 

theory: 

[27] rotor fault 
detection  

SVM: 

[31] early fault 
detection of 
numerical case 
[35] high-speed 
train brake fault 
detection  

PCA: 

[45] air handling 
unit fault detection 

Kantorovich 

Distance: 

[67] tank 
heater 
simulation 
case fault 
detection  

HMM: 

[28] 
mechanical 
equipment 
early fault 
detection 

ANN: 

[32] heavy-water 
reactor early fault 
detection 
[34] wind turbine 
false alarm 
detection 

OC-SVM: 

[46] building air 
conditioning 
system fault 
detection  

Wasserstein 

Distance: 

[68] bearings 
fault detection 

RNN: 

[33] software fault 
detection 

ANN: 

[47] wind turbine 
gearbox fault 
detection 

CDT: 

[69] numerical 
case 

 331 
3.1.2 Fault diagnostics 332 

Fault diagnostics requires data analytics capable of identifying the equipment fault 333 
state, mode, location and other characteristics of interest, based on monitored signals 334 
(temperature, pressure, current, acceleration, etc.). As for the detection task previously 335 
discussed, in practical applications it also suffers from the presence of uncertainty coming 336 
from the processing of data of the measured signals. Common approaches make use of 337 
historical operational data to build empirical classifiers capable of discriminating different 338 
classes from the data, for fault diagnostics. Different classification techniques, such as 339 
Complex Valued Neural Network (CVNN) [72], Deep Belief Network (DBN) [73], Bayesian 340 
Network (BN) [74], Decision Trees (DT) [75], Linear Discriminant Analysis (LDA) [75], K-341 
Nearest Neighbor (KNN) [75], Artificial Neural Networks (ANNs), Support Vector Machines 342 
(SVMs) [76][75][77], have been successfully used in applications of different industrial and 343 
civil sectors [78]. These methods rely on supervised learning of labelled data, which, 344 
however, are rarely available in practice, so that their real application is limited [79]: the real 345 
application calls for unsupervised learning of unlabeled data. 346 

Unsupervised learning is an important topic in machine learning for time series 347 
segmentation [80], [81] and pattern recognition [21], [82], [83]. In fault diagnostic 348 
applications, it is used to provide abstract representations of the raw measurement data and 349 
obtain various clusters  representing healthy and faulty conditions [22], [84]–[86]. In the work 350 
of [22], a Categorical Adversarial Autoencoder (CatAAE) has been proposed for unsupervised 351 
learning aimed at fault diagnostics of rolling bearings. In the work of [84], a diagnostic 352 
methodology based on unsupervised Spectral Clustering (SC) combined with fuzzy C-means 353 
(FCM) has been developed for identifying groups of similar shutdown transients performed 354 
by a nuclear turbine. In [85], Self-Organizing Map (SOM) has been used for clustering and 355 
identifying degradation states of a railway-signal system. In [86], a methodology combining 356 
k-means and Association Rule Mining (ARM) has been developed to mine failure data and 357 
diagnose interconnections between failure occurrences in wind turbines. Representation 358 
learning can disentangle the different explanatory factors of variation behind the data, making 359 
it easier to extract and organize the discriminative information when building fault diagnostic 360 
models [87]–[92]. In traditional unsupervised methods for fault diagnostics, the features are 361 
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extracted applying ad hoc signal processing techniques to the collected signals, e.g. Fourier 362 
spectral analysis and Wavelet transformations [93]. The processing is heavily dependent on a 363 
priori knowledge and diagnostic expertise [22], [94], and can be quite time consuming and 364 
labor-intensive [88]. Since representation learning is adaptively capable of learning features 365 
from raw data, it can constitute an excellent a priori choice for the development of diagnostic 366 
techniques. In the work of [95], an unsupervised sparse filtering method based on a two-layer 367 
neural network is used to directly learn features from mechanical vibration signals. In the 368 
work of [96], a Spatio-Temporal Pattern Network (STPN) based on Probabilistic Finite State 369 
Automation (PFSA) and Markov machines is proposed to represent temporal and spatial 370 
structures for fault diagnostics in complex systems. However, these conventional 371 
representation learning methods cannot capture long-term temporal dependencies in the time 372 
series and they typically require high computational complexity. 373 

From the above, it is seen that traditional fault diagnostic approaches typically require 374 
the acquisition of signal measurements from SSCs whose true degradation state is known. 375 
However, to acquire such labelled data is a difficult, expensive and labor-intensive task. 376 
Furthermore, streaming data collected in online-monitored SSCs have long-term temporal 377 
dependencies. However, unsupervised learning methods have a hard time dealing with long-378 
term time dependencies, because these dependencies are limited by the size of the sliding time 379 
window which can be used for the analysis. Then, there is a need for advancements in the 380 
methods to estimate the degradation level at a given time on the basis of a few run-to-failure 381 
trajectories with long-term temporal dependencies and for which the true degradation state is 382 
unknown. In the work of [97], for example, a two-stage method for unsupervised learning is 383 
proposed for fault diagnostic applications, inspired by the idea of representing temporal 384 
patterns by a mechanism of neurodynamical pattern learning, called Conceptor. Considering a 385 
reservoir, i.e. a randomly generated and sparsely connected RNN [98], Conceptors can be 386 
understood as filters characterizing the geometries of the temporal states of the reservoir 387 
neurons in the form of square matrices [99], achieving a direction-selective damping of high-388 
dimensional reservoir states [100]. The proposed method develops in two stages. In the first 389 
stage, the Conceptors extracted from the training run-to-failure degradation trajectories are 390 
clustered into several non-overlapped time series segments representing different degradation 391 
levels. In the second stage, the Conceptors and corresponding labels obtained in the first-stage 392 
clustering are used to train a Convolutional Neural Network (CNN) for real-time diagnosing 393 
the SSC degradation level. The CNN receives in input the Conceptors extracted from the 394 
reservoir states at the current time, which contain information about the long-term evolution 395 
of the SSC degradation, and the difference between the Conceptors extracted at the present 396 
and previous time steps, which contains information about the short-term degradation 397 
variation. The proposed method has been applied to two literature case studies concerning 398 
bearings fault diagnostics. The results show satisfactory accuracy and efficiency of the 399 
method. The Reservoir computing-based method for addressing the challenge of missing 400 
labels of degradation state is shown in Figure 5. 401 
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 402 
Figure 5 Illustration of Reservoir Computing-based method in fault diagnostics w.r.t. 403 

the challenge of missing labels of degradation state [97]. a) Conceptor Generator converts 404 
the variable-length signals into a fixed-size Coceptor matrix by using reservoir computing. 405 

The Conceptor matrix is a filtered correlation matrix of reservoir states, which decreases the 406 
impact of less important features in the degradation dynamics, i.e. noise and operation 407 

conditions. b) stage 1: the combined use of Coceptors matrix and spectral clustering can 408 
obtain the pseudo-labels in the run-to-failure trajectories, stage 2:CNN trained by Conceptors 409 

with associated pseudo-labels is, then, used for fault diagnostics.  410 
 411 

 412 
Table 2 summarizes the fault diagnostics techniques, with specific regard to the 413 

challenge of missing labels for degradation states. 414 
Table 2. Fault diagnostics techniques with regard to the challenge of missing labels for 415 

degradation state. 416 
Supervised classifiers 

(Limitation: need 

degradation state labels) 

Unsupervised approaches 
Unsupervised 

learning  
(Limitation: depend 

on diagnostic 

expertise for feature 

extraction) 

Representation learning 
Neural Network-

based 
(Limitation: 

difficult to capture 

long-term temporal 

dependencies) 

Reservoir 
Computing-based 

CVNN: 

[72] railway track 
turnouts degradation 
level assessment 

CatAAE: 

[22] rolling bearing 
fault diagnositcs 

Unsupervised 

Sparse Filtering 

Neural Network: 

[95] motor bearing 
fault diagnostics 

Conceptor + SC: 

(Conceptor as a 

representation 

capable of 

encoding long-

term temporal 
DBN: 

[73] aircraft engine 
SC + FCM: 

[84] Nuclear Power 
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health state classification Plant (NPP) steam 
turbine transient 
identification 

dependencies) 

[97] degradation 
level assessment 
of bearings BN: 

[74] failure type 
classification of water 
distribution system 

SOM:  

[85] fault mode 
classification for 
railway monitoring 
equipment 

STPN: 

[96] fault severities 
diagnostics of wind 
turbine 

DT: 

[75] anomaly (mud) 
diagnostic on wind 
turbine blade  

k-means + ARM: 

[86] failure cause 
and weather 
condition correlation 
diagnostics of wind 
turbine system 

LDA: 

[75] anomaly (mud) 
diagnostic on wind 
turbine blade 
KNN: 

[75] anomaly (mud) 
diagnostic on wind 
turbine blade 
ANNs: 

[101] fault diagnostics of 
bearings 
SVMs: 

[75] anomaly (mud) 
diagnostic on wind 
turbine blade 
[76] bearing defects 
diagnostics 
[77] pipe failure 
prediction in water 
supply networks 
 417 

3.1.3 Fault prognostics 418 
Prognostics is concerned with the prediction of the future evolution to failure of the 419 

state of a SSC. It involves the processing of data to predict the future degradation of the SSC 420 
structural and functional attributes, based on which to estimate the SSC failure probability and 421 
RUL. The prognostic outcomes are used for the health management of the SSC, which seeks 422 
to use the prognosis to decide on and actuate operational actions and maintenance 423 
interventions. To the uncertainties coming from the use of the data available from the sensors, 424 
like for the detection and diagnosis tasks, prognostics adds further challenges related to the 425 
future evolution of the usage profile and operational environment, whose uncertainties affect 426 
the degradation state evolution. This makes it practically impossible to precisely predict the 427 
future evolution of the SSC state of health and it is necessary to account for the different 428 
sources of uncertainty that affect prognostics, within a systematic framework for uncertainty 429 
quantification and management [102].  430 

Prognostics is dependent on the available knowledge, information and data on the 431 
process of degradation. There may be situations in which a sufficient quantity of run-to-failure 432 
data has been collected during the life of the SSCs, and these can be used to develop empirical 433 
(data-driven) models. In other cases, the degradation mechanism is known and a physics-434 
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based model is available. On these bases, prognostics approaches can be grouped into three 435 
categories: (i) model-based, (ii) data-driven and (iii) hybrid:  436 

• (i) Model-based approaches use physics-based degradation models to predict the 437 
future evolution of the SSCs degradation state and infer the time at which the 438 
degradation will reach the failure threshold. These approaches have been applied with 439 
success in various practical cases, e.g., to pneumatic valves [103], Li-Ion batteries 440 
[104], the residual heat removal subsystem of a nuclear power plant [105], and 441 
structures subject to fatigue degradation [106]. In the case of complex SSCs, subject to 442 
multiple and competing degradation mechanisms, accurate physics-based models are, 443 
however, often not available. 444 

• (ii) Data-driven approaches directly extract from the data the degradation law for SSCs 445 
RUL prediction [107]. Such approaches include conventional numerical time series 446 
techniques, as well as AI intelligence and data mining algorithms, such as similarity-447 
based [108] and regression-based methods [107]. A variety of AI techniques, such as 448 
Convolutional Neural Network (CNN) [109][110], Denoising Auto Encoder (DAE) 449 
[111], Long Short Term Memory (LSTM) [112][109][113][114], Gated Recurrent Unit 450 
(GRU) [115], SVM [116], Adjacency Difference Neural Network (ADNN) [117], are 451 
applied to RUL estimation of different industrial systems and components. The 452 
performances of data-driven approaches depend on the quantity and informative 453 
quality of the data available to develop the predictive models.  454 

• (iii) Hybrid approaches combine, all the available sources of knowledge, information 455 
and data. They bring the advantages of both model-based and data-driven methods. 456 
Specifically, they can integrate the robustness and interpretability of model-based 457 
methods with the specificity and accuracy of data-driven methods. For instance, [118] 458 
combines Kalman Filtering (KF) with data-driven approaches, [119] integrates the 459 
Health Indicator (HI) and regression model, [120] combines Relevance Vector 460 
Machine (RVM) and Particle Filtering (PF), and [121] integrates a physical model and 461 
the Least Square (LS) method to estimate RUL of a variety of industrial equipment. 462 

Traditional fault prognostic methods face the challenge of dealing with incomplete and 463 
noisy data collected at irregular time steps, e.g. in correspondence of the occurrence of 464 
triggering events in the system. For example, for monitoring the degradation and failure 465 
processes of bearings in large turbine units, signal measurements collection (e.g., vibration 466 
signals measured by eddy current displacement sensors measuring the radial vibration of the 467 
rotor at both ends, the axial vibration of the rotor, and sensors measuring the unit rotating 468 
speed) is only triggered by abnormal behaviors of the units, such as large environmental noise 469 
and anomalous vibration behavior. These “snapshot” datasets are often encountered in 470 
industrial applications, dominated by the necessity of cost saving in storing and managing the 471 
databases, and of reducing energy consumption and bandwidth resources. Since failure events 472 
are rare, event-based datasets are dominated by missing measurements, where the values of all 473 
signals are missing at the same time. With these characteristics, traditional methods for 474 
missing data management, e.g. case deletion, imputation [122]–[125] and maximum 475 
likelihood estimation [126], are difficult to apply. For instance, since case deletion methods 476 
discard patterns whose information is incomplete, they are not useful in case of event-based 477 
datasets where a pattern is either present or absent for all signals [126]. Imputation 478 
techniques, which are based on the idea that a missing value of a signal can be replaced by a 479 
statistical indicator of the probability distribution generating the data, such as the signal mean 480 
value [127] or a value predicted by a multivariable regression model, have been shown 481 
inaccurate in case of large fractions of missing values in the dataset [128]. Maximum 482 
Likelihood methods use the available data to identify the values of the probability distribution 483 
parameters with the largest probability of producing the sample data. They typically require 484 
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the Missing At Random (MAR) assumption, i.e. the probability of having a missing value is 485 
not dependent on the missing values[127],[129], which is not met in event-based datasets.  486 

Few research works have considered fault prognostics in presence of missing data. A 487 
model based on Auto-Regressive Moving Average (ARMA) and Auto-Associative Neural 488 
Networks (AANN), has been developed for fault diagnostics and prognostics of water process 489 
systems with incomplete data [130]. An integrated Extreme Learning Machine (ELM)-based 490 
imputation-prediction scheme for prognostics of battery data with missing data [125] and an 491 
hybrid architecture of physics-based and data-driven approaches have been proposed to deal 492 
with missing data in a rotating machinery prognostic application [131]. In the medical field, a 493 
Bayesian simulator has been used to generate missing data for developing prognostic models 494 
[132] and a Multiple Imputation approach has been embedded within a prognostic model for 495 
assessing overall survival of ovarian cancer in presence of missing covariate data [133]. 496 
Notice that all these methods are based on the two successive steps of missing data 497 
reconstruction and prediction.  498 

Then, advancements and new methods are still needed to enable predicting the RUL of a 499 
SSC on the basis of measurements collected only when triggering events occur, such as SSC 500 
faults or extreme operational conditions, and providing an estimate of the uncertainty 501 
affecting the RUL prediction. As an example, [134] has developed a method based on Echo-502 
State Networks (ESNs) to directly predict the RUL of a SSC without requiring to reconstruct 503 
the missing data. ESNs are considered because of their ability of maintaining information 504 
about the input history inside the reservoir states. The main difficulty is that, contrarily to the 505 
typical applications of ESNs, the time intervals at which the data become available are 506 
irregular. Two different strategies have been considered to cope with the event-based data 507 
collection. In one strategy, the ESN receives an input pattern only when an event occurs. The 508 
pattern is formed by the measured signals and the time at which the event has occurred. In a 509 
second strategy, the reservoir states are excited at each time step. If an event has occurred, the 510 
reservoir states are excited both by the previous reservoir states and the measured signals, 511 
whereas, if an event has not occurred, they are excited only by the previous reservoir states. 512 
By so doing, the connection loops in the reservoir allow reconstructing the SSC dynamic 513 
degradation behavior at those time steps in which events do not occur. Multi-Objective 514 
Differential Evolution (MODE) algorithm based on a Self-adaptive Differential Evolution 515 
with Neighborhood Search (SaNSDE) [135] is used to optimize the ESN hyper-parameters. 516 
The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [136] is, 517 
then, used to select the optimal solution from the obtained Pareto solutions. Furthermore, a 518 
bootstrap aggregating (Bagging) ensemble method is applied to improve the RUL prediction 519 
accuracy and estimate the RUL prediction uncertainty. Given that ESNs cannot be fed by 520 
random sequences of patterns, the traditional Bagging sampling mechanism used to create the 521 
bootstrap training sets has been modified. In the proposed solution, the bootstrap training sets 522 
are obtained by concatenating entire run-to-failure trajectories, randomly sampled with 523 
replacement. The benefits of the proposed methods are shown by application to the prediction 524 
of the RUL of a sliding bearing of a turbine unit. The ESN-based one-step RUL prediction 525 
method for the challenge of missing data, i.e., event-based measurements, is shown in Figure 526 
6. 527 

 528 
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 529 
Figure 6 Illustration of ESN-based method in fault prognostics w.r.t. the challenge of missing 530 

data, i.e. event-based measurements [134]. The input neurons of ESN are excited to update the 531 
reservoir state when measurements are available (events are triggered), whereas  the input 532 

neurons are canceled if data are missing (no events occur) and the reservoir is only updated 533 
by the reservoir state at the previous time step and the target signal, which force the reservoir 534 

to learn from the historical degradation pattern and the target signal evolution pattern. 535 
 536 

 Table 3 summarizes fault prognostics techniques, with specific regard to the challenge 537 
of missing data, i.e. event-based measurements. 538 
 539 
Table 3. Fault prognostics techniques with regard to the challenge of missing data, i.e. event-540 

based measurements. 541 
Traditional fault prognostics 

(Limitations: cannot deal with missing data, i.e. 

event-based measurements) 

Fault prognostics in presence of missing 
data 

Model-based Data-driven hybrid Conventional type of 
missing data 
(Limitations: 

difficult to deal with 

event-based 

measurements) 

Event-based 
measurement 

[103] fault 
prognostics of 
pneumatic 
valves 
[104] 
prognostics 
and health 
monitoring of 
Lithium-ion 
battery 
[105] fault 

CNN: 

[109] RUL 
estimation for 
bearing 
[110] RUL 
estimation for 
turbofan 
engine 

KF and 

data-driven 

approaches: 

[118] RUL 
estimation for 
aircraft bleed 
valve 

Missing at random ESN-based 

one-step RUL 

prediction 

without 

requiring to 

reconstruct the 

missing data: 

[134] RUL and 
uncertainty 
estimation of 
bearing 

Missing data 

imputation and 

prognostics by 

ELM-based 

method: 
[125] RUL 
estimation of battery 

DAE: 

[111] RUL 
estimation for 

HI and 

regression 

model: 
Missing not at 

random 
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prognostics in 
residual heat 
removal 
subsystem 

centrifugal 
pumps 

[119] RUL 
estimation for 
bearings 

Missing data 

prediction by 

Quasi-Newton 

Optimization; 

Prognostics by 

AANN and ARMA: 

[130] prognostics for 
wastewater plant 

LSTM: 

[109] RUL 
estimation for 
bearing 
[112] RUL 
estimation for 
turbofan 
engine 

[113] RUL 
estimation for 
turbofan 
engine 
[114] RUL 
estimation for 
turbofan 
engine 

RVM and 

PF: 

[120] RUL 
estimation for 
Lithium-ion 
battery 

Missing at extreme 
operating condition 

Missing data 

generation by 

physical model; 

Prognostics by 

physical model and 

data-driven: 

[131] prognostics for 
bearing 

physical 

model and 

LS: 

[121] RUL 
estimation for 
Lithium-ion 
battery 

GRU: 

[115] RUL 
estimation for 
turbofan 
engine 

SVM: 

[116] RUL 
estimation for 
aircraft engine 
ADNN: 

[117] RUL 
estimation for 
aircraft engine 

 542 
3.2 Challenges from requirements on practical solutions 543 

3.2.1 Interpretability of models 544 
The ability to correctly interpret a PHM model’s output, be it the detection of a fault, 545 

its diagnosis or prognosis, is extremely important, and particularly so in safety-critical 546 
applications like those concerning the high-risk systems and processes of the chemical, 547 
nuclear, aerospace industries, to name a few. It allows understanding of the state of the system 548 
or process being modeled and supports analytic reasoning and prescriptive decision making to 549 
intervene (or not) and how. It also engenders appropriate trust by the analyst, providing 550 
insights on how the model works. The importance of this is such that in some applications, 551 
simple models (e.g., even linear models) are preferred for their ease of interpretation, even if 552 
they may be less accurate than complex ones. Yet, currently the growing availability of big 553 
data for PHM has increased the benefits of using complex models for achieving accuracy, at 554 
the expenses of model intelligibility. This brings to the forefront the need of a trade-off 555 
between accuracy of the model and interpretability of its output. A wide variety of different 556 
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methods have been recently proposed to address this issue, but an understanding of how these 557 
methods relate and when one method is preferable to another is still lacking.  558 

Most models and algorithms for PHM are developed and trained to maximize 559 
accuracy, neglecting interpretability and causality. Accounting for these aspects may, indeed, 560 
lead to a loss in performance but would enhance their safe, reliable and robust use both in 561 
terms of undesired biases and uncertainty reduction. Understanding why a PHM model makes 562 
a certain prediction can be as crucial as the prediction’s accuracy in many applications. 563 
However, the highest accuracy for large modern datasets is often achieved by complex models 564 
that even experts struggle to interpret, such as ensemble or deep learning models, creating a 565 
tension between accuracy and interpretability [137]. Some general attributes sought for in the 566 
interpretability of PHM models are: 567 

• fairness: no discrimination in algorithm decisions, which could come from bias 568 
in the collected data 569 

• robustness: small changes in input should not cause big changes in output 570 
• causality: causal relations are picked up from the model and rendered explicit 571 
• quantifiable reliability of outcomes and predictions. 572 

The awareness of the relevance of transparency, explainability and interpretability of PHM 573 
models is growing as a need and a requirement, particularly for supporting decision making in 574 
safety critical systems, for which it may also be a regulatory prerequisite. For example, in 575 
Nuclear Power Plants (NPPs), there is still resistance to the deep penetration of digital I&C 576 
systems and PHM, because of the difficulty of testing performance under all postulated 577 
conditions, on one side, and guaranteeing reliability based on transparent understanding and 578 
interpretation, on the other side. The decision making related to tasks of control, operation, 579 
maintenance and safety of NPPs, which have traditionally relied on procedures and expert 580 
evaluation and judgment, are gradually being assisted by intelligent machines (i.e. software 581 
algorithms) for PHM, developed and trained on the basis of big and customized data: how far 582 
and how it can be permitted in safety-critical systems that require licensing depends also on 583 
the possibility of interpreting the causality of their output. 584 

For the modelling approaches to PHM based on learning from data, one issue lies in 585 
possible biases in the training set that are, then, not present in the test set or contain patterns 586 
undesired with respect to the test data, and may be unknown to the user of the trained model 587 
output. In this sense, achieving robustness in PHM models is fundamental and one way to 588 
proceed is to try to design inherently interpretable models, i.e. so as to exclude all undesired 589 
features that are not causally related to the outcome. By examining interpretable models:  590 

• features or functions capturing quirks in the data can be noted and excluded, thereby 591 
avoiding related harm in the successive use of the model output, and the understanding 592 
of the phenomena analyzed  593 

• knowledge can be extracted, in terms of the interactions among the inputs and how 594 
they determine the output 595 

• an evaluation of the reliability of the PHM outcomes can be performed 596 
• some limited extrapolation can be possible, with the aim of gaining knowledge on 597 

unexplored scenarios. 598 
Methodologies are used to gain interpretability in a model by looking at the importance of the 599 
different input features in determining the model outputs. A distinction is made between 600 
model-specific and model-agnostic methodologies for evaluating feature importance. An 601 
interesting example of the former is the “attention mechanism” for Neural Networks applied 602 
in Prognostics, where importance values are assigned to specific input subsets [138], [139].  603 

As the name implies, model-agnostic feature importance evaluation methodologies can 604 
in principle be used for any model. Local approaches are used for online applications and 605 
global approaches for offline applications. Local measures focus on the contribution of 606 
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features to a specific outcome instance, whereas global measures take all outcomes into 607 
account.  608 

The Local Interpretable Model Explanation (LIME) method aims at explaining 609 
individual outputs and can be applied to any learning model [140]. Instead of training a global 610 
surrogate model, LIME focuses on training local surrogate models to explain individual 611 
model outputs. The method works by building for each output instance of interest a local-612 
interpretable model that approximates the original, complex model. Each model output 613 
instance is, then, explained by an “explainer-model” that highlights the symptoms that are 614 
most relevant to it. With this information about the rationale behind the model, the analyst is 615 
now empowered to trust the model output—or not – for her/his decisions and consequent 616 
actions.  617 

The idea behind LIME is quite intuitive and it is based on the fact that one can probe 618 
the model as many times as desired, by feeding the input data points and retrieving the 619 
corresponding outputs of the model. The goal of this is to understand why the learning model 620 
gave a certain output. The LIME tests are local sensitivity tests performed in a way to explore 621 
what happens to the output when the inputs are locally varied by small perturbations. By so 622 
doing, a new dataset is generated, consisting of permuted input samples and corresponding 623 
model outputs. For example, the new samples can be created by perturbing each feature 624 
individually, drawing from a normal distribution with mean and standard deviation taken from 625 
the feature values. On this new dataset, LIME builds and trains the interpretable explainer-626 
model, which is weighed by the proximity of the sampled instances to the instance of interest. 627 
The interpretable model should give a good approximation of the original model outputs 628 
locally, but it does not have to be a good global approximation of the original model itself. 629 
Mathematically, the interpretable explainer model for instance x is the (simple) model g (e.g. a 630 
linear regression model) that results as solution of the optimization problem that minimizes 631 
the loss function L (e.g. the mean squared error) measuring how close the explanation output 632 
of g is to the output of the original model f (e.g. a neural network), while the model 633 
complexity Ω(g) is kept low (e.g. as few features as possible): 634 
 635 
explanation(x)=argmin L(f,g,πx)+Ω(g)       (1) 636 

    g∈G 637 
 638 
where G is the family of possible explainer models, for example all possible linear regression 639 
models, and the proximity measure πx defines how large is the neighborhood around instance 640 
x that is considered for the explanation. In practice, LIME only optimizes the loss part and the 641 
user controls the model complexity by Ω(g), e.g. by selecting by forward and backward 642 
feature selection methods the maximum number of features that the linear regression model 643 
may use. 644 
The procedure for interpreting locally the complex original model is, then: 645 

i) select the instance of interest x for which an explanation of the original complex model 646 
outcome f(x) is needed 647 

ii) perturb the input data and get the original model output values for these new data 648 
samples 649 

iii) weigh the new samples according to their proximity to the instance of interest 650 
iv) train a weighed, interpretable model on the new dataset generated in ii) 651 
v) explain the local output of the interpretable model g. 652 
LIME has been applied for the interpretation of machine learning models in applications 653 

of medical diagnostics [141]. In a recent study about early Parkinson detection, LIME has 654 
been used to highlight the features determining the healthy/disease decision of a ML classifier 655 
of images of the brain: LIME allows highlighting the super-pixels mostly determining the 656 
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classification in healthy or disease states; experts can, then, focus on the super-pixels selected 657 
with LIME to interpret and explain the basis for the decision by the ML algorithm, and choose 658 
to accept or refuse it. 659 

Shapley values also can be used to assess local features importance [142]. Although they 660 
can be used to explain which feature(s) contribute most to a specific model output, Shapley 661 
values are not designed to answer the “what would happen if” questions that LIME’s local 662 
explainer models are designed for. They come from game theory and are designed to construct 663 
a fair payout scheme for the players in a game. Suppose one could look at all possible 664 
combinations of (a subset of) players in a team replaying a game and observe the resulting 665 
team score. One could, then, assign each player of the team a portion of the total payout based 666 
on its average added value across all possible subteams to which it was added to play the 667 
game repeatedly. Such individual payout is the player’s Shapley value and gives the only 668 
payout scheme that is proven to be: 669 

• efficient: the sum of the Shapley values of all players should sum up to the total 670 
payout 671 

• symmetric: two players should get the same payout if they add the same value in all 672 
team combinations 673 

• dummy-sensitive: a player should get a Shapley value of zero if it never improves a 674 
subteam’s performance when it is added 675 

• additive: in case of a combined payout (say we add two game bonuses), the combined 676 
Shapley value of a player across the games is the sum of the individual game’s 677 
Shapley values; this criterion has no relevant analogy in the context of model 678 
interpretability. 679 

In the “game” of our interest for PHM model interpretability, the players are models with 680 
different features subsets and they get the same payout mechanism introduced above. The 681 
team score in this context is the performance measure of a (sub)model built on a given feature 682 
subset. The total payout is the difference between a base value — output of the null model —683 
and the actual output. This difference is, then, divided over all features in accordance to their 684 
relative contribution. 685 

Obviously looking at all possible subsets of features is computationally prohibitive in 686 
most realistic models with many features. Instead, Shapley value approximations can be 687 
computed based on sampling of features.  688 

Other model-agnostic methodologies are based on Sensitivity Analysis (SA), which has 689 
been widely applied to models used in various areas, such as nuclear risk assessment [143], 690 
industrial bioprocessing [144] and climate change [145]. Indeed, a main application of SA is 691 
for identifying the input quantities most responsible of a given output variation [146]. Both 692 
local and global approaches to SA have been developed. Local approaches identify the critical 693 
input features as those whose variation leads to the most variation in the output. One practical 694 
approach for such identification consists in perturbing one single input at a time with small 695 
variations around its nominal value, while maintaining the others set at their respective 696 
nominal values. The analysis is intrinsically local and the resulting indication can be 697 
considered valid for the characterization of the model response around the nominal values. 698 
The possibility of extending the results of the analysis to draw global considerations on the 699 
model response over the whole input variability space depends on the model itself: if the 700 
model is linear or mildly non-linear, then the extension may be possible; if the model is 701 
strongly non-linear and characterized by sharp variations, the analysis is valid only locally. 702 
Typical local approach techniques are those based on Taylor’s differential analysis and on the 703 
one-at-a-time simulation, in which the input features are varied one at a time while the others 704 
remain set at their nominal values [146]. 705 
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In those situations (often encountered in practice) in which models are non-linear and non-706 
monotone, the results provided by a local analysis may have limited significance. For this 707 
reason, global approaches to SA have been developed. In these approaches, the focus is 708 
directly on the uncertainty distribution of the output, which contains all the information about 709 
the variability of the model response, with no reference to any particular value of the input 710 
(like in the local approaches, where reference is made to the nominal values). The two 711 
principal characteristics of the global approaches are somewhat opposite to those of the local 712 
ones: 1) the account given to the whole variability range of the input features (and not only to 713 
small perturbations around the nominal values); 2) the focus on the effects resulting from 714 
considering also the variation of the other uncertain features (instead of keeping them fixed to 715 
their nominal values). Many global analysis methods have been developed [146]. The high 716 
capabilities of these methods are paid by a very high computational cost. 717 

Another direction to build interpretability into PHM models and algorithms is by 718 
integrating prior physical knowledge in the learning models, for providing improved 719 
performance and achieving interpretability. This is a promising approach for inducing 720 
interpretability into the learning models and different approaches have been proposed where 721 
the physical knowledge can be introduced at different levels of the learning process, including 722 
in the training data and in the training algorithm [147][148][149][150].  723 

To aid the interpretation of the model, there exists also a suite of methods for the 724 
visualization of the relations between input and output. The Partial Dependence Plot (PDP) 725 
shows the marginal effect that features have on the output provided by the model [151]. 726 
Intuitively, we can interpret the partial dependence as the expected target response as a 727 
function of the input features of interest. A partial dependence plot can show whether the 728 
relationship between the output and a feature is linear, monotonic or more complex. For 729 
example, when applied to a linear regression model, partial dependence plots always show a 730 
linear relationship. The computation of partial dependence plots is intuitive: the partial 731 
dependence function at a particular feature value represents the average output if we force all 732 
data to assume that value for the feature. If the feature for which the PDP is computed is not 733 
correlated with the other features, then the PDP perfectly represents how the feature 734 
influences the output on average. In the uncorrelated case, the interpretation is clear: the PDP 735 
shows how the average output changes when a given feature is changed. The interpretation is 736 
more complicated when features are correlated. Also, PDPs are easy to implement and the 737 
calculations to obtain them have a causal interpretation which aids model understanding: one 738 
intervenes on a feature and measures the corresponding change in the output. By doing so, 739 
one analyzes the causal relationship between the feature and the output in the model, and the 740 
relationship is causal for the model whose outcome is explicited as a function of the features. 741 
However, there are several disadvantages in PDPs. Due to the limits of human perception, the 742 
number of features in a partial dependence function must be small (usually, one or two) and, 743 
thus, the features considered must be chosen among the most important ones. Some PDPs do 744 
not show the feature distribution. Omitting the distribution can be misleading, because one 745 
might overinterpret regions with almost no data. This problem is easily solved by showing a 746 
rug (indicators for data points on the x-axis) or a histogram. Also, heterogeneous effects might 747 
be hidden because PDPs only show the average marginal effects. Suppose that for a feature, 748 
half of the input data has a positive correlation with the output (the larger the feature value the 749 
larger the output value) and the other half has a negative correlation (the smaller the feature 750 
value the larger the output value): then, PDP could be a horizontal line, since the effects of 751 
both halves of the dataset could cancel each other out and one would, then, conclude that the 752 
feature has no effect on the output. In other words, whereas the PDPs are good at showing the 753 
average effect of the target features, they can obscure a heterogeneous relationship created by 754 
interactions.  755 
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When interactions are present, the Individual Conditional Expectation (ICE) plot can be 756 
used to extract more insights [152]. An ICE plot shows the dependence between the output 757 
and an input feature of interest. However, unlike a PDP, which shows the average effect of the 758 
input feature, an ICE plot visualizes the dependence of the output on a feature for each sample 759 
separately, with one line per sample. Again, due to the limits of human perception, only one 760 
input feature of interest is supported by ICE plots. On the other hand, in ICE plots it might not 761 
be easy to see the average effect of the input feature of interest. Hence, it is recommended to 762 
use ICE plots alongside PDPs: they can be plotted together. 763 

Finally, the assumption of independence is the biggest issue with PDPs. It is assumed that 764 
the features for which the partial dependence is computed are not correlated with other 765 
features. One solution to this problem is Accumulated Local Effect (ALE) plots that work 766 
with the conditional instead of the marginal distribution (Apley et al., 2020). ALE plots are a 767 
faster than and unbiased alternative to PDPs. Based on the conditional distribution of the 768 
features, they calculate differences in outputs instead of averages. ALE plots are unbiased, 769 
which means they still work when features are correlated, and are faster to compute than 770 
PDPs. The interpretation of ALE plots is also clear: conditional on a given value, the relative 771 
effect on the output due to changing the feature value can be read from the ALE plot. Even 772 
though ALE plots are not biased in case of correlated features, interpretation remains difficult 773 
when features are strongly correlated. Because if they have a very strong correlation, it only 774 
makes sense to analyze the effect of changing both features together and not in isolation. This 775 
disadvantage is not specific to ALE plots, but a general problem of strongly correlated 776 
features. Table 4 summarizes the investigated approaches for interpreting the PHM models. 777 
 778 
Table 4 Summary of model interpretability approaches 779 
Approaches Characteristic Reference 
LIME Focuces on training local surrogate 

models to explain individual model 
outputs 

[140] 

Shapley value  Uses game theory to construct a fair 
payout scheme for the player (input 
features) to obtain features importance 

[137] 

Sensitivity analysis-

based 

Identifyies the input quantities most 
responsible of a given output variation 

[143][144][145][146] 

Prior physical 

knowledge-based 

Builds interpretability into PHM models 
and algorithms by integrating prior 
physical knowledge in the learning 
models 

[147][148][149][150] 

PDP Shows the average marginal effect that 
features have on the output provided by 
the model 

[151] 

ICE ICE plots visualize the dependence of the 
output on a feature, for each sample 
separately 

[152] 

 780 
 781 

3.2.2 Security of models 782 
Applications of PHM methods for condition-based and predictive maintenance rely on 783 

the exchange and elaboration of data. The models and algorithms used are technological 784 
elements of larger socio-human-technical systems that must be engineered with safety and 785 
security in mind. They are increasingly used in support of high-value decision-making 786 
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processes in various industries, where the wrong decision may result in serious consequences. 787 
The underlying models and algorithms are largely unable to discern between malicious input 788 
and benign anomalous data. On the contrary, they should be capable of discerning 789 
maliciously-introduced data from benign “Black Swan” events. In particular, the learning 790 
models and algorithms should reject training data with negative impacts on results. Otherwise, 791 
learning models will always be susceptible to gaming by attackers. The specific danger is that 792 
an attacker will attempt to exploit the adaptive aspect of a learning model to cause it to fail 793 
and produce errors: if the model misidentifies an hostile input as benign, the hostile input is 794 
permitted through the security barrier; if it misidentifies a benign input as hostile, the good 795 
input is rejected [153]. The adversarial opponent has a powerful weapon: the ability to design 796 
training data that cause the learning model to produce rules that misidentify inputs. To avoid 797 
this, the models and algorithms used for PHM must have built-in forensic capabilities [154]. 798 
These should enable a form of intrusion detection, allowing engineers to determine the exact 799 
point in time that an output was given by the model, what input data influenced it and whether 800 
or not that data was trustworthy. The data visualization capabilities for the interpretation of 801 
the relations between model input features and model output discussed in the previous 802 
subsection 3.2.1 show promise to help engineers identify and resolve root causes for these 803 
complex issues. Also, specific solutions are required in the areas of Authentication, Input 804 
Validation and Denial of Service.  805 
 806 

3.2.3 Uncertainty 807 
Uncertainty is intrinsically present in the PHM tasks of detection, diagnostics and 808 

prognostics, and may adversely affect their outcomes, so to lead to an imprecise assessment of 809 
the state and prediction of the behavior of such systems, which could lead to wrongly 810 
informed system health management decisions with possibly costly, if not catastrophic, 811 
consequences. For practical deployment, it is necessary to be able to estimate the uncertainty 812 
and confidence in the outcomes of detection, diagnostics and prognostics activities, for 813 
quantifying the risk associated to the PHM decision-making on the operation of engineering 814 
systems. Yet, in spite of the recognition of the importance of uncertainty in PHM [155], work 815 
is still needed to concretely address the impact of uncertainty on the different PHM tasks and 816 
to effectively manage it.  817 

The challenge comes from the fact that there are different sources of uncertainty that 818 
affect PHM, whose interactions are not fully understood and, thus, it is difficult to 819 
systematically account for them in the PHM tasks. While some sources are internal to the 820 
SSC, others are external, and all must be accounted for in the different activities of PHM. 821 
There is aleatory uncertainty in the physical behavior of the SSC and epistemic uncertainty in 822 
the model of it (developed based on sensors data or physic-based or based on a hybrid 823 
combination of both data and physics) and the associated parameters. As mentioned earlier, 824 
there is uncertainty in the sensors measurements and in their processing tools. For the 825 
prognostic task of PHM, there is also uncertainty on the future SSC operation profile and state 826 
evolution.  827 

Given the relevance of uncertainty in the PHM tasks, it becomes necessary to develop 828 
systematic frameworks for accounting for such uncertainty in practical applications, in order 829 
to enable the robust verification and validation of the solutions developed, with respect to the 830 
requirements for their use for decision-making and their contribution to the risk involved in 831 
such decisions. Such frameworks must enable the systematic identification, representation, 832 
quantification and propagation of the different sources of uncertainty, so that any PHM 833 
outcome is provided also with its uncertainty, which needs to be considered for robust 834 
decision-making [156].  835 
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Focusing specifically on data-driven methods for PHM, the challenge of quantifying 836 
the uncertainty in PHM outcomes has rarely been addressed and mostly with ensemble 837 
approaches, which can become computationally burdensome, and are highly dependent on 838 
how the individual models are developed and how their outcomes are aggregated 839 
[157][158][159][160][134][161]. Recently, Bayesian neural networks and variational 840 
inference have been used in PHM, for accounting of uncertainty [162][163]. Also, the 841 
combination of neural networks and gaussian processes are being considered as a promising 842 
direction for providing PHM outcomes equipped with the needed estimates of the associated 843 
uncertainty [164].  844 

 845 
4. CONCLUSIONS 846 

 847 
PHM has become a fashionable area of research and development, due to its promises 848 

of enabling condition-based and predictive maintenance, which can be game-changers for the 849 
production performance, reliability and safety of industrial businesses. Then, many academic 850 
words have been and are developed, and several applications have been attempted, with a 851 
more or less significant degree of success. These have been facilitated by the availability of 852 
numerous and large data sets, of affordable computational hardware to train the models, of 853 
freely available software to implement the models in a reliable and relatively straightforward 854 
manner. Yet, quite some work still needs to be done to increase the significance of PHM 855 
impacts on industry, due to a number of theoretical and practical issues that still require an 856 
effective solution. These come from different perspectives, related to the physics of the 857 
problem itself, the nature and type of data, the requirements of the solutions. As for the 858 
physics of the problem, it is undoubtful that the SSCs degradation processes in practice are 859 
most of the times quite complex and dependent on a large number of parameters and 860 
mechanisms, which are dynamic and highly non-linear, and not completely known. 861 

But much of the problem comes from the data and the extraction of informative 862 
content for the fault detection, diagnostics and prognostics tasks of PHM. Managing and 863 
treating the big condition-monitoring data collected by the sensors and comprised of a large 864 
variety of heterogeneous signals is not an easy task and the data are often anomalous, scarce, 865 
incomplete and unlabeled. Furthermore, they are collected under changing operational and 866 
environmental conditions during the life of the SSC.  867 

Surely, for the effectiveness of extracting informative content from data, undoubtedly 868 
Deep Learning (DL) has contributed a great leap by incorporating feature engineering in the 869 
process of learning of the models, for automatic processing of big and heterogeneous 870 
condition monitoring data and extraction of features relevant for the application. Encouraging 871 
results have been obtained already in fault detection and diagnostics, whereas Prognostics 872 
remains still a challenge for DL. 873 

Other of the above challenges are being addressed with sophisticated advancements 874 
which need to be, then, effectively deployed in practice. These include: Recurrent Neural 875 
Networks for PHM applications, and their transformation into images so as to exploit the 876 
powerful methods of image processing (including the novel Convolutional Neural Networks 877 
(CNNs), particularly for fault detection and diagnostics; signal reconstruction methods 878 
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(including Auto-Encoders) of unsupervised and semi-supervised learning for fault detection 879 
and diagnostics, and for degradation state prediction, to cope with the frequent practical cases 880 
of unlabeled data; Optimal Transport (OT) methods and unsupervised adaptation techniques 881 
to cope with the problem that the test data distribution may be a different distribution (or 882 
evolve to a different distribution) than that of the training data, with the consequence that the 883 
trained data-learned model may perform poorly on the test data. 884 

An issue of particular relevance for the prognostic task of PHM is the proper treatment 885 
of the uncertainty in the data and, then, in the models. Several sources of uncertainty exist in 886 
practice, as the models are inevitably only representations of the real relationships between 887 
input and output, the measured data are inevitably noisy due to measurement errors, and the 888 
future operational and environmental profiles of the SSCs are not known. All these 889 
uncertainties affect the predictions of the future degradation and failure of the SSCs. With 890 
respect to the uncertainty issue in PHM, frameworks are being developed for a probabilistic 891 
treatment of the RUL of SSCs: given the potentially costly and catastrophic consequences 892 
associated with the decisions that are made based on the PHM outcomes, it is obsolutely 893 
necessary to provide also estimates of the uncertainty alongside the predictions. Fore 894 
example, frameworks are being developed by Bayesian neural networks and deep gaussian 895 
processes. 896 

An issue which is arising with the data-driven models and algorithms used for PHM is 897 
that they lack interpretability, which reduces trust in their use particularly for safety-critical 898 
applications. This leads to the need to find ways for improving transparency an 899 
interpretability for a clearer understanding of what the model predicts and how, and finally for 900 
building trust on its use. Methods for injecting physical information in learning models, post-901 
hoc sensitivity approaches and visualization techniques are being studied to provide 902 
interpretability from different perspectives, including explaining the learned input-output 903 
relation representations, explaining the individual model outputs, explaining the way the 904 
output is produced by the model. 905 

Strong concerns are also arising with respect to the security of PHM models for real 906 
applications, in particular for safety-critical ones. PHM is increasingly used to support 907 
maintenance decision-making processes in various high-value/high-risk industries, where the 908 
wrong decision may result in serious consequences. The methods and models used perform 909 
exchange and elaboration of data, and must then be secure to reject training data with negative 910 
impacts on the results of decision-making. 911 
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