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ABSTRACT

We are performing the digital transition of industry, living the 4th industrial
revolution, building a new World in which the digital, physical and human dimensions are
interrelated in complex socio-cyber-physical systems. For the sustainability of these
transformations, knowledge, information and data must be integrated within model-based and
data-driven approaches of Prognostics and Health Management (PHM) for the assessment and
prediction of structures, systems and components (SSCs) evolutions and process behaviors, so
as to allow anticipating failures and avoiding accidents, thus, aiming at improved safe and
reliable design, operation and maintenance.

There is already a plethora of methods available for many potential applications and
more are being developed: yet, there are still a number of critical problems which impede full
deployment of PHM and its benefits in practice. In this respect, this paper does not aim at
providing a survey of existing works for an introduction to PHM nor at providing new tools or
methods for its further development; rather, it aims at pointing out main challenges and
directions of advancements, for full deployment of condition-based and predictive
maintenance in practice.

Keywords: Prognostics and Health Management (PHM), predictive maintenance, Recurrent
Neural Networks (RNNs), Reservoir Computing (RC), Generative Adversarial Networks
(GANs), Deep Neural Networks (DNNs), Optimal Transport (OT)

NOMENCLATURE
AAKR  Auto-Associative Kernel Regression
AANN  Auto-Associative Neural Networks
ADNN  Adjacency Difference Neural Network
AE Auto-Encoder
AE-
GAN Auto-Encoder aided GAN
ALE Accumulated Local Effect
ANNs Artificial Neural Networks
ARM Association Rule Mining
ARMA  Auto-Regressive Moving Average
BN Bayesian Network
CatAAE Categorical Adversarial Autoencoder
CBM Condition-Based Maintenance
CDT Cumulative Distribution Transform
CNN Convolutional Neural Network
CVNN  Complex Valued Neural Network
DAE Denoising Auto Encoder
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DBN
DL
DNNs
DT
ELM
EM
EMD
ESNs
FCM
FFT
GANs
GLRT
GRU
HI
HMM
ICE
ICT
IoTs

KNN
LDA
LIME
LS
LSTM
MAR
ML
MODE
NPPs
OC-
SVM
oT
OTT
PCA
PDP
PF
PFSA
PHM
PPIs
RC
RF
RNNs
RUL
RVM
SA

Deep Belief Network

Deep Learning

Deep Neural Networks

Decision Trees

Extreme Learning Machine
Expectation Maximization

Earth Mover’s distance

Echo-State Networks

Fuzzy C-Means

Fast Fourier Transform

Generative Adversarial Networks
Generalized Likelihood Radio Test
Gated Recurrent Unit

Health Indicator

Hidden Markov Model

Individual Conditional Expectation
Information and Communication Technology
Internet of Things

Kantorovich distance

Kalman Filtering

K-Nearest Neighbor

Linear Discriminant Analysis

Local Interpretable Model Explanation
Least Square

Long Short Term Memory

Missing At Random

Machine Learning

Multi-Objective Differential Evolution
Nuclear Power Plants

One Class-Support Vector Machine
Optimal Transport

Optimal Transport Theory

Principle Component Analysis
Partial Dependence Plot

Particle Filtering

Probabilistic Finite State Automation
Prognostics and Health Management
Prognostic Performance Indicators
Reservoir Computing

Random Forest

Recurrent Neural Networks
Remaining Useful Life

Relevance Vector Machine
Sensitivity Analysis
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SaNSDE Self-adaptive Differential Evolution with Neighborhood Search
SC Spectral Clustering

SOM Self-Organizing Map

SPRT Sequential Probability Ratio Test

SSCs Structures, Systems and Components

STPN Spatio-Temporal Pattern Network

SVM Support Vector Machine

TOPSIS  Technique for Order of Preference by Similarity to Ideal Solution

1. INTRODUCTION

Prognostics and Health Management (PHM) is a computation-based paradigm that
elaborates on physical knowledge, information and data [1] of structures, systems and
components (SSCs) operation and maintenance, to enable detecting equipment and process
anomalies, diagnosing degradation states and faults, predicting the evolution of degradation to
failure so as to estimate the remaining useful life (Figure 1). The outcomes of the PHM
elaboration are used to support condition-based and predictive maintenance decisions for the
efficient, reliable and safe operations of SSCs [2]-[5]. In fact, the capability of deploying
these maintenance strategies provides the opportunity of setting efficient, just-in-time and
just-right maintenance strategies: in other words, providing the right part to the right place at
the right time. This opportunity is big because doing this would maximize the production
profits and minimize all costs and losses, including asset ones [6]. As a result, in the past
decade PHM research and development has intensified, both in academia and industry,
involving various disciplines of mathematics, computer science, operations research, physics,
chemistry, materials science, engineering, etc. [7], [8].
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Figure 1. PHM tasks. The data collected from industrial component sensors feeds
three major PHM tasks: fault detection (anomaly detection), fault diagnostics (degradation
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level assessment) and fault prognostics (remaining useful life prediction). The successful
deployment of PHM provides solid foundations for the optimal maintenance decisions, and
thus improve the safety of industrial SSCs while reducing cost.

For making reliability and safety decision using PHM outcomes in practice,
identifying, understanding and quantifying the impacts and benefits that the development of a
PHM system can have on the health management of a SSC is necessary (e.g. avoid
unexpected catastrophic failures, reduce maintenance frequency, optimize spare parts and
storage, optimize resources, etc.). Then, the practical implementation of PHM includes data
acquisition to enable detection, diagnostics and prognostics tasks, and maintenance decision
making [9] (Figure 1). The supporting PHM development framework (Figure 2) and its
requirements must, then, be properly defined to perform well in real industrial scenarios [9]—
[11]. Given the increasing complexity, integration and informatization of modern engineering
SSCs, PHM can no longer be an isolated addition for supporting maintenance but must be
closely linked to the other structure, power, electromechanical, information and
communication technology (ICT), control parts of the systems. Then, PHM must be included
at the beginning of the system conceptualization, and carried through its design and
development in an integrated framework capable of satisfying the overall operation and
performance requirements [12], [13].

Finally, for the use of PHM in practice, the question of which methods to use is
fundamental. For example, referring, in particular, to the prognostic task of PHM, the
prediction capability of a prognostic method refers to its ability to provide trustable
predictions of the Remaining Useful Life (RUL), with the quality characteristics and
confidence level required for making decisions based on such predictions. Indeed, this heavily
influences the decision makers’ attitude toward taking the risk of using the predicted RUL
outcomes to inform their decisions [14]. The choice of which method to use is typically
driven by the data available and/or the physics-based models available, and the cost-benefit
considerations related to the implementation of the PHM system. A set of Prognostic
Performance Indicators (PPIs) must be used to guide the choice of the approach to be
implemented, within a structured framework of evaluation. These PPIs measure different
characteristics of a prognostic approach and need to be aggregated to enable a final choice of
prognostic method, based on its overall performance [15]. For this reason, various
performance metrics have been defined to enable the evaluation of the performance of PHM
methods [16]. These metrics are needed to guide the PHM system development (Figure 2).
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Figure 2 PHM development framework for informed decision-making

Up to now, for the maturation of PHM, the main efforts have been mainly devoted to
the development of hardware (i.e., Internet of Things (IoTs), smart meters, etc. [17]—[20] and
software for tracking the health state of monitored equipment (e.g., data analytics, platforms
for IoT interconnection and clouding for computing, etc. [21]-[23]). On the other hand, the
full deployment of PHM in practice involves other aspects, including design (e.g. the use of
smart components may lead to different reliability allocation solutions), and impacts various
work units involved in maintenance decisions and actuations (e.g., workers can use smart
systems, maintenance engineers can analyze big data), including the supporting logistics
(spare parts availability and warehouse management can be driven by the PHM results) [17].

In this paper, we present some main challenges for the development of PHM in
practice, corroborated by practical examples, and associate to some of them the developments
of Recurrent Neural Networks (RNNs), Reservoir Computing (RC), Generative Adversarial
Networks (GANs), Deep Neural Networks (DNNs), Optimal Transport Theory (OTT), as
potential directions to successfully address them.

2. CHALLENGES TO PHM IN PRACTICE

Main challenges to the deployment of PHM in practice still remain, coming from
different sides:
* the physics of the problem
* the data available
* the requirements of the solutions.
The challenges related to the physics of the problem derive from the complexity of the
SSCs degradation processes, which are not completely known, dynamic and highly non-
linear, and hence their understanding, characterization and modelling are difficult.
The challenges related to the data relate to multiple aspects (Figure 3):
* the many anomalies in the real data collected in the field (including missing
data and erroneous data from malfunctioning sensors)
* the scarcity and incompleteness of data recognizably related to the state of
degradation of the SSC of interest (labelled patterns)
* the difficulty of managing and treating big data, with a large variety of signals
collected by sensors of different types
* the changing operational and environmental conditions which affect the data
used to train the PHM models and calibrate their parameters, and on which the
models are applied.
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Figure 3 PHM challenges from data. Fault detection is affected by the challenge of
missing data and erroneous data from malfunctioning sensors; fault diagnostics is affected by
the challenge of missing labels relating to the state of degradation of the SSCs; fault
prognostics is affected by the challenge that data are collected in event-based scenarios
because of the difficulty of managing and treating big data.

The challenges related to the requirements of the PHM solutions come from the
multiple objectives that they must achieve, depending on the applications. The obvious ones
are accuracy and precision, quantified with defined performance indicators and measured
against the decisions that they support: in some cases, very high accuracy and precision is
required to be able to take confident decisions (e.g. of stopping a system upon an alert of fault
detection, of replacing a component upon a fault diagnosis, of anticipating or postponing a
scheduled maintenance based on accurate remaining useful life predictions); in other cases,
accuracy and precision need not be so high, and may be compromised for other objectives.
For example, transparency, explainability and interpretability of PHM models are attributes of
particular interest, if not demanded, for decision making in safety-critical applications, for
which they may also be a regulatory prerequisite. Also, PHM as a data-dependent enabling
technology for smart condition-based and predictive maintenance has issues regarding
security. Indeed, the technological network supporting PHM is made of devices,
communication technologies and various protocols, so that security issues regarding
availability, data integrity, data confidentiality and authentication exist. As these issues
hamper operational efficiency, robustness and throughput, they must be adequately addressed.

Finally, an enveloping challenge to the deployment of PHM in practice comes from
the fact that the PHM tasks of fault detection, diagnostic and prognostic are inevitably
affected by various sources of uncertainty, such as incomplete knowledge on the present state
of the equipment, randomness in the future operational usage profile and future evolution of
the degradation of the equipment, inaccuracy of the PHM model and uncertainty in the values
of the signal measurements used by the PHM model to elaborate its outcomes, etc. Therefore,
any outcome of a PHM model should be accompanied by an estimate of its uncertainty, in
order to confidently take robust decisions based on such outcome, considering the degree of
mismatch between the PHM model outcomes and the real values.

As these issues hamper operational inefficiency, robustness and throughput, they must
be adequately addressed.

With specific reference to data-driven methods and models for the tasks of fault
detection, fault diagnostics and failure prognostics in PHM, the next section addresses some
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of the above challenges with the focus on advanced methods that are proving as promising for
their solution.

3. ADVANCING METHODS OF FAULT DETECTION, FAULT DIAGNOSTICS
AND FAILURE PROGNOSTICS FOR MEETING THE CHALLENGES OF
PHM IN PRACTICE

Methods of fault detection, fault diagnostics and failure prognostics within the PHM
framework are continuously being developed and advanced, and applications to various SSCs
are being deployed, supported by the technology of sensors and monitoring systems, the
techniques of data analytics, image processing and text mining, mostly based on the Artificial
Intelligence (AI) and Machine Learning (ML) paradigms, and the computational power [24].
The objective of fault detection is to recognize abnormaities/anomalies in SSCs behavior. The
objective of fault diagnostics is to identify the SSCs degradation states and the causes of
degradation. Prognostics aims at predicting the SSCs Remaining Useful Life (RUL), i.e. the
time left before it will no longer be able to perform its intended function. Fault detection and
diagnostics, and failure prognostics are the enablers of condition-based and predictive
maintenance, which offers major opportunities for Industry 4.0 and smart SSCs, as they can
allow reducing failures, increasing SSCs usage, and reducing operation and maintenance
costs, with tangible benefits of reduction of production downtime, risk and asset losses, and
consequent increase of production profit [24].

A number of challenges still remain, arising from the complexity of the physics which
PHM is addressed to in practice, from the data available and from the requirements to the
PHM solutions for practical applications. In this Section, we go through some of these
challenges, to see where we stand, and where we are going and need to go.

3.1 Data Challenges
3.1.1 Fault detection

As mentioned above, fault detection is the PHM task which aims at identifying the
presence of abnormalities/anomalies during the operation of a SSC. While such
abnormalities/anomalies are commonly referred to as faults in certain disciplines, such as
energy and mechanical engineering, the term damage is commonly used in some other
disciplines such as structural engineering. In practical applications, fault/damage detection is
challenging because it is necessary to assess the presence of the fault/damage based on signals
of physical variables measured during the SSC operation and such process is complicated by
the various sources of uncertainty that can render the signal processing extremely difficult.

Fault detection methods are classified as model-based and data-driven [25]. Model-
based methods use first principles and physical laws to describe the physical phenomena and
processes of interest [26][27][28]. For example, [26] builds a model of the behavior of a rotor
using the finite element method and successfully applies it to fault detection. [27] introduces a
model-based fault detection and isolation technique for manufacturing machinery based on a
defined relationship between a fault signal and observer theory. [28] presents a two-level
Bayesian approach based on the use of Hidden Markov Model (HMM) and Expectation
Maximization (EM) to detect early faults in a milling machine. However, the practical
application of model-based methods is limited by the difficulty of developing accurate
mathematical models of the processes and behaviors of complex modern SSCs [29].

For this reason, data-driven fault detection methods are more popular than model-
based ones, as they rely only on data for the recognition of anomalous patterns attributable to
faults [30][31][32][33][34][35]. For example, [30] develops a fault detection method for
power generation systems, by combining Principle Component Analysis (PCA) for feature
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extraction and Random Forest (RF) for fault behavior pattern learning. Support Vector
Machine (SVM) techniques are introduced to detect faults considering concept drift in nuclear
power plants [31], and to detect faults in high speed train brake systems in case of highly
imbalanced data [35]. Neural Network based approaches attract attention in fault detection,
e.g. [32] combines a set of Artificial Neural Networks (ANNs) through Bayesian statistics for
heavy-water nuclear reactor fault detection and uncertainty quantification, [34] uses ANN to
detect false alarms in wind turbines for reliability centered maintenance, [33] introduces a
Recurrent Neural Network (RNN) with optimized hyperparameters for the detection of
software faults.

These methods can be divided in those which rely on one-class classification models
and those which use residuals, i.e., the differences between the real measurements and the
reconstructed values of the signals in normal conditions, to identify the normal/abnormal
conditions [36].

The former require training of a one-class classification model on signal
measurements collected from both normal (healthy) and abnormal/anomalous (faulty)
conditions of SSCs. However, in practical applications, faults are rare and the data have
manifold distributions embedded in high-dimensional spaces. Distributions with non-smooth
densities and the curse of dimensionality of the data in the long-term multivariate time series
collected from sensors on real industrial SSCs, can cause model overfitting and render
difficult the empirical reconstruction of the data distribution, which, therefore, leads to
unsuccessful detection of abnormal/anomalous conditions in SSCs behavior. These technical
issues hamper the successful deployment of one-class classification methods for fault
detection in practical applications. The need is, then, to develop methods able to detect
anomalous (faulty) conditions given data in normal conditions, and to deal with the manifold
distribution and large dimensionality of real data. In this direction, Generative Adversarial
Networks (GANs) are an interesting perspective as they can be used to reproduce complex
distributions, e.g. manifolds [37], [38]. An example is given in the work by [39], which
proposes an Auto-Encoder aided GAN (AE-GAN) model for the detection of
abnormal/anomalous conditions in the behavior of a SSC, in which the generator of the GAN
and an auxiliary encoder form an AE module, and the reconstruction error generated by the
AE is used as score to detect abnormalities/anomalies in the SSC behavior. Adaptive noise is
added on the data and AdaBoost ensemble learning is adapted to integrate the AE-GANs
applied to detect anomalies in each small time slice of the long-term multivariate time series
collected by the sensors [40]. Furthermore, this work derives a lower bound of Jensen-
Shannon divergence between generator distribution and normal data distribution as an
objective to optimize the AE-GANs hyperparameters; by probing, the optimization works
without test data, as commonly needed by other methods. Extensive experiments are
conducted on real industrial datasets to demonstrate the usefulness of the developed Adaboost
ensembled AE-GAN method for abnormality/anomaly detection in practice.

Residual-based fault detection methods rely on the use of normal-conditions (healthy)
data, only [41]. These methods reconstruct the values of the signals expected in normal
conditions and use the residuals, i.e., the differences between the real measurements and the
reconstructed signals, to identify the normal/abnormal conditions. Examples of residual-based
methods include Auto-Associative Kernel Regression (AAKR) [42]-[44], Principal
Component Analysis (PCA) [45], One Class-Support Vector Machine (OC-SVM) [46], and
Artificial Neural Networks (ANNs) [47]. The empirical model, fitted to the data so as to
provide accurate signal reconstructions, plays an essential role in the above procedure.
However, its training may require a large amount of healthy data collected under various
operating conditions [48]. Besides, different choices of the reconstruction model may yield
different detection results [49].
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Eventually, the detection of an abnormal condition is confirmed by considering
whether the obtained residuals exceed a threshold or by statistical tests. For example, [43]
uses the Sequential Probability Ratio Test (SPRT) on the residuals obtained from an AAKR
model; [50] applies T2- and Q-statistics of the PCA residuals to detect damages in structures;
[51] establishes a statistical hypothesis model in the residual subspace of PCA transform, to
detect and isolate sensor faults based on a Bayesian formulation and the generalized
likelihood radio test (GLRT). Notice that, although these methods assume a certain
distribution of the residuals, most distributions of real-world data may be a priori unknown or
may not actually follow the assumed distributions [52].

Another challenge of fault detection lies in the data pre-processing [53] to extract
features providing the information useful for enabling the detection. Various pre-processing
techniques, such as Fast Fourier Transform (FFT) [54], Continuous Wavelet Transform [55],
Mathematical Morphology [56], have been applied to raw signals, and the processed
outcomes have been fed to fault detection [57]. The quality of the features selected by pre-
processing strongly impacts the detection results, but unfortunately there is no universal rule
for choosing the optimal pre-processing method.

Recently, transport-related methods are being considered for applications in PHM.
They have already been successfully employed in other domains [58], involving signal and
image processing [59], computer vision[60], machine learning and statistics [61], [62].
Commonly used optimal transport distances include Wasserstein distance (or Kantorovich
distance) [63] and Earth Mover’s distance (EMD) [64]. Wasserstein distance has proved a
promising statistic for the nonparametric two-sample test [65].

In the PHM area, [66] has studied the bearing diagnostics problem using EMD
combined with dynamical system reconstruction. [67] has used a PCA scheme combined with
the Kantorovich distance (KD) for fault detection in the process industry. [68] has developed a
method of OT in which the abnormality score is built using the Wasserstein distance and has
verified its performance considering the detection of abnormal conditions in bearings. The
method differs from other state-of-the-art methods for fault detection, since it directly deals
with raw signals and does not require the use of signal reconstruction methods or feature
extraction; it is also distribution-free, i.e., it does not require to formulate any a priori
hypothesis on the distribution of the data. The basic idea behind the method is to generate an
abnormality score, based on Wasserstein distance, to quantify the dissimilarity between the
probability distributions of the currently monitored and healthy data. The Cumulative
Distribution Transform (CDT) [69] is used to find the univariate Optimal Transport (OT)
solution. The method has been applied to a real bearing dataset and successfully compared
with two other fault detection methods of literature: a Z-test based method [70] and a PCA-
based method for signal reconstruction, combined with the Q-statistic for residual analysis
[71]. The Adaboost ensembled AE-GAN method mentioned earlier [39] can also be adapted
for application to normal-conditions data only. The generator of the GAN and the auxiliary
encoder form the AE module, and the reconstruction error generated by the AE is used as the
score to detect abnormalities/anomalies in SSC behavior. For the abnormality/anomaly
detection, it is assumed, as usual, that the probability distribution of the abnormal/anomalous-
conditions data is significantly different from that of the normal-conditions data: as the
generator can only reproduce the distribution of the normal-conditions data, the AE always
successfully reconstruct the normal data but fails to reconstruct the abnormal ones. So, any
test sample processed through the AE-GAN is declared anomalous if the AE reconstruction
error is larger than a certain predefined threshold. For dealing with the high dimensionality of
the data, again, an ensemble framework can be used. Non-overlapped sliding time windows
are introduced to partition the multivariate time series and a separate data sample for each
time window is analyzed by AE-GAN for abnormal/anomaly detection. Finally, the AdaBoost
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algorithm is used to aggregate the abnormality/anomaly detection results for each time
window. The GAN-based method for addressing the challenge of missing fault data in fault
detection is shown in Figure 4.

GAN
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Figure 4 Illustration of GAN-based method in fault detection w.r.t. the challenge of
missing fault data [39]. GAN-based method is a type of distribution reconstruction method
which reproduces the normal-conditions data distribution by the Generator and uses an extra
Encoder to form an Auto-Encoder, which can obtain anomaly scores (reconstruction errors)
to distinguish whether samples are anomalous or not.

Table 1 summarizes the fault detection techniques, with specific regard to the
challenge of missing fault data.

Table 1 Fault detection techniques with regard to the challenge of missing fault data.

Model-based Data-driven
Supervised One-class classification
learning (Advantage: addressing the challenge of missing fault
(Limitation: need data)
both healthy and Residual-based Transport- Distribution
fault condition (Limitation: need related reconstruction-
data) to apply statistical based
test)
Finite RF: AAKR: EMD: GAN:-based:
Element [30] power [42] non-linear [66] bearing [39] high-
Method: generators fault multimode fault detection | speed train
[26] rotor detection processes fault automatic door
crack detection
diagnostics [43] reactor coolant
pump fault detetion
[44] power plant
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fault detection
Observer SVM: PCA: Kantorovich
theory: [31] early fault [45] air handling Distance:
[27] rotor fault | detection of unit fault detection | [67] tank
detection numerical case heater
[35] high-speed simulation
train brake fault case fault
detection detection
HMM: ANN: OC-SVM: Wasserstein
[28] [32] heavy-water [46] building air Distance:
mechanical reactor early fault | conditioning [68] bearings
equipment detection system fault fault detection
early fault [34] wind turbine detection
detection false alarm
detection
RNN: ANN: CDT:
[33] software fault | [47] wind turbine [69] numerical
detection gearbox fault case
detection

3.1.2 Fault diagnostics

Fault diagnostics requires data analytics capable of identifying the equipment fault
state, mode, location and other characteristics of interest, based on monitored signals
(temperature, pressure, current, acceleration, etc.). As for the detection task previously
discussed, in practical applications it also suffers from the presence of uncertainty coming
from the processing of data of the measured signals. Common approaches make use of
historical operational data to build empirical classifiers capable of discriminating different
classes from the data, for fault diagnostics. Different classification techniques, such as
Complex Valued Neural Network (CVNN) [72], Deep Belief Network (DBN) [73], Bayesian
Network (BN) [74], Decision Trees (DT) [75], Linear Discriminant Analysis (LDA) [75], K-
Nearest Neighbor (KNN) [75], Artificial Neural Networks (ANNSs), Support Vector Machines
(SVMs) [76][75][77], have been successfully used in applications of different industrial and
civil sectors [78]. These methods rely on supervised learning of labelled data, which,
however, are rarely available in practice, so that their real application is limited [79]: the real
application calls for unsupervised learning of unlabeled data.

Unsupervised learning is an important topic in machine learning for time series
segmentation [80], [81] and pattern recognition [21], [82], [83]. In fault diagnostic
applications, it is used to provide abstract representations of the raw measurement data and
obtain various clusters representing healthy and faulty conditions [22], [84]—[86]. In the work
of [22], a Categorical Adversarial Autoencoder (CatAAE) has been proposed for unsupervised
learning aimed at fault diagnostics of rolling bearings. In the work of [84], a diagnostic
methodology based on unsupervised Spectral Clustering (SC) combined with fuzzy C-means
(FCM) has been developed for identifying groups of similar shutdown transients performed
by a nuclear turbine. In [85], Self-Organizing Map (SOM) has been used for clustering and
identifying degradation states of a railway-signal system. In [86], a methodology combining
k-means and Association Rule Mining (ARM) has been developed to mine failure data and
diagnose interconnections between failure occurrences in wind turbines. Representation
learning can disentangle the different explanatory factors of variation behind the data, making
it easier to extract and organize the discriminative information when building fault diagnostic
models [87]-[92]. In traditional unsupervised methods for fault diagnostics, the features are
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extracted applying ad hoc signal processing techniques to the collected signals, e.g. Fourier
spectral analysis and Wavelet transformations [93]. The processing is heavily dependent on a
priori knowledge and diagnostic expertise [22], [94], and can be quite time consuming and
labor-intensive [88]. Since representation learning is adaptively capable of learning features
from raw data, it can constitute an excellent a priori choice for the development of diagnostic
techniques. In the work of [95], an unsupervised sparse filtering method based on a two-layer
neural network is used to directly learn features from mechanical vibration signals. In the
work of [96], a Spatio-Temporal Pattern Network (STPN) based on Probabilistic Finite State
Automation (PFSA) and Markov machines is proposed to represent temporal and spatial
structures for fault diagnostics in complex systems. However, these conventional
representation learning methods cannot capture long-term temporal dependencies in the time
series and they typically require high computational complexity.

From the above, it is seen that traditional fault diagnostic approaches typically require
the acquisition of signal measurements from SSCs whose true degradation state is known.
However, to acquire such labelled data is a difficult, expensive and labor-intensive task.
Furthermore, streaming data collected in online-monitored SSCs have long-term temporal
dependencies. However, unsupervised learning methods have a hard time dealing with long-
term time dependencies, because these dependencies are limited by the size of the sliding time
window which can be used for the analysis. Then, there is a need for advancements in the
methods to estimate the degradation level at a given time on the basis of a few run-to-failure
trajectories with long-term temporal dependencies and for which the true degradation state is
unknown. In the work of [97], for example, a two-stage method for unsupervised learning is
proposed for fault diagnostic applications, inspired by the idea of representing temporal
patterns by a mechanism of neurodynamical pattern learning, called Conceptor. Considering a
reservoir, i.e. a randomly generated and sparsely connected RNN [98], Conceptors can be
understood as filters characterizing the geometries of the temporal states of the reservoir
neurons in the form of square matrices [99], achieving a direction-selective damping of high-
dimensional reservoir states [100]. The proposed method develops in two stages. In the first
stage, the Conceptors extracted from the training run-to-failure degradation trajectories are
clustered into several non-overlapped time series segments representing different degradation
levels. In the second stage, the Conceptors and corresponding labels obtained in the first-stage
clustering are used to train a Convolutional Neural Network (CNN) for real-time diagnosing
the SSC degradation level. The CNN receives in input the Conceptors extracted from the
reservoir states at the current time, which contain information about the long-term evolution
of the SSC degradation, and the difference between the Conceptors extracted at the present
and previous time steps, which contains information about the short-term degradation
variation. The proposed method has been applied to two literature case studies concerning
bearings fault diagnostics. The results show satisfactory accuracy and efficiency of the
method. The Reservoir computing-based method for addressing the challenge of missing
labels of degradation state is shown in Figure 5.
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Figure 5 Illustration of Reservoir Computing-based method in fault diagnostics w.r.t.
the challenge of missing labels of degradation state [97]. a) Conceptor Generator converts

the variable-length signals into a fixed-size Coceptor matrix by using reservoir computing.

The Conceptor matrix is a filtered correlation matrix of reservoir states, which decreases the

impact of less important features in the degradation dynamics, i.e. noise and operation
conditions. b) stage 1: the combined use of Coceptors matrix and spectral clustering can
obtain the pseudo-labels in the run-to-failure trajectories, stage 2:CNN trained by Conceptors
with associated pseudo-labels is, then, used for fault diagnostics.

Table 2 summarizes the fault diagnostics techniques, with specific regard to the
challenge of missing labels for degradation states.
Table 2. Fault diagnostics techniques with regard to the challenge of missing labels for

degradation state.

Supervised classifiers
(Limitation: need
degradation state labels)

Unsupervised approaches

Unsupervised
learning

Representation learning

Neural Network-

Reservoir

(Limitation: depend based Computing-based
on diagnostic (Limitation:
expertise for feature | difficult to capture
extraction) long-term temporal
dependencies)

CVNN: CatAAE: Unsupervised Conceptor + SC:
[72] railway track [22] rolling bearing | Sparse Filtering (Conceptor as a
turnouts degradation fault diagnositcs Neural Network: | representation
level assessment [95] motor bearing | capable of

DBN:
[73] aircraft engine

SC + FCM:
[84] Nuclear Power

fault diagnostics

encoding long-
term temporal
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DT:

[75] anomaly (mud)
diagnostic on wind
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LDA:
[75] anomaly (mud)

k-means + ARM:
[86] failure cause
and weather
condition correlation
diagnostics of wind
turbine system

[96] fault severities
diagnostics of wind
turbine

dependencies)
[97] degradation
level assessment
of bearings

diagnostic on wind
turbine blade

KNN:

[75] anomaly (mud)
diagnostic on wind
turbine blade

ANNSs:
[101] fault diagnostics of
bearings

SVMs:

[75] anomaly (mud)
diagnostic on wind
turbine blade

[76] bearing defects
diagnostics

[77] pipe failure
prediction in water
supply networks

3.1.3  Fault prognostics

Prognostics is concerned with the prediction of the future evolution to failure of the
state of a SSC. It involves the processing of data to predict the future degradation of the SSC
structural and functional attributes, based on which to estimate the SSC failure probability and
RUL. The prognostic outcomes are used for the health management of the SSC, which seeks
to use the prognosis to decide on and actuate operational actions and maintenance
interventions. To the uncertainties coming from the use of the data available from the sensors,
like for the detection and diagnosis tasks, prognostics adds further challenges related to the
future evolution of the usage profile and operational environment, whose uncertainties affect
the degradation state evolution. This makes it practically impossible to precisely predict the
future evolution of the SSC state of health and it is necessary to account for the different
sources of uncertainty that affect prognostics, within a systematic framework for uncertainty
quantification and management [102].

Prognostics is dependent on the available knowledge, information and data on the
process of degradation. There may be situations in which a sufficient quantity of run-to-failure
data has been collected during the life of the SSCs, and these can be used to develop empirical
(data-driven) models. In other cases, the degradation mechanism is known and a physics-
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based model is available. On these bases, prognostics approaches can be grouped into three
categories: (i) model-based, (ii) data-driven and (iii) hybrid:

* (i) Model-based approaches use physics-based degradation models to predict the
future evolution of the SSCs degradation state and infer the time at which the
degradation will reach the failure threshold. These approaches have been applied with
success in various practical cases, e.g., to pneumatic valves [103], Li-lon batteries
[104], the residual heat removal subsystem of a nuclear power plant [105], and
structures subject to fatigue degradation [106]. In the case of complex SSCs, subject to
multiple and competing degradation mechanisms, accurate physics-based models are,
however, often not available.

* (ii) Data-driven approaches directly extract from the data the degradation law for SSCs
RUL prediction [107]. Such approaches include conventional numerical time series
techniques, as well as Al intelligence and data mining algorithms, such as similarity-
based [108] and regression-based methods [107]. A variety of Al techniques, such as
Convolutional Neural Network (CNN) [109][110], Denoising Auto Encoder (DAE)
[111], Long Short Term Memory (LSTM) [112][109][113][114], Gated Recurrent Unit
(GRU) [115], SVM [116], Adjacency Difference Neural Network (ADNN) [117], are
applied to RUL estimation of different industrial systems and components. The
performances of data-driven approaches depend on the quantity and informative
quality of the data available to develop the predictive models.

e (iii) Hybrid approaches combine, all the available sources of knowledge, information
and data. They bring the advantages of both model-based and data-driven methods.
Specifically, they can integrate the robustness and interpretability of model-based
methods with the specificity and accuracy of data-driven methods. For instance, [118]
combines Kalman Filtering (KF) with data-driven approaches, [119] integrates the
Health Indicator (HI) and regression model, [120] combines Relevance Vector
Machine (RVM) and Particle Filtering (PF), and [121] integrates a physical model and
the Least Square (LS) method to estimate RUL of a variety of industrial equipment.

Traditional fault prognostic methods face the challenge of dealing with incomplete and

noisy data collected at irregular time steps, e.g. in correspondence of the occurrence of
triggering events in the system. For example, for monitoring the degradation and failure
processes of bearings in large turbine units, signal measurements collection (e.g., vibration
signals measured by eddy current displacement sensors measuring the radial vibration of the
rotor at both ends, the axial vibration of the rotor, and sensors measuring the unit rotating
speed) is only triggered by abnormal behaviors of the units, such as large environmental noise
and anomalous vibration behavior. These “snapshot” datasets are often encountered in
industrial applications, dominated by the necessity of cost saving in storing and managing the
databases, and of reducing energy consumption and bandwidth resources. Since failure events
are rare, event-based datasets are dominated by missing measurements, where the values of all
signals are missing at the same time. With these characteristics, traditional methods for
missing data management, e.g. case deletion, imputation [122]-[125] and maximum
likelihood estimation [126], are difficult to apply. For instance, since case deletion methods
discard patterns whose information is incomplete, they are not useful in case of event-based
datasets where a pattern is either present or absent for all signals [126]. Imputation
techniques, which are based on the idea that a missing value of a signal can be replaced by a
statistical indicator of the probability distribution generating the data, such as the signal mean
value [127] or a value predicted by a multivariable regression model, have been shown
inaccurate in case of large fractions of missing values in the dataset [128]. Maximum
Likelihood methods use the available data to identify the values of the probability distribution
parameters with the largest probability of producing the sample data. They typically require
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the Missing At Random (MAR) assumption, i.e. the probability of having a missing value is
not dependent on the missing values[127],[129], which is not met in event-based datasets.

Few research works have considered fault prognostics in presence of missing data. A
model based on Auto-Regressive Moving Average (ARMA) and Auto-Associative Neural
Networks (AANN), has been developed for fault diagnostics and prognostics of water process
systems with incomplete data [130]. An integrated Extreme Learning Machine (ELM)-based
imputation-prediction scheme for prognostics of battery data with missing data [125] and an
hybrid architecture of physics-based and data-driven approaches have been proposed to deal
with missing data in a rotating machinery prognostic application [131]. In the medical field, a
Bayesian simulator has been used to generate missing data for developing prognostic models
[132] and a Multiple Imputation approach has been embedded within a prognostic model for
assessing overall survival of ovarian cancer in presence of missing covariate data [133].
Notice that all these methods are based on the two successive steps of missing data
reconstruction and prediction.

Then, advancements and new methods are still needed to enable predicting the RUL of a
SSC on the basis of measurements collected only when triggering events occur, such as SSC
faults or extreme operational conditions, and providing an estimate of the uncertainty
affecting the RUL prediction. As an example, [134] has developed a method based on Echo-
State Networks (ESNs) to directly predict the RUL of a SSC without requiring to reconstruct
the missing data. ESNs are considered because of their ability of maintaining information
about the input history inside the reservoir states. The main difficulty is that, contrarily to the
typical applications of ESNs, the time intervals at which the data become available are
irregular. Two different strategies have been considered to cope with the event-based data
collection. In one strategy, the ESN receives an input pattern only when an event occurs. The
pattern is formed by the measured signals and the time at which the event has occurred. In a
second strategy, the reservoir states are excited at each time step. If an event has occurred, the
reservoir states are excited both by the previous reservoir states and the measured signals,
whereas, if an event has not occurred, they are excited only by the previous reservoir states.
By so doing, the connection loops in the reservoir allow reconstructing the SSC dynamic
degradation behavior at those time steps in which events do not occur. Multi-Objective
Differential Evolution (MODE) algorithm based on a Self-adaptive Differential Evolution
with Neighborhood Search (SaNSDE) [135] is used to optimize the ESN hyper-parameters.
The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [136] is,
then, used to select the optimal solution from the obtained Pareto solutions. Furthermore, a
bootstrap aggregating (Bagging) ensemble method is applied to improve the RUL prediction
accuracy and estimate the RUL prediction uncertainty. Given that ESNs cannot be fed by
random sequences of patterns, the traditional Bagging sampling mechanism used to create the
bootstrap training sets has been modified. In the proposed solution, the bootstrap training sets
are obtained by concatenating entire run-to-failure trajectories, randomly sampled with
replacement. The benefits of the proposed methods are shown by application to the prediction
of the RUL of a sliding bearing of a turbine unit. The ESN-based one-step RUL prediction
method for the challenge of missing data, i.e., event-based measurements, is shown in Figure
6.
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Figure 6 Illustration of ESN-based method in fault prognostics w.r.t. the challenge of missing
data, i.e. event-based measurements [134]. The input neurons of ESN are excited to update the
reservoir state when measurements are available (events are triggered), whereas the input
neurons are canceled if data are missing (no events occur) and the reservoir is only updated
by the reservoir state at the previous time step and the target signal, which force the reservoir
to learn from the historical degradation pattern and the target signal evolution pattern.

Table 3 summarizes fault prognostics techniques, with specific regard to the challenge
of missing data, i.e. event-based measurements.

Table 3. Fault prognostics techniques with regard to the challenge of missing data, i.e. event-

based measurements.

Traditional fault prognostics
(Limitations: cannot deal with missing data, i.e.
event-based measurements)

Fault prognostics in presence of missing
data

Model-based Data-driven hybrid Conventional type of Event-based
missing data measurement
(Limitations:
difficult to deal with
event-based
measurements)

[103] fault CNN: KF and Missing at random | ESN-based
prognostics of | [109] RUL data-driven | Missing data one-step RUL
pneumatic estimation for | approaches: | imputation and prediction
valves bearing [118] RUL prognostics by without
[104] [110] RUL estimation for | ELM-based requiring to
prognostics estimation for | aircraft bleed | method: reconstruct the
and health turbofan valve [125] RUL missing data:
monitoring of | engine estimation of battery | [134] RUL and
Lithium-ion DAE: HI and uncertainty
battery [111]RUL regression Missing not at estimation of
[105] fault estimation for | model: random bearing
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[112] RUL Lithium-ion Missing at extreme
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turbofan Missing data
engine physical generation by
[113] RUL model and physical model;
estimation for | LS: Prognostics by
turbofan [121] RUL physical model and
engine estimation for | data-driven:
[114] RUL Lithium-ion | [131] prognostics for
estimation for | pattery bearing
turbofan
engine
GRU:
[115] RUL
estimation for
turbofan
engine
SVM:
[116] RUL

estimation for
aircraft engine
ADNN:

[117] RUL
estimation for
aircraft engine

3.2 Challenges from requirements on practical solutions
3.2.1 Interpretability of models

The ability to correctly interpret a PHM model’s output, be it the detection of a fault,
its diagnosis or prognosis, is extremely important, and particularly so in safety-critical
applications like those concerning the high-risk systems and processes of the chemical,
nuclear, aerospace industries, to name a few. It allows understanding of the state of the system
or process being modeled and supports analytic reasoning and prescriptive decision making to
intervene (or not) and how. It also engenders appropriate trust by the analyst, providing
insights on how the model works. The importance of this is such that in some applications,
simple models (e.g., even linear models) are preferred for their ease of interpretation, even if
they may be less accurate than complex ones. Yet, currently the growing availability of big
data for PHM has increased the benefits of using complex models for achieving accuracy, at
the expenses of model intelligibility. This brings to the forefront the need of a trade-off
between accuracy of the model and interpretability of its output. A wide variety of different
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methods have been recently proposed to address this issue, but an understanding of how these
methods relate and when one method is preferable to another is still lacking.

Most models and algorithms for PHM are developed and trained to maximize
accuracy, neglecting interpretability and causality. Accounting for these aspects may, indeed,
lead to a loss in performance but would enhance their safe, reliable and robust use both in
terms of undesired biases and uncertainty reduction. Understanding why a PHM model makes
a certain prediction can be as crucial as the prediction’s accuracy in many applications.
However, the highest accuracy for large modern datasets is often achieved by complex models
that even experts struggle to interpret, such as ensemble or deep learning models, creating a
tension between accuracy and interpretability [137]. Some general attributes sought for in the
interpretability of PHM models are:

» fairness: no discrimination in algorithm decisions, which could come from bias

in the collected data

* robustness: small changes in input should not cause big changes in output

* causality: causal relations are picked up from the model and rendered explicit

* quantifiable reliability of outcomes and predictions.
The awareness of the relevance of transparency, explainability and interpretability of PHM
models is growing as a need and a requirement, particularly for supporting decision making in
safety critical systems, for which it may also be a regulatory prerequisite. For example, in
Nuclear Power Plants (NPPs), there is still resistance to the deep penetration of digital 1&C
systems and PHM, because of the difficulty of testing performance under all postulated
conditions, on one side, and guaranteeing reliability based on transparent understanding and
interpretation, on the other side. The decision making related to tasks of control, operation,
maintenance and safety of NPPs, which have traditionally relied on procedures and expert
evaluation and judgment, are gradually being assisted by intelligent machines (i.e. software
algorithms) for PHM, developed and trained on the basis of big and customized data: how far
and how it can be permitted in safety-critical systems that require licensing depends also on
the possibility of interpreting the causality of their output.

For the modelling approaches to PHM based on learning from data, one issue lies in
possible biases in the training set that are, then, not present in the test set or contain patterns
undesired with respect to the test data, and may be unknown to the user of the trained model
output. In this sense, achieving robustness in PHM models is fundamental and one way to
proceed is to try to design inherently interpretable models, i.e. so as to exclude all undesired
features that are not causally related to the outcome. By examining interpretable models:

» features or functions capturing quirks in the data can be noted and excluded, thereby
avoiding related harm in the successive use of the model output, and the understanding
of the phenomena analyzed

* knowledge can be extracted, in terms of the interactions among the inputs and how
they determine the output

* an evaluation of the reliability of the PHM outcomes can be performed

* some limited extrapolation can be possible, with the aim of gaining knowledge on
unexplored scenarios.

Methodologies are used to gain interpretability in a model by looking at the importance of the
different input features in determining the model outputs. A distinction is made between
model-specific and model-agnostic methodologies for evaluating feature importance. An
interesting example of the former is the “attention mechanism” for Neural Networks applied
in Prognostics, where importance values are assigned to specific input subsets [138], [139].

As the name implies, model-agnostic feature importance evaluation methodologies can
in principle be used for any model. Local approaches are used for online applications and
global approaches for offline applications. Local measures focus on the contribution of
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features to a specific outcome instance, whereas global measures take all outcomes into
account.

The Local Interpretable Model Explanation (LIME) method aims at explaining
individual outputs and can be applied to any learning model [140]. Instead of training a global
surrogate model, LIME focuses on training local surrogate models to explain individual
model outputs. The method works by building for each output instance of interest a local-
interpretable model that approximates the original, complex model. Each model output
instance is, then, explained by an “explainer-model” that highlights the symptoms that are
most relevant to it. With this information about the rationale behind the model, the analyst is
now empowered to trust the model output—or not — for her/his decisions and consequent
actions.

The idea behind LIME is quite intuitive and it is based on the fact that one can probe
the model as many times as desired, by feeding the input data points and retrieving the
corresponding outputs of the model. The goal of this is to understand why the learning model
gave a certain output. The LIME tests are local sensitivity tests performed in a way to explore
what happens to the output when the inputs are locally varied by small perturbations. By so
doing, a new dataset is generated, consisting of permuted input samples and corresponding
model outputs. For example, the new samples can be created by perturbing each feature
individually, drawing from a normal distribution with mean and standard deviation taken from
the feature values. On this new dataset, LIME builds and trains the interpretable explainer-
model, which is weighed by the proximity of the sampled instances to the instance of interest.
The interpretable model should give a good approximation of the original model outputs
locally, but it does not have to be a good global approximation of the original model itself.
Mathematically, the interpretable explainer model for instance x is the (simple) model g (e.g. a
linear regression model) that results as solution of the optimization problem that minimizes
the loss function L (e.g. the mean squared error) measuring how close the explanation output
of g is to the output of the original model f (e.g. a neural network), while the model
complexity (g)is kept low (e.g. as few features as possible):

explanation(x)=argmin L(f,g,7x)+$2(g) (1)
geG

where G is the family of possible explainer models, for example all possible linear regression
models, and the proximity measure 7, defines how large is the neighborhood around instance
x that is considered for the explanation. In practice, LIME only optimizes the loss part and the
user controls the model complexity by £(g), e.g. by selecting by forward and backward
feature selection methods the maximum number of features that the linear regression model
may use.

The procedure for interpreting locally the complex original model is, then:

i) select the instance of interest x for which an explanation of the original complex model

outcome f{x) is needed

ii) perturb the input data and get the original model output values for these new data

samples

iii) weigh the new samples according to their proximity to the instance of interest

iv) train a weighed, interpretable model on the new dataset generated in ii)

v) explain the local output of the interpretable model g.

LIME has been applied for the interpretation of machine learning models in applications
of medical diagnostics [141]. In a recent study about early Parkinson detection, LIME has
been used to highlight the features determining the healthy/disease decision of a ML classifier
of images of the brain: LIME allows highlighting the super-pixels mostly determining the

20



657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

classification in healthy or disease states; experts can, then, focus on the super-pixels selected
with LIME to interpret and explain the basis for the decision by the ML algorithm, and choose
to accept or refuse it.

Shapley values also can be used to assess local features importance [142]. Although they
can be used to explain which feature(s) contribute most to a specific model output, Shapley
values are not designed to answer the “what would happen if” questions that LIME’s local
explainer models are designed for. They come from game theory and are designed to construct
a fair payout scheme for the players in a game. Suppose one could look at all possible
combinations of (a subset of) players in a team replaying a game and observe the resulting
team score. One could, then, assign each player of the team a portion of the total payout based
on its average added value across all possible subteams to which it was added to play the
game repeatedly. Such individual payout is the player’s Shapley value and gives the only
payout scheme that is proven to be:

o efficient: the sum of the Shapley values of all players should sum up to the total

payout

* symmetric: two players should get the same payout if they add the same value in all

team combinations

* dummy-sensitive: a player should get a Shapley value of zero if it never improves a

subteam’s performance when it is added

e additive: in case of a combined payout (say we add two game bonuses), the combined

Shapley value of a player across the games is the sum of the individual game’s
Shapley values; this criterion has no relevant analogy in the context of model
interpretability.

In the “game” of our interest for PHM model interpretability, the players are models with
different features subsets and they get the same payout mechanism introduced above. The
team score in this context is the performance measure of a (sub)model built on a given feature
subset. The total payout is the difference between a base value — output of the null model —
and the actual output. This difference is, then, divided over all features in accordance to their
relative contribution.

Obviously looking at all possible subsets of features is computationally prohibitive in
most realistic models with many features. Instead, Shapley value approximations can be
computed based on sampling of features.

Other model-agnostic methodologies are based on Sensitivity Analysis (SA), which has
been widely applied to models used in various areas, such as nuclear risk assessment [143],
industrial bioprocessing [144] and climate change [145]. Indeed, a main application of SA is
for identifying the input quantities most responsible of a given output variation [146]. Both
local and global approaches to SA have been developed. Local approaches identify the critical
input features as those whose variation leads to the most variati