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Abstract 

 

Hydraulic fracturing is a well completion technique for Oil and Gas production enhancement in both conventional 

and unconventional reservoirs. However, it can result in the unfavorable consequence of the premature screen-out, 

which occurs due to the proppant bridging across the perforations or similar restricted flow areas. 

The objective of this work is to propose a novel framework of analysis that enables to quantify the risk of screen-

out occurrence, to identify the riskiest scenarios and to determine the best risk mitigation strategies. The 

premature screen-out problem is addressed within a Risk Management and Control Process, wherein the 

qualitative and quantitative assessments of the early screen-out risk are performed by a Features, Events and 

Processes Analysis structured with a Bayesian Belief Network. The BBN probabilities are subject to a thorough 

uncertainty and sensitivity analysis.  Sensitivity analysis is performed by the Sobol’s variance decomposition 

method and the identified most influential probabilities of the BBN are re-estimated in order to reduce the output 

uncertainty.  

Finally, risk mitigation plans are formulated using risk importance measures to identify the riskiest scenarios and 

cost-benefit analysis to determine  the optimal risk reduction actions 

The developed framework has been applied to a case study of vertical wells. 

 

 

 

 

 

 

Keywords: premature screen-out, risk assessment, Bayesian Belief Network, experts probability elicitation, Sobol’s 
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Nomenclature  

� Causal arcs  a Lower limit of the Uniform and Gaussian Distributions b Upper limit of the Uniform and Gaussian Distributions 
BBN(s) Bayesian Belief Network(s) 

�����	
� = 
��� � Compatible parental configuration for the jth state of the ith probability                                 

CPT(s)                                                                   Conditional Probability Table(s) � Total variance of the model output 

DAG Directed Acyclic Graph 

EBBN Elicitation method for the BBN ���� Expected disutility 

FEP Features, Events and Processes �� Average of the model output variance �� Function of the individual effects of the ith input parameter ���  Function of the interaction effects of the ith and jth input parameters ����, ������ Individual and joint influence factors 

NWBF Near-Wellbore Friction ����� Marginal probability of the state of the ith component ���� |!"� Conditional probability of the state of the ith component given the  

 combination of the states of its parents !" ��#�  Probability of scenario # ��	��  Probability of the input parameter �$�	%�  The set of parent nodes of 	% 
RAW Risk Achievement Worth 

RIM Risk Importance Measures 

RRW Risk Reduction Worth 

RS Risk Share � Path vector #& Scenario exclusion !�  First-order Sobol’s Sensitivity index of the ith input parameter !'�  Total-effect Sobol’s Sensitivity index of the ith input parameter '( Typical distribution ��	)*�"�)�+� Disutility function for all combinations of states of the parents �"�)� 
x Random variable 	,-.  Highest-ordered state 	,�� Lowest-ordered state 	
� ∈ �$�	%� ith parent node of the set of parent nodes of a child node 	% 	% Child node 0� Relative influence weight of the ith parent node 

WSA  Weighted Sum Algorithm  

 

Greek letter parameters 

α.12  Weighting Factor of the ith parent node 

β.3 Weighting Factor of a child node 	% 

4.3.12  Influence weight parameter of the ith parent node and a child node 	% 

5  Mean value 6 Standard deviation 
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1. Introduction 

Hydraulic fracturing is a widespread well completion technique for Oil and Gas production enhancement in both 

conventional and unconventional reservoirs.  It amounts to the injection of fracking fluid, i.e. the pressurized liquid, into a 

wellbore in order to create fractures in the rock formations and, then, keeping them open using proppants, i.e.  solid 

materials.  The design of this technique depends heavily on the mechanical properties of the rock formation, the 

petrophysical properties of the reservoirs and the nature of the fracturing process. The reliability of the operation relies on 

the data inferred from the measurement logs, laboratory analyses and core sample tests. A low quality of the data may 

cause failures and result in the most unfavorable consequence of premature screen-out [5]. 

The screen-out is a condition due to the proppant bridging across the perforations or similar restricted flow area, i.e. inside 

near-fractures, that leads to a rapid increase in the pump pressure, as in the example of Figure 1. This situation obstacles 

the hydraulic fracturing and leads to the loss of working days and costs for the remedial operations [5]. Because of its 

detrimental effects, predicting the risk of occurrence of the screen-out is very important. 

 

Figure 1 Premature Screen-Out conditions (internal, non disclosable communication Kwantis) 

 

Currently, the potential for screen-out occurrence can be assessed by hydraulic fracturing calibration tests, such as the 

Step Rate Tests and MiniFracs. Specifically, the Step Rate Tests are fluid injection tests carried out before the main 

fracturing job, in order to gather important information about the fracture pressure and determine the entry friction losses 

through perforations and near-wellbore area. The excessive friction losses obtained from the tests indicate the presence of 

tortuosity and multiple fractures in the vicinity of a wellbore, which may result in the early screen-out.  The Nolte-Smith 

method can, then, be used to provide a log-log plot that describes the expected pressure response from the formation 
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during pumping in order to predict the fracture propagation behavior and the tendency of hydraulic fracturing to screen-

out. This approach is based on different fracture geometry models and implies specific assumptions, which can deviate 

from the real conditions [6].  

The MiniFrac is an injection test of the fracturing fluid, which aims to evaluate fracture and fluid behavior. The MiniFrac 

fall off analysis with the G-Function Plot Analysis is a pressure decline analysis that provides a more accurate measure of 

the fracture behavior, and identifies such coefficients as fluid leak-off and fluid efficiency: these two parameters may 

indicate the presence of natural fractures or high permeability zones, which are the possible root causes of the premature 

screen-out [6]. 

It is worth noting, that these tests have the following deficiencies:  

1. They give only the signs of occurrence of the screen-out. 

2. Analysis results are obtained only in real time – thus, it is not possible to predict the occurrence of the screen-

out in advance, before carrying out the treatment. 

3. Potential primary causes of screen-out are identified during different stages of the job execution – 

consequently, there is no comprehensive model that identifies different scenarios of the premature screen-out 

at the same time. 

In this work, the premature screen-out problem has been addressed within a novel and complete framework of Risk 

Management and Control Process (RMCP).  Traditionally, the RMCP within the Oil and Gas projects consists of 

qualitative assessment of the potential risks by performing such methods as Failure Mode and Effect Analysis (FMEA), 

Hazard Operability (HAZOP) analysis, and of quantitative assessment by implementing Decision Tree Analysis (DTA) 

and Event Tree Analysis (ETA).  Then, the level of risks is prioritized using the Risk Matrix. The risks are evaluated in 

terms of Expected Monetary Value (EMV) [2]. 

In this work, the hazards contributing to the early screen-out failure have been identified by Features, Events and 

Processes (FEP) analysis. The quantitative part of the risk assessment is based on a Bayesian Belief Network (BBN), a 

descriptive and quantitative probabilistic graphical model.  The probabilities that feed the model have been assessed using 

different expert elicitation methods, namely the Weighted Sum Algorithm (WSA), the elicitation method for BBN, the 

log-likelihood method. The latter method has provided the most satisfactory results for the big matrices of the Conditional 

Probability Tables (CPT) of the BBN and has been used to provide the input for the risk quantification. 
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 The robustness of the BBN model and its sensitivity to the input probabilities have been evaluated through extensive 

uncertainty and sensitivity analyses. The outcome of the uncertainty analysis has shown that the model is robust to small 

variations in its input probabilities.  The influence of the input parameters variability on the output distribution has been 

assessed by the Sobol’s variance decomposition method. The most sensitive probabilities have been re-evaluated using 

historical data and experts judgement, in order to reduce the output uncertainty.  

Finally, the riskiest scenarios have been identified by introducing risk importance measures. The best risk mitigation plans 

have been identified by cost-benefit analysis. 

The remainder of the paper is structured as follows (Figure 2): 

- Section 2 formulates the risk assessment by describing the FEP analysis of Hydraulic Fracturing and defines the 

methodological framework based on BBN.  

- Section 3 unfolds different methods for the estimation of the probabilities of the BBN model.  

- Section 4 illustrates the sensitivity and uncertainty analyses. 

- Section 5 describes the risk importance measures analysis and the cost-benefit analysis. 

- Section 6 presents the results of the analyses carried out.  

 

 

Figure 2 Framework of the Risk Management and Control Process for Premature Screen-Out failure 
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2. Risk Assessment 

Risk assessment is a part of the Risk Management and Control Process (Figure 3), which provides a structured process for 

the risk identification, risk analysis and risk evaluation. Risk assessment consists of two parts [1]: 

1. Qualitative part: the objective of this part is to identify all potential sources of danger, which can lead to 

substantial consequences. 

2. Quantitative part: the objective of this part is to evaluate possible accident scenarios and estimate failure 

probabilities.  

In this work, the hazards contributing to the early screen-out failure are identified by FEP analysis, whereas the 

quantitative part of the risk assessment is based on a Bayesian Belief Network. 

 

 

Figure 3 Risk Management and Control Process 
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2.1 Identification of the Features, Events and Processes 

FEP analysis is a structured method, which aims to identify the factors affecting the system performance and the 

important interactions among these factors. The literature shows that FEP analysis is quite adequate for the analysis of 

complex models. The condition of the FEP elements identified in the analysis can be represented in multiple states, whose 

possible scenarios of evolutions in the system can be described and probabilistically evaluated by means of BBN [10].  

FEP analysis can be performed in either two ways: bottom-up or top-down. In the bottom-up approach, the FEP are 

assigned the initial state values and the evolution of the system is assessed as a result of the evolution of FEP interactions. 

In the top-down approach, the process of analysis proceeds to identify the combinations (scenarios) of FEP that lead the 

system to failure [10].  

In the context of Hydraulic Fracturing, the components of the FEP are classified in terms of the main geological features, 

key events and main processes occurring during the fracturing job execution [4], where: 

1. “Features” characterize the static system of the environment.   

2. “Events” represent changes in the system, as a result of the fracturing operation or due to the natural environment. 

3. “Processes” describe the way the system and conditions change over time. 

In this work, the top-down approach has been considered to explicitly identify those FEP that can lead to early screen-out 

(Table 1). In particular, company experts have: 

1. Identified the potential root causes of early screen-out coming from the static system of the environment, i.e. 

features of the rock formation. 

2. Determined the hazardous events possibly occurring as a result of the fracturing process and geological conditions 

of the formation. 

3. Defined the parameters of the hydraulic fracturing job execution, whose measures are relevant in the occurrence 

of the root causes of early screen-out. 
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Table 1  

FEP for the Premature Screen-Out  

 

2.1.1 Features 

There exist several aspects affecting a proppant transportation, among which the geological conditions of the formation 

and the reservoir properties of the rock are of main concern.  

The natural fractures in the formation are considered to be among the major causes for screen-out. During the hydraulic 

fracturing operation, the induced fractures tend to connect to the pre-existing cracks in the formation, since they are 

structurally the weakest points. As a result, a significant portion of the injected fluid is lost in such fissures, reducing the 

fluid efficiency and leading to a narrower fracture width (refer to Figure 4) [5]. Apart from the natural fractures effect on 

the hydraulic fracturing, the situation is worsened by the difficulty of defining the location of such fissures during the 

reservoir modelling that guides the hydraulic fracturing operation. 

Another cause of screen-out coming from the formation properties, is high permeability zones. In the presence of the high 

permeability zones, the fracturing fluid is not able to build a filter cake, i.e. a layer formed by solid particles, on the 

fracture face to control the fluid loss [5]. This leads to a high leak-off, resulting in a low efficiency of the fracturing fluid. 

The premature screen-out, then, occurs because a proppant dehydrates too quickly and packs inside the fracture, impeding 

the fluid to flow towards the tip of the fracture. 

Type Node Units

 High Permeability Zones No Yes -

 Natural Fractures No Yes -

 Degree of Tortuosity Low High -

 Multiple Fractures No Yes -

 Excessive Leak-Off No Yes -

 Poor Erosion No Yes -

 Reduced Fracture Geometry No Yes -

 Perforation Friction Low High Psi

 Near-Wellbore Friction Low High Psi

 Closure Gradient Low High Psi/ft

 Fluid Viscosity Sufficient Insufficient cP

 Fluid Efficiency High Low %

 Max Treating Pressure Low High Psi

 Pad Volume Sufficient Insufficient %

 Pump Proppant Slugs No Yes -

Features

Events

Processes

States
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Figure 4 Impact of pre-existing natural fractures on the induced fractures [11] 

2.1.2 Events  

The near-wellbore geometry effects, such as tortuosity and multiple fractures, are also relevant for the success of the 

fracturing treatment. The tortuosity is a convoluted pathway between the perforations and the main body of the fracture, 

formed as a result of a misalignment of the wellbore and stress fields. The fractures generally propagate in the direction of 

the maximum horizontal stress and perpendicular to the minimum horizontal stress. When a significant contrast between 

these in-situ stresses appears, the fracture makes a dramatic change in the orientation of the fracture propagation, thus 

resulting in a reduced fracture geometry. The oil and gas industry considers tortuosity to be one of the biggest causes of 

the premature screen-outs that have occurred worldwide [5] (refer to Figure 5). 

The orientation differences between the perforation and the maximum principle stress may result in multiple fractures. 

Multiple fractures are fractures which grow simultaneously from a wellbore. They can have a considerable impact on the 

obtained fracture geometry. When the fluid enters multiple fractures, the fluid volume and proppant are shared by these 

fractures and, as a result, a narrower fracture is obtained [6]. Furthermore, the widths of the individual multiple fractures 

are smaller than the width of a single fracture, possibly giving rise to screen-out. 

Another predominant factor that affects fracture geometry is the pad, which is a volume of the clean fluid, determined as 

the percentage of the total slurry (the fluid plus proppant) volume varying from 20% to 40%. This fluid is pumped first in 

order to create the fracture [6]. Thus, it is important to maintain a sufficient pad volume in order to obtain an effective 

fracture volume to accommodate a proppant. 
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Figure 5 The illustration of the effects of horizontal stress contrast on tortuosity [6] 

 

2.1.3 Processes 

Obtaining an accurate description of the fracture propagation process and the resulting fracture geometry is complex and 

difficult. The calibration tests, such as the Step Rate Tests and MiniFracs, which are used for the above-mentioned 

purposes, have been discussed in Section 1. In this section a particular attention is drawn to the physical components of 

the test processes, which determine the Features and Events.  

High Near-wellbore Friction (NWBF) losses are evidence of tortuosity and multiple fractures. The NWBF loss is the 

frictional pressure drop along the flow path between the wellbore and the main body of the fracture, caused by the effects 

of tortuosity and perforation friction. Perforation friction is the pressure loss that occurs as the fracturing fluid passes 

through the restricted flow area of the perforations. A poor alignment among the perforations, wellbore and the main body 

of the fracture, as well as a creation and propagation of multiple fractures, cause a poor wellbore and fracture 

communication, resulting in excessive pressures. In addition, these friction losses make the treating pressure higher than it 

would normally be [6]. 

The value of the bottom-hole treating pressure minus the closure pressure is the key parameter in determining the 

geometry and the leak-off characteristics of the fracture. The leak-off coefficient and the fluid efficiency parameter are 

reversely related to each other. The fluid efficiency describes the ability of the fluid to create fractures. It is the ratio 

between the volume of the fracture to the total volume of the fluid injected into the fracture. Thus, the greater the fluid 

efficiency, the greater the volume of the fracture and the less the fluid leak-off [6]. 

Another key parameter, which affects the fracturing treatment, is fluid viscosity. More precisely, fluid viscosity is the 

factor that affects the net pressure inside the fracture (and, thus, its width) and controls the fluid’s ability to transport 

proppants. A sufficient fluid viscosity within a range suitable for the treatment is required to get a good proppant transport 

and an adequate fracture width [6]. 
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2.2 Bayesian Belief Network Model 

Bayesian Belief Network is a probabilistic graphical model that represents conditional dependencies between random 

variables through a Directed Acyclic Graph (DAG). The quantification of the model amounts to computing the posterior 

probabilities of any set of nodes and propagate evidences from any part of the network, even in case of uncertain or 

incomplete information. BBN can be applied for modelling complex systems and processes with multiple scenarios, and 

executing forward, backward and intercausal inferences [9]. 

In BNs, the model 7 = �8, �� is made of a set 8 = {1, … , =} of nodes representing random variables (which, in this work, 

correspond to the FEP) and a set of directed links � = {�?, @�|?, @ ∈ V, ?≠@}  connecting the nodes and representing  the 

causal dependencies between the random variables. Specifically, link �@, ?�  ∈  � represents the fact that the output of node 

? depends on the value of the random variable in node @. The nodes ��?�  =  {@ ∈  8|�@, ?�  ∈  �} are the parents of ?, and ? 
is the child of each of its parents [9]. Figure 6 represents the BBN model developed for the premature screen-out. The 

nodes, shown as circles, correspond to the FEP and the arcs indicate the causal dependencies between them. For instance, 

the Natural Fractures (@BC� and High Permeability Zones (@DEF� are the parents of the Excessive Leak-Off (?GH�, and 

Excessive Leak-Off is the child of Natural Fractures and High Permeability Zones (see Figure 6). 

Each node ? ∈  8  is associated with a random variable with at least two discrete states ��  ∈  !�, where a given state  �� 
corresponds to a range of values representing the state of the ?-th element of  the FEP [9]. Specifically in this work, each 

node of the BBN is associated with two states: low (“success”)-order state and high (“failure”)-order state. The former 

represents the physical state of the node that is such to not violate the performance of its child node; the latter is the state 

of the node for which the performance of its child node is violated, thus leading to its “failure”.  For example, Natural 

Fractures has “No” (IJB�� and “Yes” (IJKLM� states (see Figure 6): the “failure” (IJKLM� state of the node Natural 

Fractures leads to the “Yes” (failure) state of its child nodes “Excessive Leak-Off” (NOKLM� and “Reduced Fracture 

Geometry” (PJ7KLM�. 

A path � = ��Q, … , ��� is a vector, which associates a state ��  ∈  !� with each component ? ∈  8, whose joint probability 

distribution is [9]: 

        ���� = R �*�? S!��?�+�

�TQ
    �1� 

where: 
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- the state probabilities of variables with no parents (!"��� = ∅� are given by the marginal probabilities ����� =
ℙ�	� = ���. 

- the probabilities of the states of variables with parents are given by the conditional probabilities ���� |!"�  =
 ℙ�	� =  ��|	� =  ��, @ ∈  �����.  

-   !"��� indicates the set of the states of the parents of i. 

The size of the network grows linearly with the number of the random variables, whereas the joint distribution grows 

exponentially [9].  
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3. BBN Model parameters setting 

The computation of the joint probability distribution requires an estimation of the marginal probabilities of the nodes with 

no parents and of the conditional probabilities of the child nodes dependent on their parent, as indicated in the BBN. In 

practice, there are two main methods for setting the parameters of the BBN [11]: 

Figure 6 BBN for Premature Screen-Out  
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1. Maximum likelihood estimation. 

2. Expert elicitation. 

In this work, the conditional probabilities have been obtained by expert elicitation for the following reasons: 

1. The only recorded data available represent the characteristics of the treatment design and the parameters of the 

hydraulic fracturing operation monitored by the engineers during the execution. 

2. There are missing data regarding the changes in the environment, i.e. wellbore characteristics and reservoir 

properties, as a result of the preliminary fracturing test. 

The marginal probabilities of the nodes with no parents have been directly assessed by the experts using a probability 

scale, whereas the conditional probabilities have been assessed using heuristic approaches of expert elicitation. No 

database/historical observations were used in the first evaluation to explore the probabilities.  

The conditional probabilities have been organized in Conditional Probability Tables (CPTs), containing the probabilities 

of the states of the child nodes conditional on the states of the parent nodes. The size of the CPT grows exponentially with 

the number of parent nodes and their states and, in some practical cases, the number of probabilities to assess can grow up 

to hundreds or even thousands.  Different methods have been proposed for generating CPT that would reduce the 

cognitive efforts of the experts in assessing the probabilities. In this work, the three methods, Weighted Sum Algorithm 

(WSA), Log-likelihood and Elicitation for BBN (EBBN), have been selected to generate the CPT for the following 

reasons [15]: 

1. The experts are able to define both the influencing weights of the parent nodes on the child nodes and some 

specific probabilities. 

2. These methods address compatible (likely) parental configurations for child nodes, such as Max Treating 

Pressure, Fluid Efficiency, Unexpected Leak-Off, Degree of Tortuosity, and Premature Screen-Out. This means 

that low (high) - ordered states of the parent nodes of these child nodes are likely to co-occur with low (high) - 

ordered states of other parent nodes, as illustrated in the example in Table 2.   

3. These methods are suited for medium and large size matrices. 

4. The methods are simple, flexible and time-saving. 
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Weighted Sum Algorithm  is based on the concept of a compatible parental configuration and the assignment of a weight 

of influence of the parent nodes on the child node. The compatible parental configuration refers to those combinations of 

states of parent nodes which are more likely to co-exist [14], for example, the combination of “High Perforation Friction” 

and “High NWB Friction”.  

Table 2 

Compatible parental configuration for the node “Degree of Tortuosity” 

 

Log-Likelihood method is based on the indirect assessment of probabilities by defining the influence weights of each state 

of the parent nodes on the child node, the states of a child node itself and their probabilities.  

Elicitation for BBN method is based on a piecewise linear interpolation of the rank of states of the parent nodes. The rank 

of states of the parent nodes should be ordered with respect to the negative/positive influence on the states of the child 

node, in order to determine the CPT. The EBBN method requires experts only to assign as many rows of the CPT as there 

are child states and one weight for each parent node [15]. 

The elicitation procedure and the calculation methods of the above-mentioned heuristic approaches are described in 

Appendix A. 

 

4. Sensitivity and uncertainty analyses 

The BBN model’s probabilities represent the input uncertainty, which may be caused by the experts’ subjective elicitation 

or by inaccurate or incomplete data. The input uncertainty, then, propagates through the BBN and leads to the uncertainty 

in the model output.  

Sensitivity analysis applied to BBN allows examining the model behavior to reveal the relationship between the local 

(input) and global (output) dependence beliefs described in the network by the CPT. The final objective is to investigate 

how the uncertainty of the BBN outcome depends on the BBN input parameters. In particular, sensitivity analysis helps to 

identify the key uncertainty drivers so that the analysts may further optimize data collection and calibration efforts [18]. 

Parent node State Compatible parental configuration for Degree of  Tortuosity

High High NWB Friction

Low Low NWB Friction

High High Perforation Friction

Low Low Perforation Friction

Perforation Friction

NWB Friction
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Uncertainty analysis, on the other hand, allows assessing the robustness of the BBN model by varying values of the BBN 

input parameters [24]. 

In addition, the sensitivity and uncertainty analyses help in evaluating the integrity of the BBN’s model. The results of the 

sensitivity analysis guide on the re-adjustment or elimination of the model’s nodes in case of misalignment with the 

system’s expected behavior and sensitivity indices equal to 0.  The uncertainty analysis gives an evaluation of the model 

behavior under variations and suggests model reconfiguration in case of unrealistic results [33]. 

4.1 Parameter Prioritization 

In this work, the Sobol’s Variance Decomposition Global Sensitivity Analysis method has been applied to identify the 

influential local beliefs of the BBN for premature screen-out. This technique is able to quantify the individual and 

interaction effects of the parameters on the BBN model output, and provides information about the order of the influence 

[16].  

Take the BBN model under examination as described by an overall function W = ���, where  is a vector of X uncertain 

model inputs {Q, Y, … , �} inside an n-dimensional black box and W is a scalar output. Under the conditions that the 

inputs are uniformly and independently distributed within the unite hypercube, i.e.  � ∈ �0,1�  for ? = 1, … , X, the model 

output function W = ��� can be uniquely decomposed into systematic functional components [16]: 

��Q, … , [� = �� + ] ���� �
[

�TQ
+ ] ���*�, �+

�<�
+  �QY..[�Q, … [�              �2� 

where: 

- �� is a constant that represents the expected value of the model output. 

- �� is a function of � that corresponds to individual effects. 

- ��� is a function of � and � that corresponds to interaction effects. 

- �QY..[�Q, … [� is a function of all input variables that corresponds to their cooperative influence on the output 

function. 

In order to estimate the Sobol’s indeces the following integrals are to be computed [34]: 
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�� = ` ���X
ab

      �3� 

��d…,�e = ` …Q
� ` ��Q,..,�MY ��Q,…,�M�X�Q, … X�M

Q
�           �4� 

� = ] ] ��d…,�e
B

�d<…g�e

B

MTQ
= ` �Y��X h ��Y                 �5�jk  

where: 

- l[ = �|0 m � m 1; ? = 1, … o� is an input space factor. 

-  1 m ?Q … p ?M m o and � = 1, … o. 
- �� denotes the mean value of ��� over the entire domain l[. 

- ��d…,�e is the partial variance of the model output due to uncertainties in the individual or interaction effects. 

- � is the total variance of the output function ���. 

As a result, the first-order sensitivity and the total-effect sensitivity measures are defined as follows: 

!� = ���          and     !'� = �� + ∑ ���[�t� + ⋯ +  �QY…[�    �6� 

 

Clearly, 0 m !� m !'� m 1, where  ∑ !� = 1[�TQ  and ∑ !'� w 1��TQ .  If  !� = !'�, this implies that � is not involved in any 

interactions with other input parameters. If  !� = !'� = 0, this means that � is not affecting the variance of the model 

output and, thus, can be fixed. If  !� = !'� = 1, this means that � is the only input parameter, which affects the output 

variance [16]. 

Thus, this method is based on the estimation of the Sobol’s indices that quantify the fractional contribution to the output 

variance of uncertainties in the inputs: 

       !�d…,�e = ��d…,�e�        �7� 

 

4.1.1 Monte Carlo Algorithm Method for Sobol’s Indices Estimation 
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The calculation of Sobol indices can be computationally expensive and mathematically demanding [16]. In this work, 

there are two challenges arising in the calculation of  Sobol’s indices: 

1. The computational cost. 

2. The application to the BBN model.  

The direct estimation of the !�  and  !'� is computationally expensive: the brute force approach requires IY  model runs 

for calculating ��, ���,  �QY…[, where N is the sample size of input parameters. The Monte Carlo approach reduces the 

computational cost to I × �2 + X� model runs, where X is the number of model’s inputs [16]. 

The second challenge refers to the BBN nature of the model developed for premature screen-out risk assessment. The 

BBN is a stochastic model, which means that the model’s output is uncertain. In contrast, the Analysis of Variance 

(ANOVA) decomposition is derived for deterministic functions. Several authors suggest to use the auxiliary method to 

solve this computation barrier. However, this method is limited only for the first-order sensitivity measures. Thus, this 

work proposes a novel method for the estimation of the Sobol’s first-order and total-effect indices for BBN models, 

implemented in the BN Toolbox© in Matlab® [27].   

The complete procedure of the Monte Carlo algorithm method for Sobol’s indices estimation for the BBN is described in 

Appendix B. 

 

4.2 Robustness of the BBN Model 

Robustness of the BBN model is here interpreted as the insensitivity of its outcomes to small changes in the values of its 

input parameters. In the specific context of BBN, the attention should be on a distributional robustness given the 

probabilistic nature of its outcome  [24].  

In this work, we examine the distribution of the output node “Premature Screen-Out” for different sampling distributions 

of the input nodes.  

Three probability distributions have been considered for the input parameters sampling [22] (see Appendix C): 

1. The Gaussian Truncated distribution. 

2. The Log-odds distribution. 

3. The Uniform Distribution. 
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The Gaussian Truncated distribution has been utilized to avoid sampling negative values and values larger than 1 for the 

probabilities of the BBN model. However, the truncation effect leads to an asymmetric distribution, especially for 

probabilities positioned close to the values of 0 or 1 (refer to Figure 7).  The log-odds distribution adds noise to the log-

odds form and, thus, has also been considered as sampling distribution. The uniform distribution has been considered for 

its flexibility and simplicity.  

The Gaussian Truncated and Log-odds distributions have been developed using Matlab©. 

 

Figure 7 Sampling Distribution for the probability of the node “Natural Fractures”, z{=0.36 (on the left – Gaussian 

Truncated distribution, on the right – Log-odds distribution) 

 

5. Risk control  

Risk control is the proactive part of the Risk Management and Control process, in which strategies for neutralizing or 

reducing the identified risks are implemented. The strategies are decided on the basis of the outcomes of the qualitative 

and quantitative risk assessments, and convert those findings to the evaluation of risk reduction strategies for 

implementation of the most beneficial ones [1].  

5.1 Risk Importance Measures Analysis 

For system risk control, it is important to know the impact of the failure of the components on the performance of the 

system, so as to be able to identify those components whose failure should be prioritarily prevented. For example, the 

components can be categorized on the basis of Risk Importance Measures (RIM), which quantify the components 
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failure/unavailability contribution to the overall system failure. However, traditional approaches focus on individual 

components, with little consideration given to their dependence relations [9]. 

In the context of BN, these limitations are addressed by extending conventional RIM to scenarios defined as combinations 

of node states. Bayesian inference can, then, be used to update the systemic risk value on conditions of occurrence or 

exclusion of a given scenario. This allows scenarios to be ranked in accordance to their impact on the baseline risk by 

applying RIM. 

The RIM can be defined in terms of the utilities associated with the consequences of different system states. The 

consequences are evaluated at the value node, which, in this work, represents early screen-out, by extracting the 

probability with which the screen-out occurs. Thus, the disutility function for scenarios is defined as follows [9]: 

��	)*�"�)�+� = | 1,  	)*�"�)�+ ∈ }~-��
0,     �����0?��                �8� 

where  

- 	)*�"�)�+ is the function of the consequences for all combinations of parent states of the value node u. 

- }~-�� corresponds to the scenarios in which a system fails, i.e. a premature screen-out occurs. 

Following Eq. 8, the expected disutility for scenarios S is, then, expressed as the baseline risk: 

���� = ] �����
s ∈ !+

�	)*�"�)�+�     �9� 

where the summation is taken over all paths with a strictly positive probability. 

In this way, the risk level of scenarios can be assessed by employing the RIM, whose values express the changes in the 

expected disutility function due to elimination or appearance of a given scenario.  

There are different RIM that can be utilized for the scenarios’ assessment, such as Risk Share (RS), Risk Achievement 

Worth (RAW), Risk Reduction Worth (RRW), Birnbaum Importance Measure (BI), and Criticality Importance Measure 

(CI) [9].  These measures can be used for different Risk Control purposes, such as risk reduction, risk avoidance, risk 

sharing, etc. The scope of this work is to identify those Risk Control actions that reduce the potential risk exposure, since 

it examines the impact of the events and properties of the treatment that are monitored and/or considered during the job 

execution and, thus, cannot be avoided in the design decision making.  
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For this reason, in this work, the riskiest scenarios are identified by estimating scenarios with large RS. This measure 

represents the share that can be attributed to the baseline risk. It has the advantage of exactly quantifying the risk 

reduction, because it can be expressed in terms of the scenario probability [9]: 

 

 

where: 

-  ��#� is the probability of scenario #. 

- ���| #� is the conditional expected disutility function for scenario #. 

Other measures, such as RRW and RAW, can also be employed for the evaluation of risk reduction strategies and, thus, 

have also been considered in this work [9]: 

1. The RAW expresses by how much the expected disutility function changes relative to the baseline level, if the 

scenario occurs. Risk reduction can be implemented by excluding the scenarios with large RAW in order to 

reduce the baseline risk through relevant corrective actions. If RAW is greater than 1, then the scenario is risky: 

P�� �#� =  ���| #�  ����       �11� 

 

2. The RRW gives the relative change in the expected disutility as a result of excluding the scenario. So, if the RRW 

is greater than 1, then the exclusion of the scenario reduces risk: 

PP� �#� =  ���]  ���|#&�      �12� 

where ���|#&� is the conditional expected disutility function given the exclusion of scenario #. 

If  # ∈ #� is the set of scenarios with strictly positive scenario probability, such that p(#) < 1, then the RAW and RRW 

measures can be expressed in terms of the Risk Share and scenario probability: 

 

 

 

P! �#� =  ���| #� ��#� ����    �10� 

P�� �#�
=  RS�#� ��#�     �13� PP� �#�

=  1 h ��#� 1 h RS�#�    �14� 
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Table 3 

Relationships between RIM and scenario probability 

 

 

x RS(#) RAW (#) RRW (#)

RS(#) x

RAW (#) x

RRW (#) x

� 1 h �1 h 
1 h �1 h �

 h 1 h �  h 1 h ��

�

� = �(#)  

 = RS(#) 
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Figure 8 Flowchart of the RIM Analysis Algorithm to evaluate the riskiest scenarios of the BBN 

 

5.2 Cost-Benefit Analysis 

In order to reduce the baseline risk, the corrective actions for risk control can be aimed at excluding the “failure” states of 

those scenarios, which have the greatest impact on the risk of the value node. The selection of best risk mitigation plans 

can be performed by comparing the values or effects of different actions against the relative cost of a decision, provided 

that the costs of implementing corrective actions and the cost overruns are known [9]. To this aim, a cost-benefit analysis 

has been conducted on the possible risk mitigation plans, comparing benefits and costs, here expressed in terms of 

monetary values. 

Table 4 illustrates the general cost overruns due to the occurrence of an early screen-out without considering any 

corrective action (internal, non disclosable communication Kwantis). When a screen-out occurs, typically the downhole 
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energy required to clean the wellbore is not enough during proppant flowback. Thus, it is necessary to rig up the coiled 

tubing, clean out the wellbore and rig down the coiled tubing [6].  

Table 4 

Common over-expenditure due to a premature screen-out (internal, non disclosable communication Kwantis) 

 

Table 5 reports the sample costs associated with each risk mitigation action for the corresponding root cause of an early 

screen-out (internal, non disclosable communication Kwantis). For example, tortuosity and multiple fractures are 

mitigated by pumping proppant slugs, i.e. low concentration proppant slurries, in order to erode the near-wellbore fracture 

restriction and “plug-off” multiple fractures.  A 100-mesh sand, i.e. a solid additive, can be used to control an excessive 

fluid leak-off; it can bridge-off a fracture to limit the fluid invasion into the formation and keep the sand slurry 

sufficiently hydrated. Low fluid efficiency can be overcome by increasing the pad volume in order to exceed the leak-off 

rate during the treatment, whereas the reduced fracture width can be increased by setting higher injection rates [6].  

 

 

 

Table 5 

Risk mitigation strategies (internal, non disclosable communication Kwantis) 

 

For each of the riskiest scenarios identified in the RIM Analysis, the different strategies of the mitigation plan must be 

defined in relation to the failure states of the Premature Screen-Out parent node.  

Day  Description Rig Daily Rate CT Daily Rate Frac Package Material Lost Perforation

1 Rig Up 100 000$ 18 000 $ 15 000$ 180 000 $

2 Coiled Tubing Clean-out 100 000$ 18 000 $ 15 000$ 

3 Coiled Tubing Clean-out 100 000$ 18 000 $ 15 000$ 

4 New Perforation Set 100 000$ 18 000 $ 15 000$ 36 000$ 

Total

$748 000,00

Risk Mitigation Cost

High Degree of Tortuosity Pump 2000 lb proppant slugs 2 000$

Multiple Fractures Pump 2000 lb proppant slugs 2 000$

Low Fluid Efficiency Increase Pad 40 000$

Excessive Leak-Off Pump 2000 lb 100-mesh sand 2 000$

Reduced Fracture Geometry Increase Rate 60 000$

High Max Treating Pressure New Perforation 36 000$
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6. Case Study 

The developed framework has been applied to a case study of vertical wells. The premature screen-out issue has been 

assessed qualitatively by identifying the FEP contributing to the screen-out failure (refer to Table 1). The BBN model for 

the premature screen-out that describes the conditional dependencies between the components of the FEP is illustrated in 

Figure 6. 

6.1 CPT  

The quantitative part of the BBN requires the assignment of the probabilities. In this work, the weighted sum algorithm, 

the log-likelihood method and the elicitation method have been applied. The methods are described in Section 3.  

The results of the log-likelihood method have produced the most realistic outcomes although requiring some additional 

time to calibrate the weights to obtain the target probabilities, as compared to WSA and EBBN methods. As it is shown in 

Table 6, the parent nodes of the child node “Premature Screen-Out”, such as Reduced Fracture Geometry, Degree of 

Tortuosity and Excessive Leak-Off, are all in their high-order states in all the combinations listed. The probability of the 

node “Premature Screen-Out” conditioned on these parental combinations generated by WSA and EBBN methods is low 

(around 0.4), which means that early screen-out is not so likely to occur. However, having high degree of tortuosity, 

reduced fracture geometry and excessive leak-off not mitigated is sufficient to lead to the premature screen-out  and this is 

consistent with the outcomes of the log-likelihood method.  

In the EBBN method, the more parent nodes considered for a child, the less the value of the weight obtained since the 

denominator of the formula for 0� in Eq.19 is equal to the sum of probabilities of all parent nodes. This leads to small 

values of the probabilities of the child node for medium- and big-size matrices, which should instead be high, as more 

failure (high-order) states of parent nodes are considered.  

In the WSA method, the influence weights of the parent nodes on the child node are normalized so that 0 m 0� m 1  and 

∑ 0�B�TQ = 1. Also in this case, the more parent nodes, the smaller the values of the relative weights obtained minimising 

0�� �%,� ������	
� = 
������ and, correspondingly, the smaller the target probability of the conditioned child node.  

Table 6 



Page 26 of 47 
 

CPT Results 

 

 

Based on the above considerations, the log-likelihood results have been used as input for the inference computations in 

the BBN. 

 

6.2 Sensitivity Analysis Results 

In this section, we examine the sensitivity of the BBN model to its input probabilities by using the Sobol’s variance 

decomposition method described in Section 4.1. 

In total, the expert analysts have chosen 24 input probability parameters (refer to Table E-1) for the investigation of their 

influence on the model output of probability of premature screen-out.   

The sensitivity results (refer to Table 7) show that the probabilities of the nodes with no parents are more influential to the 

model output. In addition, the larger the number of child nodes affected by a parent node, the more that parent node 

affects the output. For example, in the BBN model for Premature Screen-Out in Figure 6, the node “Degree of Tortuosity” 

is the node that has the highest number of causal arcs and, correspondingly, in the sensitivity analysis shows that the 

conditional probabilities of this node are among the most influential parameters (Sobol’s index first order - 0.09, total 

order – 0.11). This node is conditioned on the parent nodes, “Perforation Friction” and “NWB Friction”, which are the 

most influential nodes without parents (Sobol’s index first order - 0.29, total order – 0.33). This can be explained by the 

frequency of the appearance of these probabilities in the Cartesian Product computation since they have to be considered 

in each joint probability distribution of the node “Degree of Tortuosity” and other nodes followed by the causal arcs.  

The sensitivity results support the fact that tortuosity is one of the main root causes of premature screen-out, and that 

variables such as NWB Friction and Perforation Friction are important be monitored prior to the MiniFrac jobs, in order to 

guarantee good communication between the wellbore and the main fracture (refer to Table 7) [6]. 

Reduced Fracture 

Geometry

Degree of 

Tortuosity

Excessive 

Leak-Off

Fluid 

Efficiency

Poor 

Erosion

Multiple 

Fractures

Max Treating  

Pressure
WSA EBBN Log-likelihood

Yes High Yes Low No No Low 0.35 0.26 0.97

Yes High Yes Low No No High 0.39 0.33 0.99

Yes High Yes Low No Yes Low 0.45 0.36 1

P(Premature Screen-Out – Yes)Parental combination
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Another influential variable, which is also believed to be one of the major causes of early screen-outs, is the Natural 

Fissures. These fissures may obstacle the fracture behavior, leading to excessive leak-off and reduced fracture geometry 

(refer to Table 7) [6]. 

These results correctly represent the expectations of expert experience and literature overview and, consequently, validate 

the integrity of the model’s structure. 

As for the type of sampling distribution, this seems not to affect the outcome of the analysis: the calculations carried out 

sampling from different distributions have led approximately to the same results (refer to Appendix F). 

 

Table 7 

Results of the Sobol’s sensitivity analysis 

 

 

6.3 Uncertainty Analysis Results  

In this section, we examine the robustness of the BBN model to its input probabilities (refer to Table E-1), with the 

uncertainty analysis described in Section 4.2.  

Table 8 represents the values of the mean, variance, minimum, maximum and range of variation of the marginal 

probability distribution of the Premature Screen-Out output, resulting from different sampling distributions of the input 

probability values. The histograms of the output distribution are shown in Figure 9 and Figure 10. The results show that 

the BBN model is robust to small variations in its input probabilities and demonstrates the realistic behavior. The 

distribution of the output node “Premature Screen-Out” corresponding to the different input probability sampling 

distributions (refer to Section 4.2) follows approximately a Gaussian distribution and the mean value of the distribution is 

stable around 0.79 (refer to Figure 9, Figure 10 and Table 8). The variability of the output distribution also shows a small 

variation as expected getting smaller with smaller standard deviations of the input probability sampling distributions 

(refer to Table 8).  

Table 8 

Input parameters First-order Total Order

P(NWB Friction) 0.29 0.33
P(Perforation Friction) 0.29 0.33
P(Degree of Tortuosity | NWB Friction) 0.09 0.11
P(Degree of Tortuosity | Perforation Friction) 0.09 0.11
P(Natural Fractures) 0.09 0.11
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Results of the uncertainty analysis of the distribution of the output node “Premature Screen-Out” 

 

 

Figure 9 Output Distribution for the Gaussian Truncated Sampling (green edges correspond to �� = �. �, red to �� =�. ��, and blue to �� = �. �) 

 

 

Distribution
Sampling 

Design

Mean of 

the output

Variance of 

the output

Minimum of 

the output 

distribution

Maximum of 

the output 

distribution

Range

0.7924 0.0019 0.6202 0.9002 0.2800

0.7966 0.0042 0.5323 0.9449 0.4126

0.8006 0.0066 0.4655 0.9673 0.5018

0.7906 5.369e-04 0.7111 0.8519 0.1408

0.7911 0.0011 0.6678 0.8784 0.2106

0.7917 0.0020 0.6238 0.9013 0.2775

Uniform 

Distribution
0.7897 6.737e-04 0.6928 0.8605 0.1677

Gaussian 

Truncated 

Distribution

Log-odds 

Distribution

61 = 0.16Y = 0.156� = 0.261 = 0.16Y = 0.156� = 0.2$ = 5
 h 0.1� = 5
 + 0.1
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Figure 10 Output Distribution for the Log-odds (left) and Uniform (right) Sampling. In the Log-odds sampling, green 
edges correspond to �� = �. �, red to �� = �. ��, and blue to �� = �. �. 

 

 

 

6.4 Uncertainty Reduction 

The probabilities (refer to Table E-1) of the most influential input parameters (refer to Table 7) have been re-assessed 

differently to explore the effect of uncertainty reduction on the probability of Premature Screen-Out. The mean values are 

given in Table 9 and have been obtained based on the following considerations: 

1. The only available data for the probability evaluation relate to the NWB Friction and Perforation Friction 

parameters. The data set for the friction losses contains continuous data and the probabilities of NWB Friction 

and Perforation Friction have been defined using the goodness of fit test  for  individual distribution 

identification, based on the Anderson-Darling (AD) test and the P-values. To prove the results of the goodness of 

fit test, the histogram with fit of different distributions has been constructed. The graphs in Figure 11 provide 

good examples of the distribution fitting of the sample data. 
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Figure 11 Probability Distribution Fitting Analysis  

 

2. The probability of occurrence of the Natural Fractures event has been estimated by the frequentist approach using 

the historical observations from the database.  

3. There are missing data about the relationship between the occurrence of tortuosity and friction losses values (refer 

to Section 3). Therefore, these probabilities have been re-evaluated directly by company experts using a 

probability scale. Although the subjectivity of additional expert judgement may include some uncertainty, in this 

case the re-evaluation considered the high/low level of the state for the NWB and Perforation frictions in terms of 

psi that gives the high probability of having tortuosity. 

As a result, the probability of premature screen-out changes from 0.78 to 0.67 (refer to Table 9).  The smaller value of 

probability of screen-out obtained with the re-evaluation is consistent with the case study of vertical wells. This can be 

explained by the fracture initiation process, as opposed to the deviated wells, where the risks of having the premature 

screen-out are higher due to additional effects of more complicated fracture geometries obtained during a fracturing job 

[6].  
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Table 9 

Results of the probabilities re-evaluation 

 

 

6.5 Risk Importance Measures Results 

In this section, we evaluate the riskiest scenarios for Premature Screen-Out by applying the RIM analysis illustrated in 

Section 5.1. 

Table 10 demonstrates the five riskiest scenarios for Premature Screen-Out given the states of its parent nodes, with its 

conditional probabilities for each scenario, the joint probabilities and the RIM of each scenario.  

Figure 12 shows the probabilities of the “failure” (high-order) states of the BBN model nodes, given the evidence that the 

Premature Screen-Out has occurred. As seen earlier, events such as Degree of Tortuosity, Multiple Fractures and Reduced 

Fracture Geometry, have a significant impact on the value of the output node of Premature Screen-Out and should be 

considered with high priority in the risk reduction plan (refer to Figure 12). These results are consistent with the results of 

the RIM analysis, in which these events appear in all five riskiest scenarios (except for the node “Degree of Tortuosity in 

the third scenario – refer to Table 10). 

Table 10 

Five riskiest scenarios from RIM Analysis  

 

 

Input Parameters

Before Sensitivity 

Analysis

After Sensitivity 

Analysis
Difference percentage

P(High NWB Friction) 0.6 0.18 -70%

P(High Perforation Friction) 0.6 0.36 -40%

P(Degree of Tortuosity |High NWB Friction) 0.5 0.9 +80%

P(Degree of Tortuosity |High Perforation Friction) 0.5 0.9 +80%

P(Natural Fractures) 0.36 0.25 -31%

P(Premature Screen-Out) 0.78 0.67 -14%

Probabilities

Scenario
Degree of 

Tortuosity

Poor 

Erosion 

Max Treating 

Pressure

Multiple 

Fractures

Excessive 

Leak-Off 

Fluid 

Efficiency

Reduced 

Fracture 

Geometry

RS RAW RRW

1 High No Yes Yes No High Yes 1 0.136 0.204 1.49 1.084

2 High No No Yes No High Yes 0.99 0.067 0.1 1.49 1.037

3 Low No No Yes No High Yes 0.873 0.049 0.074 1.49 1.026

4 High No Yes Yes Yes Low Yes 1 0.047 0.07 1.49 1.025

5 High No Yes Yes Yes High Yes 1 0.043 0.065 1.49 1.023

��#) ������  ¡¢£¤ |¥¦�
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Figure 12 Bar chart of the probabilities of the “failure” states of the BBN model nodes for P (Premature Screen-Out) = 1 

 

6.6 Cost-Benefit Analysis Results 

In this section, we evaluate different mitigation plans in accordance with the five riskiest scenarios listed in Table 10. 

Table 11 shows the mitigation plans and associated strategies, the costs of carrying out the operations, the probability of  

early screen-out after the mitigation and the difference with the probability of the screen-out, before and after the 

mitigation plan.  

Table 11 

Mitigation plans with associated costs and the reduction of the probability of Premature Screen-Out  

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Mitigation 

plan
Risks mitigated

Mitigation 

costs 

(example)

Probability of 

Premature Screen-Out 

after mitigation

Difference 

percentage

1

High Degree of Tortuosity, Multiple Fractures, 

Reduced Fracture Geometry, Max Treating 

Pressure

$100 000 9,78% -85%

2
High Degree of Tortuosity, Multiple Fractures, 

Reduced Fracture Geometry
$64 000 12,41% -81%

3 Multiple Fractures, Reduced Fracture Geometry $62 000 16,01% -76%

4

High Degree of Tortuosity, Multiple Fractures, 

Reduced Fracture Geometry, Low Fluid Efficiency, 

Excessive Leak-Off, Max Treating Pressure

$142 000 0,11% -100%

5

High Degree of Tortuosity, Multiple Fractures, 

Reduced Fracture Geometry, Excessive Leak-Off, 

Max Treating Pressure

$102 000 0,52% -99%
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Table 12 illustrates the cost-benefit analysis, where: 

1. Weighted Impact before and after mitigation is the result of multiplication of the screen-out probability by its 

impact in terms of over expenditure before and after mitigation, accordingly.  

2. Benefit, i.e. assumed savings, is calculated as the difference between the weighted impacts costs before/after 

mitigation and the mitigation costs. 

As per the carried out analysis, corrective action plan 5 is the best approach, since it achieves significant reduction of the 

baseline risk without imposing too high costs (refer to Figure 13). 

Table 12 

Cost-Benefit Analysis of the Mitigation Plans  

 

 

 

Figure 13 Cost-Benefit Analysis (M.P. – Mitigation Plan) 
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7. Conclusions 

Premature screen-outs are causes of failure of the hydraulic fracturing jobs and lead to loss of working days and cost 

overruns. Numerous factors, related to physical properties of the geological formation, reservoir properties and 

characteristics of the treatment design, may lead to such problems. The diagnostic methods currently applied only give 

signals of early screen-out and try to identify the potential causes during job execution. On the contrary, it is important to 

predict the probability of occurrence of screen-outs and identify in advance the riskiest scenarios, in order to define a 

priori risk reduction actions that can effectively avoid screen-out. 

In this work, the premature screen-out issue has been addressed through a complete framework for implementation within 

a practical Risk Management and Control Process. The qualitative identification of the hazards contributing to the 

premature screen-out has been defined through FEP identification. The quantitative assessment is based on the modelling 

framework offered by Bayesian Belief Networks. The input probabilities of the BBN model have been assessed by expert 

elicitation methods due to shortfall in data, and the log-likelihood method has turned out to provide the best results. The 

model’s robustness and its sensitivity to input parameters have been assessed by performing uncertainty analysis and 

sensitivity analysis by the Sobol’s variance decomposition method. The results of the uncertainty analysis have shown 

that the model is robust. Furthermore, the results of the sensitivity analysis endorse the knowledge that the tortuosity is a 

major cause of screen-outs and, therefore, it should be treated carefully during the hydraulic fracturing operation. The 

probabilities of the most influential variables as identified by the sensitivity analysis have been re-evaluated using 

historical observations and additional experts judgements for the case study of vertical wells in a specified region. As a 

result, the probability of screen-out has decreased. The riskiest scenarios of premature screen-out have been identified by 

risk importance measures analysis and the best risk reduction plans have been determined by cost-benefit analysis. The 

statistics of screen-outs in vertical wells accounts for 10% of all operations done, which is consistent with the risk results 

after cost-benefit analysis. 

In summary, the proposed framework offers a novel approach for predicting the risk of premature screen-outs based on 

the BBN model, identification of the most influential variables by sensitivity analysis, and the choice of risk mitigation 

strategies guided by the outcomes of risk importance measures analysis and cost-benefit analysis. 
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8. Appendix A 

Weighted Sum Algorithm. The CPT in the WSA method is constructed as follows: 

  � �%,|
d�d , 
§�§ , … , 
¨�¨ � = ] 0���%,|�����*	
2 = 
2
�2 +��B

�TQ
        �15� 

where: 

- 0� is the relative influence weight of the ith parent node on the 	% child node.  

- %, is the mth state of the child node 	%. 

-  �2
@2 is the second state of the second parent node 	�2. 

-  
¨�¨  is the Nth state of the Nth parent node 	�I. 

- ���� �	�? = �?
@? � is a compatible parental configuration for the ith state j of the ith parent node. 

 

In this method, the elicitation consists of defining the following two sets of parameters [15]: 

1. The relative weights 0Q, … , 0B  of the parent nodes of a child node, where 0 m 0� m 1  and ∑ 0�B�TQ = 1. The 

relative influence weight shows the relation of a parent-child node pair, i.e. the degree of influence of a parent 

node on its child node. The calculation of the influence weight initiates from assigning a non-normalized relative 

weight of parent nodes on their child in terms of degree of influence (for example, low-medium-high). Then, each 

degree of influence is given a value – for example, 2 for “low” influence, 4 for “medium”, 6 for “high” (refer to 

Table A-1). The influence weights are, then, defined by normalizing the assigned values, so that the sum of all 

weights of the parent nodes is equal to 1. For example, if the weight for a parent-child pair is equal to 0, this 

indicates that the child node is not affected by the parent node (there is no link in the BBN) and, therefore, the 

parent node can be excluded from the Table; conversely, if the weight is equal to 1, this indicates that the 

corresponding parent node is the only determinant of its child node.  

2. The probability distributions for compatible parental configurations. 
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Log-likelihood method. The elicitation procedure in the Log-likelihood method consists of the following steps [15]: 

1. Identify a typical distribution of a child node, '(.  

2. Set the base of the log form, b. 

3. Determine the weighting factor, β.3 , for each state of the child node %.  

4. Assess the weighting factor, α.12,  for each state of the parent nodes on the child node, in a scale from very low to 

very high and convert into a numerical scale.  

As a result, we get the influence weight parameter of the ith parent node on a child node 	%.:  

      4.3.12 = β.3α.12        �16� 

 

and the ©�ª«O  – log likelihood of the state of child node %, given the states for each of the parent nodes, 
�:  

©�ª«O*%S
Q, 
Y, … 
B+ = ] 4.3.12
B

�TQ
     �17� 

 

In this method, the principle of assigning the influence weight is similar to the WSA method. However, the assignment of 

influence is associated with the states of the nodes and the weighting factors of the states are given positive or negative 

signs. The choice of the sign of the weighting factor for the parent state should be based on the assumption of the 

probability of the state of a child node – it should be of the same sign as the child state’s weight if it results in a high 

probability of a child state and opposite to the child state’s weight if it results in a small probability of a child state. 

The assignment of weights for each pair of states of parent and child nodes makes the algorithm more flexible than other 

methods, because it considers both the positive and negative influences. For example, if the parameter 4.3.12  is positive, 

the probability for that combination increases and if the parameter is negative – the probability decreases accordingly 

[15]. 
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Table A-1 

Influence assignment for the parent nodes of the node “Degree of Tortuosity” 

 

 

EBBN method. The procedure of CPT generation using the EBBN method is implemented as follows [15]: 

5. For every parent node 	
� ∈ �$�	%�, order the states in a way that it has either a negative or a positive influence 

on the child node, 	%. 

6. For every state % of child node, 	%, determine the assignment so that the probability ��	% = %|$.%�  is as large 

as possible.  

7. For every parent node evaluate those probabilities  in which 	
� ∈ �$�	%� is in its most favorable state for 

“failure” states of 	% and all 	
� ∈ �$�	%� are in their least favorable state for “failure” states of 	%. 

The conditional probabilities for CPT are derived using [15]: 

��	% = %,|�$�	%� = $� = ] 0� ∗  �.3®��������$��X�������$�"®¯°"®2±max ������
�� �, �������$��  h min ������
�� �, �������$���:µ12|
-�µ3�
              �18� 

where $ is the assignment of states of parent nodes and 0� is the influence weight for every parent node: 

0? = 12 ¶?+
∑ ¶=+�:	�I∈�$�	·� + 12 ¶?h∑ ¶=̧�:	�I∈�$�	·�              �19� 

 

where: 

¶?+ = � �	· = ·�$�$=�ª,�+� h �*	· = ·�$S$=�ª+              �20� 

¶�̧ = �*	% = %,��S$�L¹+ h �*	% = %,��S$�L¹,
º+         �21� 

 

- 	,-. – the highest ordered (“failure”) state. 

Very Low Low Medium High Very High

Perforation Friction x

NWB Friction x

Degree of Tortuosity
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- 	,��  – the lowest ordered (“success”) state. 

- $=�ª,�+  – the assignment of a parent node in which one of the parents is in its most favorable state for “failure” 

states of a child node and all other parent nodes are in their least favorable states. 

- $�L¹ – the assignment, in which all the parent nodes are in their most favorable state for “success” states of the 

child node.  

���� and ������ are the individual and joint influence factors of parent nodes on the child node [15]: 

�?=X ��?@ � =
»¼¼
½
¼¼¾

�$=o��?@ � h 1
�$=o��?�$� h 1 ,       ?� !+�	�, 	·�

�$=o��?�$� h �$=o��?@ �
�$=o��?�$� h 1 , ?� !h�	�, 	·� 

�22� 

�������$� = ∑ ����*
�� + ∗ ��$=o�
�� � h 1�{�:µ12¿
-�µ3�∑ ��$=o�
�,-.� h 1�{�:µ12¿
-�µ3�     �23� 

!��	
, 	%� represents a positive influence on 	% and !¸*	
, 	%+, on the contrary, represents a negative influence.  

Table A-2 

Assignment of Probabilities for the EBBN method 

 

 

9. Appendix B 

In our work, the BBN model’s output function W = ��� is the inference function to compute the marginal probability of 

having an early screen-out,  ��	M%(LL��)�� = ∑ ∏ ��	M%(LL��)�|�$��=���	M%(LL��)���B�TQ , whereas the input parameters 

are expressed in terms of marginal, �����, and conditional probabilities, ���� |!"�.   

The procedure to calculate the Sobol’s indices for the BBN using the Monte Carlo method consists of the following steps: 

Natural Fractures High Permeability Zones No Yes

No No 0.9 0.1

Yes Yes 0.01 0.99
Yes No 0.1 0.9

No Yes 0.1 0.9

P(Excessive Leak-Off)Configuration of the parent nodes states
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1) Generate a I × 2X sample matrix for the input parameters, i.e. the marginal and conditional probabilities, in 

accordance with their probability distributions. Define two matrices A and B, each taken as half of the I × 2X 

sample matrix  

   A =
ÂÃ
ÃÃ
ÃÄ ���Q��Q� ���Y��Q� . . .        ���[��Q� 

���Q��Y� ���Y��Y� . . .        ���[��Y� . . . . . . . . .             . ..          . . .    . . .  . . .             . ..            . . .    . . .  …             . ..        ���Q��B� ���Y��B� . . .       ���[��B� ÅÆ
ÆÆ
ÆÇ   �24� 

   B =
ÂÃ
ÃÃ
ÃÄ���[�Q��Q� ���[�Y��Q� . . .        ���Y[��Q� 

���[�Q��Y� ���[�Y��Y� . . .        ���Y[��Y� . . . . . . …            . ..        . . . . . . …            . ..        . . . . . . …            . ..        ���[�Q��B� ���[�Y��B� . . .       ���Y[��B� ÅÆ
ÆÆ
ÆÇ   �25� 

2) Create a third matrix, C, containing all the sample values of matrix A, but with the i-th column taken from matrix 

B: 

      C =
ÂÃ
ÃÃ
ÃÄ ���Q��Q� ������Q� . . .        ���[��Q� 

���Q��Y� ������Y� . . .        ���[��Y� . . . . . . . . .             . ..          . . .    . . .  . . .             . ..            . . .    . . .  …             . ..        ���Q��B� ������B� . . .       ���[��B� ÅÆ
ÆÆ
ÆÇ �26� 

3) Estimate the output distribution of the marginal probability of the early screen-out for each sample from the input 

probabilities of the matrices A, B and C by using the BN Toolbox ©.  

4) Compute the first-order and total-effect sensitivity measures using the estimators below: 

!� = ��� = � h 12I ∑ ��*Ê�+ h �*��+�YB�TQ1I ∑ �Y*��+B�TQ h �1I ∑ �*��+B�TQ �Y      �27� 

!'� = �����
� =

12I ∑ ��*��+ h �*��+�YB�TQ1I ∑ �Y*��+B�TQ h �1I ∑ �*��+B�TQ �Y      �28� 

where: 



Page 40 of 47 
 

- �� is a partial variance of the model output due to uncertainties in the individual effects of  �. 

- ����� is the partial variance of the model output due to uncertainties in the individual effects of �  and interaction 

effects of �, �, and so on. 

- ��, Ê�, �� are the jth row vector of the input values in the matrices of A, B and C respectively. 

5) Rank the parameters according to the values of the sensitivity indexes computed.  

 

10.   Appendix C 

Table C-1 reports the input sampling distribution for both sensitivity and uncertainty analyses.   

Table C-1 

Sampling distributions for the sensitivity and uncertainty analyses  

 

 

 

 

 

 

 

 

 

 

Type of a Distribution Probability Density Function Sampling Design

Gaussian Truncated Distribution

Log-odds Distribution

Uniform Distribution

5 = � 	�6Q = 0.16Y = 0.156� = 0.2
�  = 16B

Ë� h 56B �
Φ � h 56B h Φ $ h 56B

� = � 	�6Q = 0.16Y = 0.156� = 0.2
�  = 1� h $      ���  ∈ �$, ��

�  = ©�ª �1 h � + Í     ���  ∈ 0,1 ,
 0���� Í ~ I 0, 6B ∗

$ = � 	� h 0.1
� = � 	� + 0.1

$ = 0
� = 1

∗ Í ?� $ =�?�� ���� $��Ï��X �� ��©©�0  ��$=X$�X =���$© X?��?�Ï�?�=
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11.   Appendix D 

In this work, the suggested number of simulation runs is 10000. Figure D-1 shows the results of the sensitivity analysis 

performed according to different simulation runs - 1000, 5000 and 10000. As it is shown, the order of the input 

parameters is the same. However, in cases of 1000 and 5000 simulation runs the Total Order sensitivity indices of some 

parameters are less than the First-Order sensitivity indices, which contradicts the fact of � m ¥Ð m ¥ÑÐ m �. 

 

Figure D-1 First-Order and Total Order sensitivity indices according to different simulation runs (on the x-axis: 1 
corresponds to the P(Perforation Friction), 2 – P(NWB Friction), 3 – P(Degree of Tortuosity |High Perforation 
Friction), 4 - P(Degree of Tortuosity |High NWB Friction), 5 - P(Natural Fissures)) 
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12.  Appendix E 

 

Table E-1 

Input probability parameters sampled for sensitivity and uncertainty analyses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Probability Parameters Probability

P(Perforation Friction) 0.60

P(NWB Friction) 0.60

P(Closure Gradient) 0.15

P(Pad Design) 0.23

P(Natural Fissures) 0.36

P(High Permeability Zones) 0.36

P(Fluid Viscosity) 0.15

P(Pump Proppant Slugs |Degree of Tortuosity) 0.90

P(Poor Erosion) 0.10

P(Degree of Tortuosity |NWB Friction) 0.50

P(Degree of Tortuosity |Perforation Friction) 0.50

P(Max Treat Pressure |Poor Erosion) 0.09

P(Max Treat Pressure |Degree of Tortuosity) 0.61

P(Max Treat Pressure |Closure Gradient) 0.76

P(Fluid Efficiency | Fluid Viscosity) 0.66

P(Fluid Efficiency |Excessive Leak-off) 0.44

P(Excessive Leak-Off |High Permeability Zones) 0.76

P(Excessive Leak-Off |Natural Fissures) 0.89

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.33

P(Reduced Fracture Geometry |Pad Design) 0.89

P(Reduced Fracture Geometry |Natural Fissures) 0.33

P(Reduced Fracture Geometry |Multiple Fractures) 0.55
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13.  Appendix F 

Table F-1 

Sobol’s sensitivity analysis results for the Uniform Distribution Sampling  

 

Table F-2 

Sobol’s sensitivity analysis results for the Truncated Gaussian Distribution Sampling (σ = 0.1) 

 

Parameter First-order Parameter Total order 

P(Perforation Friction) 0.3239 P(Perforation Friction) 0.3323

P(NWB Friction) 0.2894 P(NWB Friction) 0.2932

P(Degree of Tortuosity |High Perforation Friction) 0.0938 P(Natural Fissures) 0.1084

P(Degree of Tortuosity |High NWB Friction) 0.0934 P(Degree of Tortuosity |High NWB Friction) 0.1038

P(Natural Fissures) 0.0893 P(Degree of Tortuosity |High Perforation Friction) 0.0988

P(Pad Design) 0.0572 P(Pad Design) 0.0574

P(Closure Gradient) 0.0392 P(High Permeability Zones) 0.0286

P(High Permeability Zones) 0.0235 P(Closure Gradient) 0.0267

P(Fluid Viscosity) 0.0208 P(Fluid Viscosity) 0.0222

P(Fluid Efficiency |Excessive Leak-Off) 0.0173 P(Fluid Efficiency |Excessive Leak-Off) 0.0129

P(Reduced Fracture Geometry |Natural Fissures) 0.0021 P(Reduced Fracture Geometry |Natural Fissures) 0.0098

P(Excessive Leak-Off |Natural Fissures) 0.0018 P(Excessive Leak-Off |Natural Fissures) 0.0066

P(Reduced Fracture Geometry |Multiple Fractures) 0.0015 P(Excessive Leak-Off |High Permeability Zones) 0.0066

P(Fluid Efficiency |Low Fluid Viscosity) 0.0013 P(Reduced Fracture Geometry |Multiple Fractures) 0.0049

P(Excessive Leak-Off |High Permeability Zones) 0.0013 P(Max Treat Pressure |High Closure Gradient) 0.0011

P(Reduced Fracture Geometry |Pad Design) 0.0011 P(Reduced Fracture Geometry |Pad Design) 0.0009

P(Max Treat Pressure |High Closure Gradient) 0.0004 P(Fluid Efficiency |Low Fluid Viscosity) 0.0003

P(Poor Erosion) 0.0002 P(Poor Erosion) 0.0002

P(Pump Proppant Slugs |Degree of Tortuosity) 0.0001 P(Pump Proppant Slugs |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Poor Erosion) 0.0001 P(Max Treat Pressure |Poor Erosion) 0.0001

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001 P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Degree of Tortuosity) 0.0001

Uniform Distribution Ranking

Parameter First-order Parameter Total order 

P(Perforation Friction) 0.3101 P(Perforation Friction) 0.3288

P(NWB Friction) 0.2888 P(NWB Friction) 0.2958

P(Degree of Tortuosity |High Perforation Friction) 0.0963 P(Natural Fissures) 0.0991

P(Natural Fissures) 0.0956 P(Degree of Tortuosity |High NWB Friction) 0.0981

P(Degree of Tortuosity |High NWB Friction) 0.0832 P(Degree of Tortuosity |High Perforation Friction) 0.0968

P(Pad Design) 0.0504 P(High Permeability Zones) 0.0507

P(High Permeability Zones) 0.0445 P(Closure Gradient) 0.0237

P(Closure Gradient) 0.0298 P(Pad Design) 0.0218

P(Fluid Viscosity) 0.0203 P(Reduced Fracture Geometry |Natural Fissures) 0.0146

P(Fluid Efficiency |Excessive Leak-Off) 0.0185 P(Fluid Efficiency |Excessive Leak-Off) 0.0125

P(Reduced Fracture Geometry |Natural Fissures) 0.0022 P(Fluid Viscosity) 0.0081

P(Excessive Leak-Off |High Permeability Zones) 0.0015 P(Excessive Leak-Off |High Permeability Zones) 0.0072

P(Excessive Leak-Off |Natural Fissures) 0.0013 P(Excessive Leak-Off |Natural Fissures) 0.0041

P(Reduced Fracture Geometry |Multiple Fractures) 0.0012 P(Pump Proppant Slugs |Degree of Tortuosity) 0.0039

P(Fluid Efficiency |Low Fluid Viscosity) 0.0011 P(Max Treat Pressure |High Closure Gradient) 0.0015

P(Reduced Fracture Geometry |Pad Design) 0.0011 P(Reduced Fracture Geometry |Pad Design) 0.0006

P(Max Treat Pressure |High Closure Gradient) 0.0011 P(Poor Erosion) 0.0003

P(Pump Proppant Slugs |Degree of Tortuosity) 0.0001 P(Fluid Efficiency |Low Fluid Viscosity) 0.0001

P(Max Treat Pressure |Poor Erosion) 0.0001 P(Max Treat Pressure |Degree of Tortuosity) 0.0001

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001 P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001

P(Poor Erosion) 0.0001 P(Reduced Fracture Geometry |Multiple Fractures) 0.0001

P(Max Treat Pressure |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Poor Erosion) 0.0001

Truncated Gaussian Distribution Ranking -  σ = 0.1
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Table F-3 

Sobol’s sensitivity analysis results for the Truncated Gaussian Distribution Sampling (σ = 0.15) 

 

Table F-4 

Sobol’s sensitivity analysis results for the Truncated Gaussian Distribution Sampling (σ = 0.2) 

 

 

Parameter First-order Parameter Total order 

P(NWB Friction) 0.3181 P(Perforation Friction) 0.3826

P(Perforation Friction) 0.2565 P(NWB Friction) 0.3433

P(Degree of Tortuosity |High Perforation Friction) 0.0929 P(Degree of Tortuosity |High Perforation Friction) 0.1232

P(Natural Fissures) 0.0923 P(Natural Fissures) 0.0997

P(Degree of Tortuosity |High NWB Friction) 0.0803 P(Degree of Tortuosity |High NWB Friction) 0.0993

P(Pad Design) 0.0486 P(Pad Design) 0.0488

P(Closure Gradient) 0.0329 P(High Permeability Zones) 0.0315

P(High Permeability Zones) 0.0304 P(Closure Gradient) 0.0212

P(Reduced Fracture Geometry |Multiple Fractures) 0.0254 P(Fluid Efficiency |Excessive Leak-Off) 0.0158

P(Fluid Viscosity) 0.0178 P(Fluid Viscosity) 0.0119

P(Excessive Leak-Off |High Permeability Zones) 0.0021 P(Reduced Fracture Geometry |Natural Fissures) 0.0058

P(Fluid Efficiency |Low Fluid Viscosity) 0.0014 P(Reduced Fracture Geometry |Multiple Fractures) 0.0056

P(Fluid Efficiency |Excessive Leak-Off) 0.0012 P(Excessive Leak-Off |High Permeability Zones) 0.0051

P(Excessive Leak-Off |Natural Fissures) 0.0011 P(Excessive Leak-Off |Natural Fissures) 0.0047

P(Max Treat Pressure |High Closure Gradient) 0.0011 P(Max Treat Pressure |High Closure Gradient) 0.0018

P(Reduced Fracture Geometry |Natural Fissures) 0.0009 P(Reduced Fracture Geometry |Pad Design) 0.0009

P(Reduced Fracture Geometry |Pad Design) 0.0008 P(Fluid Efficiency |Low Fluid Viscosity) 0.0006

P(Poor Erosion) 0.0001 P(Pump Proppant Slugs |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Poor Erosion) 0.0001

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001 P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001

P(Pump Proppant Slugs |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Poor Erosion) 0.0001 P(Poor Erosion) 0.0001

Truncated Gaussian Distribution Ranking -  σ = 0.15

Parameter First-order Parameter Total order 

P(NWB Friction) 0.3064 P(Perforation Friction) 0.3822

P(Perforation Friction) 0.2854 P(NWB Friction) 0.3409

P(Degree of Tortuosity |High Perforation Friction) 0.1199 P(Degree of Tortuosity |High Perforation Friction) 0.1364

P(Natural Fissures) 0.0932 P(Degree of Tortuosity |High NWB Friction) 0.1113

P(Degree of Tortuosity |High NWB Friction) 0.0869 P(Natural Fissures) 0.1104

P(High Permeability Zones) 0.0418 P(Pad Design) 0.0464

P(Closure Gradient) 0.0369 P(High Permeability Zones) 0.0346

P(Pad Design) 0.0332 P(Closure Gradient) 0.0214

P(Fluid Viscosity) 0.0218 P(Fluid Efficiency |Excessive Leak-Off) 0.0158

P(Fluid Efficiency |Excessive Leak-Off) 0.0153 P(Fluid Viscosity) 0.0121

P(Excessive Leak-Off |High Permeability Zones) 0.0019 P(Excessive Leak-Off |Natural Fissures) 0.0061

P(Reduced Fracture Geometry |Natural Fissures) 0.0019 P(Reduced Fracture Geometry |Natural Fissures) 0.0059

P(Excessive Leak-Off |Natural Fissures) 0.0018 P(Excessive Leak-Off |High Permeability Zones) 0.0058

P(Reduced Fracture Geometry |Multiple Fractures) 0.0017 P(Reduced Fracture Geometry |Multiple Fractures) 0.0057

P(Max Treat Pressure |High Closure Gradient) 0.0012 P(Max Treat Pressure |High Closure Gradient) 0.0026

P(Reduced Fracture Geometry |Pad Design) 0.0011 P(Reduced Fracture Geometry |Pad Design) 0.0013

P(Fluid Efficiency |Low Fluid Viscosity) 0.0009 P(Fluid Efficiency |Low Fluid Viscosity) 0.0009

P(Pump Proppant Slugs |Degree of Tortuosity) 0.0001 P(Pump Proppant Slugs |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Poor Erosion) 0.0001 P(Max Treat Pressure |Poor Erosion) 0.0001

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001 P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001

P(Poor Erosion) 0.0001 P(Max Treat Pressure |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Degree of Tortuosity) 0.0001 P(Poor Erosion) 0.0001

Truncated Gaussian Distribution Ranking -  σ = 0.2
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Table F-5 

Sobol’s sensitivity analysis results for the Log-odds Distribution Sampling (σ = 0.1) 

 

Table F-6 

Sobol’s sensitivity analysis results for the Log-odds Distribution Sampling (σ = 0.15) 

 

Parameter First-order Parameter Total order 

P(NWB Friction) 0.3163 P(NWB Friction) 0.3264

P(Perforation Friction) 0.2672 P(Perforation Friction) 0.2721

P(Natural Fissures) 0.1041 P(Degree of Tortuosity |High NWB Friction) 0.0988

P(Degree of Tortuosity |High NWB Friction) 0.0952 P(Natural Fissures) 0.0859

P(Degree of Tortuosity |High Perforation Friction) 0.0806 P(Degree of Tortuosity |High Perforation Friction) 0.0819

P(High Permeability Zones) 0.0311 P(High Permeability Zones) 0.0323

P(Closure Gradient) 0.0291 P(Pad Design) 0.0246

P(Excessive Leak-Off |High Permeability Zones) 0.0242 P(Fluid efficiency |Excessive Leak-Off) 0.0127

P(Pad Design) 0.0144 P(Closure Gradient) 0.0065

P(Fluid efficiency |Excessive Leak-Off) 0.0107 P(Reduced Fracture Geometry |Natural Fissures) 0.0063

P(Reduced Fracture Geometry |Multiple Fractures) 0.0072 P(Fluid Viscosity) 0.0048

P(Fluid Viscosity) 0.0072 P(Reduced Fracture Geometry |Multiple Fractures) 0.0037

P(Reduced Fracture Geometry |Natural Fissures) 0.0053 P(Excessive Leak-Off |High Permeability Zones) 0.0035

P(Excessive Leak-Off |Natural Fissures) 0.0012 P(Excessive Leak-Off |Natural Fissures) 0.0012

P(Max Treat Pressure |High Closure Gradient) 0.0009 P(Max Treat Pressure |High Closure Gradient) 0.0005

P(Reduced Fracture Geometry |Pad Design) 0.0003 P(Fluid efficiency |Low Fluid Viscosity) 0.0002

P(Fluid efficiency |Low Fluid Viscosity) 0.0002 P(Pump proppant slugs |Degree of Tortuosity) 0.0001

P(Pump proppant slugs |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Poor Erosion) 0.0001

P(Max Treat Pressure |Poor Erosion) 0.0001 P(Poor Erosion) 0.0001

P(Poor Erosion) 0.0001 P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Degree of Tortuosity) 0.0001 P(Reduced Fracture Geometry |Pad Design) 0.0001

Log-odds Distribution Ranking -  σ = 0.1

Parameter First-order Parameter Total order 

P(Perforation Friction) 0.3275 P(Perforation Friction) 0.3277

P(NWB Friction) 0.2906 P(NWB Friction) 0.2912

P(Degree of Tortuosity |High Perforation Friction) 0.1017 P(Natural Fissures) 0.1541

P(Degree of Tortuosity |High NWB Friction) 0.0982 P(Degree of Tortuosity |High Perforation Friction) 0.1395

P(Natural Fissures) 0.0823 P(Degree of Tortuosity |High NWB Friction) 0.1082

P(High Permeability Zones) 0.0299 P(Pad Design) 0.0332

P(Pad Design) 0.0212 P(High Permeability Zones) 0.0303

P(Fluid efficiency |Excessive Leak-Off) 0.0206 P(Fluid efficiency |Excessive Leak-Off) 0.0126

P(Excessive Leak-Off |High Permeability Zones) 0.0178 P(Closure Gradient) 0.0082

P(Fluid Viscosity) 0.0173 P(Reduced Fracture Geometry |Natural Fissures) 0.0071

P(Reduced Fracture Geometry |Multiple Fractures) 0.0044 P(Fluid Viscosity) 0.0052

P(Reduced Fracture Geometry |Natural Fissures) 0.0023 P(Excessive Leak-Off |High Permeability Zones) 0.0047

P(Closure Gradient) 0.0018 P(Reduced Fracture Geometry |Pad Design) 0.0045

P(Excessive Leak-Off |Natural Fissures) 0.0013 P(Excessive Leak-Off |Natural Fissures) 0.0012

P(Fluid efficiency |Low Fluid Viscosity) 0.0009 P(Reduced Fracture Geometry |Multiple Fractures) 0.0006

P(Reduced Fracture Geometry |Pad Design) 0.0008 P(Fluid efficiency |Low Fluid Viscosity) 0.0003

P(Max Treat Pressure |High Closure Gradient) 0.0006 P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0002

P(Pump proppant slugs |Degree of Tortuosity) 0.0001 P(Pump proppant slugs |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Poor Erosion) 0.0001 P(Max Treat Pressure |Poor Erosion) 0.0001

P(Poor Erosion) 0.0001 P(Poor Erosion) 0.0001

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |High Closure Gradient) 0.0001

Log-odds Distribution Ranking -  σ = 0.15
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Table F-7 

Sobol’s sensitivity analysis results for the Log-odds Distribution Sampling (σ = 0.2) 

 

14.   Appendix G 

In summary, in this work the following methods have been used: 

1. Bayesian Belief Network 

2. Weighted Sum Algorithm (Experts Judgement Elicitation method) 

3. Log-likelihood method (Experts Judgement Elicitation method) 

4. Elicitation method for Bayesian Belief Network (Experts Judgement Elicitation method) 

5. Sensitivity Analysis 

6. Sobol’s Variance Decomposition method (Sensitivity Analysis) 

7. Uncertainty Analysis 

8. Risk Importance Measures Analysis 

9. Cost-Benefit Analysis 

Parameter First-order Parameter Total order 

P(Perforation Friction) 0.3223 P(Perforation Friction) 0.3275

P(NWB Friction) 0.2844 P(NWB Friction) 0.2877

P(Degree of Tortuosity |High Perforation Friction) 0.1031 P(Natural Fissures) 0.1163

P(Degree of Tortuosity |High NWB Friction) 0.0932 P(Degree of Tortuosity |High Perforation Friction) 0.1088

P(Natural Fissures) 0.0834 P(Degree of Tortuosity |High NWB Friction) 0.0984

P(Closure Gradient) 0.0335 P(Pad Design) 0.0348

P(Pad Design) 0.0233 P(High Permeability Zones) 0.0313

P(Fluid efficiency |Excessive Leak-Off) 0.0232 P(Fluid efficiency |Excessive Leak-Off) 0.0128

P(High Permeability Zones) 0.0213 P(Closure Gradient) 0.0092

P(Reduced Fracture Geometry |Natural Fissures) 0.0113 P(Reduced Fracture Geometry |Natural Fissures) 0.0074

P(Fluid Viscosity) 0.0031 P(Fluid Viscosity) 0.0057

P(Excessive Leak-Off |High Permeability Zones) 0.0026 P(Excessive Leak-Off |High Permeability Zones) 0.0055

P(Reduced Fracture Geometry |Multiple Fractures) 0.0025 P(Reduced Fracture Geometry |Multiple Fractures) 0.0046

P(Excessive Leak-Off |Natural Fissures) 0.0009 P(Excessive Leak-Off |Natural Fissures) 0.0014

P(Fluid efficiency |Low Fluid Viscosity) 0.0008 P(Max Treat Pressure |High Closure Gradient) 0.0007

P(Max Treat Pressure |High Closure Gradient) 0.0008 P(Reduced Fracture Geometry |Pad Design) 0.0003

P(Reduced Fracture Geometry |Pad Design) 0.0006 P(Fluid efficiency |Low Fluid Viscosity) 0.0003

P(Pump proppant slugs |Degree of Tortuosity) 0.0001 P(Pump proppant slugs |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Poor Erosion) 0.0001 P(Poor Erosion) 0.0001

P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001 P(Max Treat Pressure |Poor Erosion) 0.0001

P(Poor Erosion) 0.0001 P(Max Treat Pressure |Degree of Tortuosity) 0.0001

P(Max Treat Pressure |Degree of Tortuosity) 0.0001 P(Reduced Fracture Geometry |Degree of Tortuosity) 0.0001

Log-odds Distribution Ranking -  σ = 0.2
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