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Abstract10

The increasing penetration of grid-enabled electric vehicles (EVs) renders road networks (RNs)11

and power networks (PNs) increasingly interdependent for normal operation. For this reason,12

recently few studies have started to investigate the vulnerability of a highly coupled traffic-power13

system in the presence of disruptive events. Actually, however, only very few of these studies have14

considered the impact of EVs on the interdependent traffic-power system during restoration from15

a disruptive event. In an attempt to fill this gap, in this study, we investigate the restoration16

planning of both independent RNs and PNs, and interdependent traffic-power systems. A mixed17

integer program model is formulated to provide optimal reconfiguration and operational solutions18

for post-disruption traffic-power systems recovery. The objective of the model is to minimize the19

total cost incurred by system performance loss, which is quantified by the cumulative unmet traffic20

demand for RNs and load shedding cost for PNs. Several reconfiguration strategies are considered,21

including links reversing in RNs and line switching in PNs, to optimize system resilience. In the22

proposed model, the integrated problem of system optimal dynamic traffic assignment and optimal23

power flow is solved to derive the optimal traffic-power flow. RNs and PNs are coupled through24

the coordinately allocated spatio-temporal charging demand of EVs. A partial highway network25

in North Carolina (NC), USA, and a modified IEEE-14 bus system are used to illustrate the26

application of the model. The numerical results obtained show the added value of coordinately27

planning restoration for traffic-power systems and the effects of different levels of EV penetration.28
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Indices38

a index of links39

t index of periods40

s index of destinations41

e index of energy levels for EVs42

c index of EV classes43

The transportation network sets44

A set of arcs45

N set of nodes46

NSR set of origin and destination nodes47

A(i)(B(i)) set of links whose tail(head) node is i48

AR set of source arcs49

AS set of sink arcs50

AG set of general arcs51

AC set of charging arcs52

T set of periods53

Ec set of energy levels for the EVs belonging to class c54

C set of EV classes55

Parameters56

φ time value57

peva charging power of charging link a58

NCa(t) number of chargers at charging link a during period t59

δ period length60

La physical length of link a61

kjam/qmax/vf jam density/ maximum flow/ free-flow speed62

w backward shock-wave speed, w = qmax · vf/(qmax − kjam · vf )63

αta average charging speed for charging link a during period t, αta = peva /(η · vf )64

f Ia (t) inflow capacity of link a during period t65
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fOa (t) outflow capacity of link a during period t66

DGs
a(t) cumulative gasoline vehicle travel demand between the entry of origin link a and67

destination s, at the end of period t68

DEs,e
a,c(t) cumulative electric power travel demand of c class EV between the entry of origin link69

a and destination s with energy level e at the end of period t70

νa free-flow travel time on link a, νa = La/(δ · vf )71

βa travel time required by the backward shock wave from the exit to the entry of link a,72

βa = La/(δ · w)73

Nh number of links that can be reversed during restoration74

Variables75

Ua(t) cumulative number of vehicles that enter link a by the end of period t76

Va(t) cumulative number of vehicles that leave link a by the end of period t77

UGs
a(t) cumulative number of GVs that enter link a to destination s by the end of period t78

V Gs
a(t) cumulative number of GVs that leave link a to destination s by the end of period t79

UEs,e
a,c(t) cumulative number of EVs of class c with energy level e that enter link a to destination80

s by the end of period t81

V Es,e
a,c(t) cumulative number of EVs of class c with energy level e that leave link a to destination82

s by the end of period t83

xs,ea,c(t) occupancy of EVs of class c with energy level e at charging link a during period t84

x̂s,ea,c(t) occupancy of EVs of class c with the updated energy level e at charging link a during85

period t86

ha binary variable that is equal to 1 if the direction of road a is reversed, and 0 otherwise87

The power network sets88

PN set of buses89

PL set of transmission lines90

P̃L set of damaged transmission lines91

Γ(j) successor set of bus j92

Parameters93

prampj ramp limits of generators at bus j94

cbj load shedding cost for the base load at bus j95

cdcj load shedding cost for the EV charging load at bus j96
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pg
j
/pgj lower/upper limit of power generation at bus j97

pbj,t base power demand at bus j during period t98

Nu number of lines that can be switched off during restoration99

Variables100

pgj,t power generation at bus j during period t101

pdcj,t charging load at bus j during period t102

Pi,j,t power flow from bus i to j during period t103

θi,t phase angle at bus i during period t104

ui,j binary variable that is equal to 1 if line (i, j) is switched in, being 0 otherwise105

LSdcj,t binary variable that is equal to 1 if the load of the attached FCSs is shedded at bus106

j during period t, being 0 otherwise107

LSbj,t base load shedding at bus j during period t108

EVs109

Parameters110

Lmaxc mileage of c class EV111

Ec maximum energy level of c class EV112

η average energy consumption efficiency for EVs113

1. Introduction114

Road networks (RNs) and power networks (PNs) are becoming increasingly interdependent115

due to the increasing penetrations of grid-enabled electric vehicles (EVs). Such increased inter-116

dependence makes the resulting system of systems more vulnerable also to the negative effects of117

technology-nature and human-caused incidents and accidents. In particular, when a high-impact118

low-probability (HILP) event occurs, e.g., an earthquake, an hurricane, a flood due to heavy rain,119

the consequences can be devastating. For example, the 2003 North America blackout caused 50120

million customers to suffer power outage [1]; during the landfall of Hurricane Sandy in 2012, 65%121

of New Jersey’s residents experienced disconnections from the power systems [2]; in July 2021,122

the extremely heavy rainfall caused city-wide floods in Zhengzhou, Henan province, China [3] and123

the flood severely damaged the critical infrastructures, including the transportation and the power124

systems, for an estimated direct economic loss on the order of RMB 88.5 billion. These examples125

highlight the pressing need of strengthening the resilience of RNs and PNs, also in view of the126

increasing frequency and intensely of these events.127

The concept of resilience has emerged in recent years, but it is not a completely new concept128

and has strong relationships with the concepts of safety and risk. Resilience has various definitions129

[4, 5, 6, 7], most sharing the general idea that is relates to the ability of a system to prepare130

for, absorb, recover from and adapt to disturbances [8]. The risk concept concerns the threat of131

4



an event to a system and its likelihood (probability) of occurrence and consequences, with less132

emphasis on the system recovery ability. As for the concept safety, Aven [9] pointed out that it133

has three perspectives:134

• Safety I focuses on that things go wrong because of identifiable malfunctions or failures of135

specific components of the system;136

• Safety II is seen as the ability to succeed under varying conditions;137

• Safety III is defined as freedom from unacceptable losses.138

The concept of resilience somewhat combines Safety I and II, whereas Safety III emphasizes that139

the system must be designed to be resilient and flexible to deal with surprising or unexpected140

events [10]. Resilience management plays a critical role in risk management [11]. Improved system141

resilience also means reduced risks [9].142

From the definition of resilience, we can see that restoration ability is a key element. Effective143

restoration strategies are crucial to enhance the system’s resilience to disruptions. The restoration144

problems can be generally divided into two stages: the long-term restoration problem and the145

short-term restoration problem. For the long-term restoration, the restoration duration could be146

days or weeks. For the PNs, it could be days, whereas it could be weeks for the RNs. During147

long-term restoration, the main target is to repair the physically damaged system components148

(e.g., transmission lines, road sections and generation stations) in order to recover the system149

performance to the pre-disruption level. Scheduling repair crews, allocating resources and deter-150

mining the restoration priority of components are generally the major concerns for the long-term151

restoration problem. On the other hand, short-term restoration problem is also usually formed as152

emergency response problem, which aims at minimizing the system service degradation, maintain-153

ing the system service as much as possible, and trying to partially recover the disrupted service.154

Such kind of emergency response is carried out based on the available resources within hours af-155

ter the disruption. The long-term and short-term restoration problems are conventionally treated156

separately, because there is no strong coupling relationship between them and they are different157

in terms of required resources, time scales, expected achievements, etc.158

Many studies [12, 13, 14] have investigated the post-disruption optimal restoration of RNs and159

PNs.160

Some studies [15, 16] treat the PN as an independent system. In these studies, restoration161

strategies, such as topology control [17], generator rescheduling [18, 19] and control of distributed162

energy storage systems, are often discussed. Among them, topology control is one of the most163

efficient strategies to restore the service and to enhance the system resilience. Switching operations164

has been intensively investigated [20, 21, 22] in PNs. In analogy to Braess’s paradox in RNs Braess165

[23], Zhang et al. [17], Glavitsch [24] showed that if one transmission line is removed from the an166

electric power system, it can:167

• enhance or reduce existing line currents,168

• increase or decrease the losses in the neighboring lines,169

• increase or decrease the magnitude of the nodal voltages.170

Therefore, if the switching operations are optimized sophistically and applied correctly, it is clear171

that the control can be oriented towards overload reduction, control of voltage magnitudes and172

reduction of losses and short-circuit currents. Typically, maximizing the network resilience and173
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minimizing the number of switching operations are the objectives of the proposed optimization174

models. For example, Sekhavatmanesh and Cherkaoui [25] developed the concept of multiagent175

automation in smart grids to restore a maximum of loads with minimum switching operations176

after disruptions; Sabouhi et al. [26] presented an operational network reconfiguration strategy in177

the event of high winds, to maximize network resilience and minimize the number of line switches178

simultaneously. Sometimes, islanding or not islanding after disruptive events are treated differ-179

ently. Agrawal et al. [27] developed a self-healing algorithm to restore the maximum priority loads180

by reconfiguring network, without intentional islanding during blackouts. Guimaraes et al. [28]181

proposed a three-stage algorithm for the dynamic reconfiguration of distribution networks with182

islanding. The three stages of the algorithm included calculating the network reconfiguration so-183

lutions in each hour, reducing the number of configurations, and generating the optimal sequence184

of topologies. Li et al. [29] developed a concept of a fully decentralized multi-agent system to185

build a restoration service framework for distribution networks. Based on this concept, a network186

reconfiguration algorithm with intentional islanding was proposed for service restoration. Besides187

reconfiguration, other corrective actions, such as generator re-dispatch, control of distributed en-188

ergy storage systems (ESSs), and on-load tap changers, can also be considered as supplementary189

strategies to enhance power system resilience. Liberati et al. [30] proposed a control system, which190

optimized grid operations through network reconfiguration, control of distributed energy storage191

systems and on-load tap changers. Sekhavatmanesh and Cherkaoui [31] developed an analytical192

and global optimization model to find the most efficient restoration plan with the goal of mini-193

mizing the number of de-energized nodes and minimizing the number of corrective actions as well.194

The considered corrective actions included network reconfiguration, the tap setting modification195

of voltage regulation devices, the nodal load-rejection, and the active/reactive power dispatch of196

distribution generators. Zhang et al. [32] introduced two-stage stochastic models to deal with197

the uncertainty in generation and demand during the recovery process. Switching transmission198

lines and generator re-dispatch strategies were used to maximize load shed recovery in the bulk199

transmission network. Nazemi and Dehghanian [33] introduced a framework for modeling seismic200

and vulnerability of electric power systems. The generation re-dispatch strategy and corrective201

network topology control were considered to maximize the load outage recovery after earthquakes.202

Gholizadeh et al. [34] proposed a model to obtain the optimal allocation of sectionalizing switches203

and fuses while the economical loss of both DG units and electricity customers were taken into204

consideration. The results showed that the DG units and their economical loss could significantly205

influence the placement of switch and fuse placement when tie switches did not exist in the network.206

Some studies [35] treat the RN as an independent system in restoration planning. For short-207

term restoration, reconfiguring network topology, controlling traffic lights and traffic demands208

management are frequently adopted. For example, Wang and Wang [36] developed an integrated209

reconfiguration strategy that considered the reconfiguration along both the supply and demand210

sides of the transportation system. The traffic demand was reconfigured using a heterogeneous211

fleet of vehicles and the network topology was reconfigured through a heterogeneous contraflow212

control. Later on, they further refined the framework [37] for resilience analysis in consideration213

of measurement and improvement. Two strategies were used to maximize the system resilience.214

The first one used integrated reconfiguration of both traffic supply and demand to reduce traffic215

demand through combining different traffic modes. The second one employed a contraflow strat-216

egy to increase traffic capacity. Chiou [38] proposed a period-dependent traffic responsive signal217

control model to enhance resilience of urban RNs. Koutsoukos et al. [39] developed a modeling218

and simulation integration platform for experimentation and evaluation of resilient transportation219

systems. Resilient traffic signal control in the presence of denial-of-service attacks was studied220
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in the case studies. Regarding the long-term recovery period, scheduling repair crew, allocating221

resources and determining restoration priority of components [40] in the RNs are the common222

strategies. Wu et al. [41] proposed a methodology to assess the resilience of transportation net-223

works and a restoration priority measure was developed to support post-earthquake restoration of224

damaged bridges. Zhao and Zhang [42] proposed a bi-objective bi-level optimization framework225

to determine an optimal transportation network restoration plan. The lower-level problem consid-226

ered elastic user equilibrium to model the imbalance between demand and supply. The upper-level227

problem, formulated as bi-objective mathematical programming, determined the optimal resource228

allocation for roadway restoration.229

With the increasingly coupled RNs and PNs, considering the two networks as a whole has230

become a need [43, 44]. Currently, only a few studies have investigated how to restore a coupled231

traffic-power network after disruptions in an integrated way. Among these studies, considered232

restoration strategies include optimally routing and scheduling mobile energy storage systems233

(MESSs)/mobile energy sources [45, 46, 47, 48], coordinating with repair crews [46, 47, 48] and234

switching lines [46, 47]. Most above-mentioned studies assume that only the PNs are damaged235

by the disruption, whereas the RNs are not influenced and the time to transport the restoration236

resources is the same as normal situation. However, the RNs may also be damaged during the237

disruption, thus, the efficiency of the RNs may decrease. Only several works considered that the238

disruption caused influences on both networks. Wang et al. [49] considered the PNs and urban RNs239

coupled through traffic lights and mobile emergency resources (i.e., mobile emergency generators,240

MESSs, electric buses and repair crews) for PNs. The availability of mobile emergency resources for241

load restoration in PNs is related to their dispatch in the RNs, and the effect of PN-enabled traffic242

lights on traffic flow is also modeled. They developed a service restoration method to maximize the243

efficiency of both PNs restoration and RNs. Yao et al. [50] proposed a rolling integrated service244

restoration strategy to minimize the total system cost by coordinating the scheduling of MESS245

fleets, resource dispatching of microgrids and network reconfiguration of PNs. The integrated246

strategy considered damage and repair to both the roads in RNs and the branches in PNs. Li247

et al. [51] presented an optimization model for joint post-disaster PN restoration, considering248

coordinated dispatching with electric buses of vehicle-to-grid (V2G) storage capability. Idle buses249

placed at designated areas can feed power back to the grid via charging equipment in case of need.250

The schedule of the remaining buses should meet the passenger transport demand. Belle et al.251

[52] proposed a model to analyze the vulnerability of coupled railway and PNs where the power252

network acted as an interface. They showed that failures in the power network could cause a253

negative impact on the railway network.254

Above-mentioned studies considered different interfaces between PNs and RNs. How to prop-255

erly model the interfaces of the two networks is another key issue in investigating the optimal256

service restoration of traffic-power networks. This paper considers that the RNs and PNs are257

coupled through grid-enabled electric vehicles (EVs) and fast-charging stations (FCSs), which are258

increasingly being deployed around the world [53]. Meanwhile, the risk of power outages in FCSs259

due to natural disaster have raised serious concerns [54, 55]. This aspect has not been paid much260

attention in the current literature.261

In this paper, we focus on the emergency response problem for the coupled traffic-power net-262

works through grid-enabled EVs and FCSs. The target of this problem is using the available263

resources to quickly recover partial system service when the two networks are both damaged in a264

disruptive event. The intensively investigated long-term restoration problem is out of the scope265

of the present paper. For the emergency response strategies, the links reversing is considered,266

because it can be easily taken as an operational response in most cases and also provide flexibility267
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to quickly restore part of the disrupted transport services. Other strategies are not considered268

since, for example, traffic light controlling is not applicable to the electrified highway networks;269

Traffic demand management is usually used for evacuation planning and, thus, is not appropriate270

in our problems. Switching transmission lines are considered as emergency response strategy for271

the PNs, since it almost is the most urgent first response. In RNs, vehicles may need to detour272

and the RNs’ performance, evaluated in terms of the satisfied traffic demand on a certain period273

of time, therefore, may decrease. Due to the detoured vehicles, both the number of EVs and the274

amount of charging demand for individual EV may increase in FCSs. Such charging demand may275

become a burden for post-disruption PNs and the PNs may need to shed partial EV charging276

load to protect the PNs from a total blackout. Consequently, the unavailability of the service in277

FCSs can further influence the charging demand patterns and decrease the performance of the278

RNs. However, in the current literature, there is a lack of models that are able to describe the279

above-mentioned interactions within the two networks.280

To fill the research gaps described before, this paper proposes a mixed integer program model281

to minimize the performance loss of the coupled traffic-power systems upon the occurrence of282

disruptive events. In our paper, the system performance loss is measured by the unsatisfied283

travel demand and electricity demand. The unsatisfied/satisfied demand is a commonly used284

performance indicator to be optimized for both the power and transportation systems in the285

resilience-related literature. For example, Ref. [56] maximized the weighted sum of restored286

loads, Ref. [57] minimized the total amount of lost power during the restoration process and287

Ref. [13] used the energy not supplied as the indicator to estimate the system resilience. For288

the transportation systems, minimizing the functionality losses of RNs [14], minimizing unmet289

demand [42], maximizing network throughput [58] can be frequently found in the literature. For the290

interdependent systems, they are assumed to be integrally operated by one decision-making agent,291

therefore, minimizing the total system performance loss (i.e., total unsatisfied demand) [59, 60] is292

proposed naturally. In this work, we firstly formulate the emergency response problem based on293

network topology reconfiguration for the independent electrified RNs and PNs, respectively. Then,294

the emergency response problem for the coupled traffic-power system is proposed from a centralized295

decision-making perspective. Specifically, an integrated traffic-power systems model is developed296

to describe the dynamic interaction between RNs and PNs, through EVs and spatiotemporal297

distributed charging demand.298

The main contributions of this paper are summarized as follows:299

1. Most of the existing work studies PNs and RNs separately, or assumes that one single system300

is damaged by a disruption. This work treats the PNs and RNs as a whole and assumes both301

of them are partially damaged, where the degraded services influence each other.302

2. To the best of our knowledge, this is the first work that investigates the emergency response303

problem for the traffic-power systems coupled through grid-enabled EVs and FCSs.304

3. A new integrated model is presented to explicitly model the interaction between PNs and305

RNs, where the system optimal dynamic traffic assignment problem and the DC optimal306

power flow problem are embedded, and the physical constraints from both networks are307

considered.308

4. The strategies of link directions reversing in RNs and line switching in PNs are mathemati-309

cally formulated and originally modeled to mitigate the system performance loss in an inter-310

dependent traffic-power system environment, and in independent RN and PN environments,311

respectively.312
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The remainder of the paper is structured as follows. Section 2 formulates the reconfiguration313

problems in independent RN and PN, as well as in the interdependent traffic-power system. Section314

3 illustrates a case study to show the application of the proposed models and compares the solutions315

under different response resource levels, EV penetration levels and decision-making environments.316

Finally, Section 4 provides concluding remarks and future research directions.317

2. Infrastructures models and reconfiguration problem formulation318

In this section, models for the reconfiguration of independent RNs, independent PNs and319

interdependent traffic-power systems are formulated.320

2.1. Reconfiguring electrified road networks321

In this subsection, we present an electrified traffic system model considering the critical char-322

acteristics of EVs and FCSs. The model is based on the link transmission model (LTM) appraoch.323

The emergency response problem for the electrified RNs with reconfiguration techniques after dis-324

ruption problem is, then, formulated based on the electrified traffic model presented. The main325

flowchart of the proposed methodology is shown in Figure 1.326

Figure 1: The main flowchart of modeling electrified road networks and its emergency response problem.
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Figure 2: Link representation of different types of charges within a charging station.

2.1.1. Modeling electrified road networks327

In this model, we assume that the electricity consumed by an EV is linearly related to the328

distance traveled. The electricity amount charged by an EV is linearly related to the charging329

time. All EV batteries have the same energy consumption efficiency, similar to Ref. [61].330

A RN with multiple sources (origins) and sinks (destinations) is here denoted as G(N ,A),331

where N and A are the sets of nodes and links, respectively. Links in the RN are classified into332

four types: source AR, sink AS, general AG and charging AC links. Dummy charging links AC333

are originally defined to describe the FCS in the physical RN. A FCS is modeled by one or several334

charging links, represented by arcs having the same origin and destination, as shown in Figure 2.335

Chargers with different charging speeds are represented by different charging links.336

Nodes are classified into two types: source-sink NSR and general NG nodes. Within the RN,337

each source-sink node connects only one source and one sink link. All charging, source and sink338

links are dummy with lengths 0 so that no unnecessary travel time is counted on these dummy339

links. All source and sink links are with infinite outflow, inflow and storage capacities so that they340

will never become the bottlenecks of the traffic flow in the modeled RN. For the system optimal341

dynamic traffic assignment (SO-DTA) problem, the outflow capacity of all sink links are assumed342

to be 0, similar to Refs. [62, 63, 64]. It means that all vehicles are collected upon their arrival.343

The time horizon H is discretized into a finite set of periods T = {t = 1, 2, · · · , T}. T is calculated344

according to T = H/δ, where δ is the period length. The period length should be equal to or345

smaller than the smallest link travel time so that vehicles take at least one time unit to traverse a346

link [65].347

A triangular fundamental diagram is defined in LTM, as an approximation of the macroscopic348

properties of roads [65]. The diagram is defined by three parameters: a jam density (kjam), a349

maximum flow (qmax) and a fixed-free flow speed (vf ). The backward shock-wave speed w can be350

obtained by w = qmax · vf/(qmax − kjam · vf ).351

Given a certain class of EV denoted as c, its battery capacity is Bc kWh and the energy352

consumption efficiency is η kWh/mile, then, the mileage of this class EV is Lmaxc = Bc/η miles.353

We discretize its mileage into integer energy levels (ELs). When this EV has full battery, it has354

the maximum EL Ec = Lmaxc /(δ · vf ). Once this EV traveled δ · vf miles, its ELs decrease one355

unit EL, i.e., 1 unit EL = δ · vf miles. We assume that there are C EV classes represented as356

C = {E1, E2, · · · , EC}. Each element Ec in set C is a set, which contains the energy levels that EVs357

of class c could have, denoted as Ec = {1, 2, · · · , Ec}.358

In the LTM, the traffic flow dynamic evolution is obtained by calculating the cumulative number359

of vehicles at entry and exit of each link, in each period of time t.360

Newell’s simplified theory [66, 67] is used in LTM to calculate sending Sa(t) and receiving Ra(t)361
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capacities of link a:362

Sa(t) = min{Ua(t− νa)− Va(t− 1), fOa (t)} (1a)
363

Ra(t) = min{Va(t− βa) + La · kjam − Ua(t− 1), f Ia (t)} (1b)

where Ua(t)/Va(t) denotes the cumulative number of vehicles that enter/leave link a by the end of364

period t. f Ia (t) and fOa (t) are the inflow capacity at the entering point and outflow capacity at the365

leaving point of link a during period t, respectively. They can be obtained by computing δ · qmax366

at the corresponding location and period. La is the length of link a. νa is the free-flow travel time367

on link a and βa is the travel time required by the backward shock wave from the exit to the entry368

of link a. They can be obtained by νa = La/(δ · vf ) and βa = La/(δ · w), respectively.369

The inflow and outflow of link a during interval t are constrained by its corresponding sending370

and receiving capacities:371

Ua(t)− Ua(t− 1) ≤ Ra(t),∀a ∈ A\{AC},∀t (2a)
372

Va(t)− Va(t− 1) ≤ Sa(t),∀a ∈ A\{AC},∀t (2b)

Substituting Eqs. (1) and (1b) into the system of inequality (2), we obtain the following system373

of linear LTM-based flow constraints:374

Va(t) ≤ Ua(t− νa),∀a ∈ A\{AC},∀t (3)
375

Va(t)− Va(t− 1) ≤ fOa (t),∀a ∈ A\{AC},∀t (4)
376

Ua(t)− Ua(t− 1) ≤ f Ia (t),∀a ∈ A\{AC},∀t (5)
377

Ua(t)− Va(t− βa) ≤ Lakjam,∀a ∈ A\{AC},∀t (6)

In the proposed LTM-based model, both EVs and conventional vehicles are considered as follows378

:379

Ua(t) =
∑
s∈NS

UGs
a(t) +

∑
s∈NS

∑
c∈C

∑
e∈Ec

UEs,e
a,c,∀a ∈ A\{AC},∀t (7a)

380

Va(t) =
∑
s∈NS

V Gs
a(t) +

∑
s∈NS

∑
c∈C

∑
e∈Ec

V Es,e
a,c,∀a ∈ A\{AC},∀t (7b)

where UEs,e
a,c(t)/V E

s,e
a,c(t) denotes the cumulative number of EVs that belong to type c with EL381

e, that enter/leave link a to destination s by the end of period t; UGs
a(t)/V G

s
a(t) denotes the382

cumulative number of GVs that enter/leave link a to destination s by the end of interval t.383

Substituting Eq. (7) into the inequalities in Eqs. (3) - (6), we can have the following constraints384

for the mixed traffic of EVs and GVs:385 ∑
s∈NS

[V Gs
a(t)− V Gs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[V Es,e
a,c(t)− V Es,e

a,c(t− 1)]

≤ fOa (t),∀a ∈ A\{AC},∀t, s
(8)

386 ∑
s∈NS

[UGs
a(t)− UGs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs
a(t)− UEs

a(t− 1)]

≤ f Ia (t),∀a ∈ A\{AC},∀t, s
(9)
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387 ∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t− βa)] +
∑
s∈NS

[UGs
a(t)− V Gs

a(t− βa)]

≤ Lakjam,∀a ∈ A\{AC},∀t, s
(10)

For GVs, the cumulative outflow disaggregated by destinations should also be constrained by388

the boundary condition at the inflow. Hence, we have389 ∑
s∈NS

V Gs
a(t) ≤

∑
s∈NS

UGs
a(t− νa),∀a ∈ A\{AC},∀t (11)

For EVs, the disaggregated cumulative outflow should also be constrained by the battery con-390

dition at the inflow. Hence, we have391

V Es,e
a,c(t) ≤ UEs,e+ρa

a,c (t− νa),∀a ∈ A\{AC}, e ∈ Ec ∩ {e ≤ Ec − ρa},∀s, c, t (12a)

392

V Es,e
a,c(t) = 0,∀a ∈ A\{AC}, e ∈ Ec ∩ {e > Ec − ρa}, ∀s, c, t (12b)

where, ρa is the ELs required to traverse link a and it is calculated by ρa = La/(δ · vf ). Eq. (12a)393

guarantees that outflow should be less than or equal to the inflow. It also guarantees that the394

outflow ELs are updated from the inflow after the EVs traversed the corresponding links. Eq.395

(12b) ensures that all EV ELs should be less than their maximum ELs.396

The traffic demand is satisfied by letting the cumulative inflows of source links equal the397

cumulative demands:398

UGs
a(t) = DGs

a(t),∀a ∈ AR,∀s, t (13a)
399

UEs,e
a,c(t) = DEs,e

a,c(t),∀a ∈ AR, e ∈ Ec,∀s, c, t (13b)

where DGs
a(t)/DE

s,e
a,c(t) represents the cumulative GVs/EVs travel demand between the entry of400

origin link a and destination s at the end of period t.401

The inflow and outflow of a general node should be restricted by the following flow conservation402

constraints:403 ∑
a∈B(i)

V Gs
a(t) =

∑
b∈A(i)

UGs
a(t),∀i ∈ N /{NSR},∀s, t (14a)

404 ∑
a∈B(i)

V Es,e
a,c(t) =

∑
b∈A(i)

UEs,e
a,c(t),∀i ∈ N /{NSR},∀e ∈ Ec,∀s, c, t (14b)

where A(i)/B(i) represents the set of links whose tail/head node is i.405

For EVs, the current occupancy on charging link a should be limited by the maximum number406

of chargers on this link:407 ∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t)] ≤ NCa(t),∀a ∈ AC ,∀t (15)

where NCa(t) is the physical number of type a chargers on charging link a during period t.408

The following equations are used to update the current occupancy and their ELs on a charging409
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link:410

x̂s,ea,s(t) = xs,ea,s(t− 1) + [UEs,e
a,c(t− 1)− UEs,e

a,c(t− 2)]−
[V Es,e

a,c(t− 1)− V Es,e
a,c(t− 2)],∀a ∈ AC , ∀e ∈ Ec,∀s, c, t

(16)

where x̂s,ea,s(t) and xs,ea,s(t) are the numbers of EVs before and after their ELs have been updated on411

charging link a.412

Based on the obtained occupancies, the following equations are used to model their charging413

process where ELs of EVs linearly increase with time on charging links:414

xs,Ec
a,c (t) =

αt
a∑

l=0

x̂s,Ec−l
a,c (t), ∀a ∈ AC ,∀s, c, t (17a)

415

xs,ea,c(t) = x̂s,e−α
t
a

a,c (t), ∀a ∈ AC ,∀e ∈ {αta ≤ e < Ec},∀s, c, t (17b)
416

xs,ea,c(t) = 0, ∀a ∈ AC ,∀e ∈ {e < αta},∀s, c, t (17c)

where αta represents the average charging speed for charging link a during period t, which translates417

to how many energy levels can be supplied using type a charger during a period δ. Assuming the418

charging power of charging link a is peva , then, αta can be calculated by peva ·δ
η·δ·vf

= peva
η·vf

. Eqs. (17a)419

and (17c) constraint the upper and lower boundaries of the updated ELs. Eq. (17b) describes the420

process of linear increase in ELs.421

Additionally, the outflow disaggregated by each EL on charging link a should be less than its422

occupancy, as formulated in Eq. (18):423

V Es,e
a,c(t)− V Es,e

a,c(t− 1) ≤ xs,ea,c(t),∀a ∈ AC , ∀e ∈ Ec,∀s, c, t (18)

The occupancies on charging links are nonnegative, which is formulated as follows:424

xs,ea,c(t) ≥ 0, x̂s,ea,c(t) ≥ 0,∀a ∈ AC ,∀e ∈ Ec,∀s, c, t, (19)

The cumulative flows should be nonnegative and nondecreasing:425

V Gs
a(t)− V Gs

a(t− 1) ≥ 0,∀a ∈ A,∀s, t (20a)
426

V Es,e
a,c(t)− V Es,e

a,c(t− 1) ≥ 0,∀a ∈ A, ∀e ∈ Ec,∀s, c, t (20b)

427

UGs
a(t)− UGs

a(t− 1) ≥ 0,∀a ∈ A,∀s, t (21a)
428

UEs,e
a,c(t)− UEs,e

a,c(t− 1) ≥ 0,∀a ∈ A,∀e ∈ Ec,∀s, c, t (21b)

The following constraints force the initial cumulative flows to be 0:429

UGs
a(0) = V Gs

a(0) = 0,∀a ∈ A,∀s (22a)
430

UEs,e
a,c(0) = V Es,e

a,c(0) = 0,∀a ∈ A,∀e ∈ Ec, ∀s, c (22b)

The objective of electrified RNs model is to minimize the total travel time of all vehicles. The431

total travel time is calculated by the total presence time of all vehicles on all links during the whole432
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time horizon and the total charging time of all EVs. Under normal situation, the whole model for433

the electrified RN is formulated as follows:434

min
∑
s∈NS

∑
t∈T

∑
a∈A/{AC ,AS}

δ[UGs
a(t)− V Gs

a(t)]

+
∑
s∈NS

∑
t∈T

∑
a∈A/AS

∑
c∈C

∑
e∈Ec

δ[UEs,e
a,c(t)− V Es,e

a,c(t)]
(23)

subject to:435

Eqs. (7)− (22) (24)

436

2.1.2. Modeling reconfiguration strategy in electrified road networks437

To mitigate the impacts after disruptions, we consider the strategy of contraflow to reconfigure438

the topology of the highway networks. Contraflow can be easily implemented by reversing the439

direction of lanes of highway networks. Fig. 3 shows how the contraflow assists increasing the440

throughput of the network after disruptions. Assuming that there are 20 vehicles per minute441

starting from node O to D and 10 vehicles per minute from node D to O. The number along442

each link represents the time required to traverse the link at a free-flow speed. Fig. 3(a) shows443

that there are 30 and 60 vehicles arriving at nodes O and D, respectively, after 6 minutes, when444

each link works normally. If the link from node O to D fails, the arrivals on node D decrease to445

40 vehicles, as shown in Fig. 3(b). However, if we reverse the direction of the link a1, the total446

number of arrivals can be increased from 70 to 80 vehicles after the disruption, as shown in Fig.447

3(c). This example shows that reconfiguring the highway network after disruption could effectively448

reduce the system performance loss. Another example can be found in Ref. [68], which shows how449

contraflow strategy increases the network outbound capacity and mitigates congestion.450

To model the contraflow strategy, we constrain each link in the highway network to have only451

one unique opposite link corresponding to it. For example, there are two links a1 and a2 from nodes452

O to D in Fig. 3: their corresponding opposite links are â1 and â2, respectively. Dually, links a1453

and a2 are the opposite links of links â1 and â2. Mathematically, we use variable ha to denote454

whether link a is changed to the opposite direction or not. â represents the unique opposite link455

of link a. If the direction of the link is reversed, the outflow capacity, the inflow capacity and the456

maximum number of vehicles that can be present on that link of direction will be correspondingly457

reconfigured. Therefore, Eqs. (8) - (10) are reformulated as follows:458

∑
s∈NS

[V Gs
a(t)− V Gs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[V Es,e
a,c(t)− V Es,e

a,c(t− 1)]

≤ (1− ha) · fOa (t) + hâ · fOâ (t),∀a ∈ A\{AC},∀t
(25)

459 ∑
s∈NS

[UGs
a(t)− UGs

a(t− 1)] +
∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs
a(t)− UEs

a(t− 1)]

≤ (1− ha) · f Ia (t) + hâ · f Iâ (t),∀a ∈ A\{AC},∀t
(26)

460 ∑
s∈NS

∑
c∈C

∑
e∈Ec

[UEs,e
a,c(t)− V Es,e

a,c(t− βa)] +
∑
s∈NS

[UGs
a(t)− V Gs

a(t− βa)]

≤ (1− ha)Lakjam + hâLâkjam,∀a ∈ A\{AC},∀t
(27)
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Figure 3: Contraflow illustration: (a) Normal condition (b) After disrutption (c) After reconfiguration

Eq. (25) states that the outflow on link a are constrained by the status of links a and â. If461

ha = 0 and hâ = 0, no link is reversed and the outflow capacity on the direction of original link462

a is unchanged, i.e., the outflow capacity of link a; if ha = 1 and hâ = 1, both links are reversed463

and the outflow capacity is modified to the outflow capacity of link â; if ha = 1 and hâ = 0, the464

direction of link a is reversed and the outflow capacity becomes 0; if ha = 0 and hâ = 1, the465

direction of the opposite link â is reversed and the outflow capacity increase to the sum of outflow466

capacities of links a and â. Similarly, we can have Eqs. (26) and (27) to constrain the inflow and467

maximum occupancies on the direction of original link a after reconfiguration:468

ha, hâ ∈ {0, 1},∀a, â ∈ A\{AC} (28)
469 ∑

a∈A\{AC}

ha ≤ Nh (29)

Eq. (28) guarantees that ha and hâ are binary variables. Eq. (29) constrains the total number470

of links that can be reversed. This constraint reflects the limited resources that can be used in471

emergency response.472

The emergency response problem for electrified RNs with contraflow options is formulated as473

follows:474

min
∑
s∈NS

∑
t∈T

∑
a∈AS

[DGs
a(t)− UGs

a(t) +
∑
c∈C

∑
e∈Ec

(DEs,e
a,c(t)− UEs,e

a,c(t))] · φ (30)
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subject to:475

Eqs. (11)− (29) (31)

where φ denotes the time value. The objective of the transportation operator is to minimize the476

system performance loss cost, measured by the unsatisfied traffic demand, after disruptions within477

a certain period. More specifically, it is calculated by the cumulative difference between the target478

demand (i.e., DGs
a(t) and DEs,e

a,c(t)) and the number of vehicles arrived at their destinations (i.e.,479

UGs
a(t) and UEs,e

a,c(t), a ∈ NS). In Eq. (30), the first term is the cumulative unsatisfied GVs travel480

demand and the second term is the cumulative unsatisfied EVs travel demand.481

2.2. Reconfiguring power networks482

In this subsection, the classic DC optimal power flow (OPF) model [69] is used to model the483

transmission network operation. Based on this model, the emergency response problem for the484

PN using switch options is formulated. The main flowchart of modeling power networks and its485

emergency response problem is shown in Figure 4.

Figure 4: The main flowchart of modeling power networks and its emergency response.

486

We consider a PN GP (PN ,PL), where PN and PL represent the sets of buses and branches,487

respectively. P̃L represents the set of damaged transmission lines after a disruption, P̃L ⊂ PL.488

Γ−(j) and Γ+(j) denote the sets of predecessors and successors of bus j, respectively.489
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After the disruption, the objective of the independent system operator is to minimize the cost490

of unsatisfied load demand, which is formulated as follows:491

minPP =
∑
j

∑
t

[cbj · LSbj,t + cdcj · LSdcj,t · pdcj (t)] · wj (32)

where cbj and cdcj are the costs of shedding base load and EV charging load, respectively; wj, with,492 ∑
j wj = 1, denotes the priority weight of load bus j, which can be heuristically determined, e.g.,493

by considering the nature and importance of the load at each bus; LSbj,t is a continuous variable494

representing the amount of unsatisfied base demand at bus j in period t; LSdcj,t is a binary variable495

denoting where the charging demand pdcj (t) at bus j in period t is shedded or not.496

The power flows in the PN are subjected to the following constraints:497

pgj,t +
∑

i∈Γ−(j)

Pi,j,t −
∑

k∈Γ+(j)

Pj,k,t = pbj,t − LSbj,t + (1− LSdcj,t) · pdcj (t),∀j ∈ PN ,∀t (33)

498

− P̄i,j · ui,j ≤ Pi,j,t ≤ P̄i,j · ui,j, ∀(i, j) ∈ PL\{P̃L},∀t (34)
499

Pi,j,t = 0,∀(i, j) ∈ {P̃L},∀t (35)
500

Bi,j · (θi,t − θj,t)− Pi,j,t + (1− ui,j) ·Mi,j ≥ 0,∀(i, j) ∈ PL\{P̃L},∀t (36)
501

Bi,j · (θi,t − θj,t)− Pi,j,t − (1− ui,j) ·Mi,j ≤ 0,∀(i, j) ∈ PL\{P̃L},∀t (37)
502

−prampj ≤ pgj,t − p
g
j,t−1 ≤ prampj ,∀j ∈ PN ,∀t ∈ T (38)

503

0 ≤ LSbj,t ≤ pbj,t,∀j ∈ PN ,∀t (39)
504

0 ≤ P g
j,t ≤ p̄gj ,∀j ∈ PN ,∀t (40)

505 ∑
(i,j)∈PL

(1− ui,j) ≤ Nu (41)

506

ui,j ∈ {0, 1}, ∀(i, j) ∈ PL (42)
507

LSdcj,t ∈ {0, 1},∀j ∈ PN , ∀t (43)

Constraint (33) relaxes the power flow balance constraint at each bus by allowing to shed unsatisfied508

demand. Constraint (34) guarantees that the power flows in the transmission lines do not exceed509

their capacities if they function. Constraint (35) forces the amount of power flow on the damaged510

lines to be 0. Constraints (36)-(37) denote Kirchhoff’s power flow equations, where power flow511

are limited by lines’ susceptance and the phase angle difference between the two end buses. It512

is necessary to include the big-M in the equations. In fact, if the constraint is directly written513

as Bi,j · (θi,t − θj,t) = Pi,j,t · (1 − ui,j), when the line status is not switched and in service (i.e.,514

ui,j = 1), this equation works normally, whereas when the line is switched off (i.e., ui,j = 0), the515

phase angle between the two end buses of this line would be forced to be 0, which is not logical for516

the power flow in the network. Constraint (38) limits the generator ramp between two successive517

periods. Constraint (39) gives the lower and upper boundaries of the amount of base load that can518

be shedded at each bus. Constraint (40) ensures that the flow generated by generators is within519

their capacity. Constraint (41) limits the number of lines that can be switched. Constraints (42)520

- (43) state that ui,j and LSdcj,t are binary decision variables.521
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2.3. Reconfiguring the coupled traffic-power networks522

In this subsection, we assume that there is a decision-making agent (e.g., an emergency response523

authority) that integrally operates and reconfigures the traffic-power networks in a centralized way524

to minimize the total performance loss of the two systems. The main flowchart of the proposed525

approach is shown in Figure 5.526

Figure 5: The main flowchart of modeling traffic-power networks and its emergency response problem.

In this situation, the EV charging load pdcj (t) at each bus becomes a decision variable, which527

can be calculated by the following equation:528

pdcj (t) =
∑

a∈M(j)

∑
s∈NS

∑
c∈C

∑
e∈Ec

peva [UEs,e
a,c(t)− V Es,e

a,c(t)],∀j ∈ PN ,∀t (44)

where M(j) is the mapping from bus set PN to charging links setAC , which specifies the connection529

between buses in the PN and charging links in the RN.530

Since the traffic-power system is integrally operated, the charging locations and times of EVs531

can be flexibly arranged to contribute to minimizing the objective. Therefore, it is no longer532
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necessary to have variable LSdcj,t to control whether the EV charging load is shedded or not. Eq.533

(33) is rewritten as follows:534

pgj,t +
∑

i∈Γ−(j)

Pi,j,t −
∑

k∈Γ+(j)

Pj,k,t = pbj,t − LSbj,t + pdcj,t,∀j ∈ PN , ∀t (45)

The whole problem is formulated as follows:535

min
∑
s∈NS

∑
t∈T

∑
a∈AS

[DGs
a(t)− UGs

a(t) +
∑
c∈C

∑
e∈Ec

(DEs,e
a,c(t)− UEs,e

a,c(t))] · φ+
∑
t∈T

cbj · wj · LSbj,t (46)

subject to:536

Eqs. (11)− (29), (34)− (42) and (44)− (45) (47)

In each time period, there are expected demand E(t) and unsatisfied demand ∆E(t) in the537

system. The following equation is employed to measure the system performance P (t) [1]:538

P (t) =
E(t)−∆E(t)

E(t)
(48)

where 0 ≤ ∆E ≤ E. This equation can be understood as the percentage of demand that can be539

satisfied in the system in period t.540

In the studied traffic-power system, the expected demand includes the all vehicle types traffic541

demand over all OD pairs and base electricity demand over all buses, which is formulated as542

follows:543

E(t) =
∑
s∈NS

∑
a∈AS

[DGs
a(t) +

∑
c∈C

∑
e∈Ec

DEs,e
a,c(t)] · φ+

∑
j∈PN

cbj · pbj,t (49)

where time value φ and shedding load cost cbj are used, so that the system performance of PNs544

and RNs have the same physical dimension, and, additivity is allowed.545

Substituting Eqs. (46), without summation over time, and (49) into Eq. (48), this letter is546

rewritten as follows:547

P (t) =

∑
s∈NS

∑
a∈AS

[UGs
a(t) +

∑
c∈C

∑
e∈Ec UE

s,e
a,c(t)] · φ+

∑
j∈PN

[pbj,t − LSbj,t] · cbj∑
s∈NS

∑
a∈AS

[DGs
a(t) +

∑
c∈C

∑
e∈Ec DE

s,e
a,c(t)] · φ+

∑
j∈PN

cbj · pbj,t
(50)

The proposed emergency response problems for the independent RN (Eqs. 30-31), the inde-548

pendent PN (Eqs. 32-43) and the coupled traffic-power networks (Eqs. 46-47) are mixed integer549

linear programing problems. Such kind of problems can be efficiently solved by commercial solvers,550

such as Cplex and Gurobi.551

3. Case study552

The commonly used IEEE 14-bus system in the literature [70, 71] is adopted as the PN in this553

study. The original IEEE 14-bus test case is a portion of the American electric power system (in554

the Midwesten US) [72]. The weight of each bus is assumed to be equal. There are 14 buses and555

20 transmission lines, and the detailed data can be found in Ref. [73]. The road network is a556

partial of the highway network in North Carolina (NC), U.S., and it is shown in Figure 6. Figure557

6(a) shows the locations of EV charging stations within this area and the geographic data of the558
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Table 1: Connections between charging links and buses

Charging link Bus NCa(t)
301 2 30
302 3 45
303 4 30
304 5 30
305 6 30
306 7 15
307 8 30
308 9 15

highway network are collected from Google map. This partial highway network is abstracted into559

an approximated topology network as shown in Figure 6(b). The number along the link is the link560

ID. There are 9 fast-charging stations in the studied highway network and their connections to the561

served buses are listed in Table 1. The data used in this study is detailed in Appendix A.562

The proposed model is illustrated by solving and analyzing the following hypothetical scenario:563

it is reported that links 4, 17, 19 in the highway network and lines 2-3, 2-4, 7-8 in the PN are564

destroyed, and they cannot provide services normally. This scenario is chosen since it causes the565

most performance loss of the traffic-power system among the randomly generated scenarios, when566

the number of damaged links in the RN and lines in the PN is 3. In practice, the disruption567

scenarios are the input data of the proposed models. They can be detected by various manner568

(e.g., drones and online monitoring systems) after disruptive events. After the system status is569

collected, the proposed models can be utilized to assist the emergency response department solve570

the problem: how to reconfigure and operate both the traffic and power systems, so that their571

performance loss caused by the disruption can be minimized. In this example, the peak hours (i.e.,572

17:00-18:59) are studied to consider the worst-case scenarios.573

All of the numerical experiments have been run on a computer with an Intel Core i7-8700 3.2-574

GHz CPU with 32 GB of RAM. All of the problems have been solved by the commercial software575

IBM ILOG CPLEX (version 20.1.0.0).576

3.1. The impact of the different response resource level577

In this subsection, five different resource levels are investigated: Nh = Nu = 0, 1, 2, 3, 4, 5.578

Figure 7 shows the system performance evolution over the considered time horizon under different579

resource levels. Time step = 0 indicates the point in time of implementation of the reconfiguration.580

The performance level denotes the percentage of the total demand that is satisfied. It can be seen581

that the system performance levels are different under different resource levels. In practice, the582

system performance increases with the resource levels, as expected. Note that when the PN583

topology is reconfigured, the effect (i.e., the shedded load) is seen almost immediately. On the584

contrary, the effect of reconfiguring an highway network is seen later, due to the time delay required585

by the vehicles to complete their travel from origin to destination. If the response resource level586

increases from 0 to 2, the system performance is largely increased from 76.58% to 86.26%. After587

that, the marginal economic benefit of additional response resources reduces as the number of links588

reversing and lines switching rises. This can also be seen in Figure 8. When the resource level is 2,589

the nominal costs of both the RN and the PN reduce largely. This also shows the effectiveness of590

reconfiguring network topology during the restoration period. Table 2 shows the reconfiguration591

solutions of links in the RN and of lines in the PN. The third through the fifth columns represent592
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Table 2: Solutions under different resource levels

Resource
levels

ha = 1 ui,j = 0 Vehicles GVs EVs
Charging
demand
(MW)

0 19091 17336 1755 182.8
1 117 4-7 22142 20322 1820 148.8
2 104,117 4-9,7-9 21573 19512 2061 165.68
3 5,104,117 4-7,4-9,6-13 21987 19656 2331 207.68
4 5,26,114,117 4-7,4-9,1-2,9-14 22005 19669 2336 222.88
5 5,25,26,114,117 4-7,4-9,1-2,6-12,13-14 21999.5 19656 2343.5 201.28

the number of GVs and EVs arrived at destination at the end of the studied horizon. The last593

column represents the total charging demand during the studied horizon. The third column in594

Table 2 shows that the optimal set of the switched lines for low resource level scenarios is not595

necessarily a subset of the switched lines for high resource level scenarios. For instance, line 4-7596

is switched off when resource level is 1, whereas lines 4-9 and 7-9 are switched off when resource597

level increases to 2. However, this is not applied to the RN in this example. There could be two598

reasons related to the traffic demand distribution: 1) the used gravity model generates high traffic599

demand between two cities whose distance is short and population is large. This may cause high600

traffic volume on some two-way road sections; 2) to model the directional differences of traffic601

volumes, the direction of traffic demand between two cities is randomly selected. This could make602

the bidirectional high traffic volumes become one-way high traffic volumes on some road sections.603

Therefore, once the links with high traffic volumes are damaged (e.g., links 17 and 19), they may604

always have priority of restoration so that the system loss can be minimized. Moreover, when there605

are large volume differences between two opposite links, the link capacity can be greatly improved606

by reversing the link with less volumes (e.g., links 5 and 26). In this sense, less nominal cost of607

system performance loss and higher resource level do not mean that more vehicles can arrive at608

the destinations. For example, Figure 8 shows that the nominal loss cost when resource level is 2,609

is less than that when resource level is 1. However, Table 2 shows that there are also less arrivals610

when the resource level is 2 than when the resource level is 1. It is because the vehicles arrive at611

their destinations earlier when the resource level is 2 than when the resource level is 1. In other612

words, there is a trade-off between the number of arrivals and their travel time for RNs.613

3.2. Different EV penetration levels and decision environments614

Without loss of generality, the maximum number of lines that can be switched in the PN and of615

links that can be reversed in the RN are set to be 3 (i.e., Nu = 3 and Nh = 3). When the RN and616

PN independently optimize their restoration plans, we assume that the RN operators share their617

temporal and spatial charging demand with the PN operators at the beginning of the restoration618

horizon and they no longer change their plans afterwards. This situation can be regarded as the619

unmanaged charging demand scenarios from the PN operator perspective. In this case, the PN620

operators have to satisfy all EV charging demands and only the base electricity load can be shedded621

when they optimize their restoration plans.622

Figure 9 shows the traffic-power systems performance evolution over the restoration horizon623

under different EV penetration levels. Table 3 shows the benefit of line switching and link reversing624

in terms of system performance loss, for different EV penetration levels and different decision-625

making environments. As shown in Figure 9, the traffic-power system performance decreases as626

the EV penetration increases. When EV penetration increases from 0% to 100%, the nominal627

total costs of the traffic-power system increases from $773300 to $1133009, leading to a 46.7%628

increase in costs. The extra charging time needed for EVs, compared to GVs refueling, and the629
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Table 3: Solutions under different EV penetration levels and decision environments
EV

Penetration
Environments ha = 1 ui,j = 0

Total
cost ($)

Cost for
RNs ($)

Cost for
PNs ($) Vehicles GVs EVs

Charging
demand
(MW)

Interdependent 5,104,117 4-7,4-9,6-13 773300 729300 44000 30540 30540 0 0
0%

Independent -* 4-9,7-9,13-14 773300 729300 44000 22142 30540 0 0
Interdependent 5,104,117 4-7,4-9,6-13 821260.15 775340.15 45920 26933.5 25346 1587.5 166.4

25%
Independent - 4-7,4-9,9-14 824392.15 770192.15 54200 21987 19656 2331 255.2

Interdependent 5,104,117 4-7,4-9,6-13 894274.2 845226.2 49048 21987 19656 2331 207.68
50%

Independent - 4-7,4-9,13-14 897389.5 843069.5 54320 21999.5 19656 2343.5 294
Interdependent 11,109,117 4-7,4-9,6-13 994669.5 945509.5 49160 13980 11325 2655 218.4

75%
Independent - 4-7,4-9,13-14 998,262 943462 54800 14430 10437 3105 318

Interdependent 22,102,117 4-7,4-9 1133009 1083849 49160 2822.5 0 2822.5 210
100%

Independent 117 4-7,4-9,13-14 1134561.5 1081801.5 52760 3272.5 0 3272.5 243.6

* The solution is the same for the interdependent environment

limited chargers are the main reasons of this result. When the EV penetration is equal to or630

less than 50%, the reconfiguration solutions are stable for both the traffic-power systems and the631

independently optimized RN. In this situation, links 5, 104 and 117 in the RN are reversed. Lines632

4-7, 4-9 and 6-13 are always switched off, when the restoration plans of the PN are coordinately633

optimized. When there are no EVs in the RN, both interdependent or independent plans of634

restoration of the RN and the PN, have the same nominal total system performance cost. When635

the proportion of EVs in RN increases, the nominal total costs of the interdependent plan for636

the traffic-power system restoration are lower than those of the independent plans. This shows637

the added value of coordinately operating the two networks. The difference of the total charging638

demand between the coordinately managed EV charging and the independently managed one is639

reported in the last column of Table 3 and shown in Figure 10. The charging demand in the640

interdependent decision-making environment is always less than that in the independent one. This641

leads to higher nominal loss costs in the RN and lower costs in the PN, but lower total costs for the642

two networks, comparing to the independent decision making. This shows that the coordinated643

scheduling of charging demands leads to a trade-off of performance loss between the two networks,644

for the studied case.645

4. Conclusion646

In this paper, we have formulated mathematical models for the reconfiguration process of road647

networks (RNs) and power networks (PNs) to minimize the system performance loss during the648

restoration period after disruptive events. In both networks, system performance loss has been649

measured by the unmet demand, i.e., cumulative unmet gasoline vehicles (GVs) and electric vehi-650

cles (EVs) traffic demand for RNs and cumulative shedded electricity load for PNs. For RNs, the651

proposed model was aimed to solve the system optimal dynamic traffic assignment problem con-652

sidering the characteristics of EVs and fast-charging stations (FCSs). These characteristics include653

driving range (battery capacity) and state of charge (SoC) of EVs, and physical constraints in FCSs,654

such as number of chargers and charging power. Moreover, a mixed integer program model has655

been proposed to minimize the integrated system performance loss during the restoration period.656

Contraflow technique in the RN and line switches in the PN have been used as reconfiguration657

strategies to enhance the system resilience after a disruptive event. The dynamic interactions658

between the PN and RN have been considered in the proposed integrated traffic-power systems659

model. The two networks have been coupled through EV charging demand, which is coordinately660

managed in the proposed model. A partial highway network in North Carolina (NC), USA and661

a modified IEEE 14-bus system have been used to illustrate the proposed methods. The results662

have shown that: 1) applying emergency response actions (i.e., network topology control) to the663

coupled traffic-power networks, the system performance can be largely improved from 76.58% to664
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86.26%; 2) it is better to integrally plan the emergency response for the PNs and RNs, since it665

could reduce the system performance loss more than independently operating them; 3) the higher666

EV penetration leads to the lower efficiency of the RN, which hints that the number of FCSs667

should be well designed along the highway to guarantee a certain service level of the RNs under668

extreme events. The negative impacts of increasing EV penetration on RNs and PNs require669

further attention and investigation. The proposed models could be employed to provide effective670

emergency reconfiguration solutions (e.g., links reversing in RNs and lines switching in PNs) for671

traffic-power systems to enhance the system resilience. Operational solutions (i.e., system optimal672

dynamic traffic assignment and optimal power flow distribution) could serve as a benchmark to673

manage the traffic-power flow and EV charging demand.674

For the computational efficiency, three points need to be clarified. Firstly, the computational675

times of the proposed methods are influenced by many factors, such as the considered time horizon,676

configuration of the FCSs, EV penetrations and their battery capacities. Especially, the numbers677

of both the lines that can be switched in the power network and of the links that can be reversed678

in the road network heavily influence the computational complexity. In practice, even if the whole679

transmission network and the highway network are really large, the lines and links that can be680

controlled are limited, because of regulatory policies, operational limitations, physical constraints681

and so on. Secondly, if there is a really high requirement for the computational time, there are682

two methods that can be considered to increase the computational efficiency of the proposed683

approaches: 1) we may increase the time interval δ for updating the state of the traffic and power684

flow; this can directly decrease the number of variables by reducing the set of periods, set of685

links and set of energy levels of EVs, leading to less memory and computational time though at686

the expense of less fine-grained results; 2) we can also adjust the optimality gap tolerance in the687

mxied integer programming (MIP) solver, which can often significantly reduce the computational688

time: in our cases, if we set the gap tolerance as 5%, most results can be obtained in minutes;689

moreover, in practice, the exact optimal solution usually is not necessary and 5% of the optimality690

gap tolerance is acceptable. Finally, the considered problem is a MIP problem, which is essentially691

NP-hard. Decomposition algorithms such as Benders decomposition can be considered to improve692

the computational efficiency of the proposed models in the future.693

The main limitation of the proposed method is that many variables are designed to describe694

the dynamic state of charge of EVs, which increases the complexity of the proposed model. In the695

current work, these variables are used to constrain the driving ranges of EVs and calculate their696

charging demand at FCSs. However, their SoCs at each time interval are not necessarily known697

in the emergency response problem studied in the present paper. Therefore, in the future, a more698

efficient modeling method is worthy exploring to improve the computational efficiency.699

In this work we assume that the vehicles follow the system optimal principle to take their700

paths. In normal situation, sophisticated economical mechanisms can be designed to make the701

traffic flows follow the system optimum. However, under post-disruption situation, the originally702

designed economical mechanism may not work any longer, since the network topology may have703

been changed by the disruption. Moreover, the new economical mechanism may have not been well704

designed or applied in times of disruption. However, in such emergency situations, authorities may705

guide all vehicle drivers to follow the system optimal principle in order to mitigate the disruption.706

Alternatively, replacing system optimality by user equilibrium in the dynamic traffic assignment707

problem is a potential solution to model the situation where the drivers take the paths which meet708

better their own benefits. But, it is challenging for the traffic-power systems model: satisfying user709

equilibrium conditions requires a more complicated modeling of the charging behaviors of EVs,710

which might result in extremely expensive computational cost.711
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This work can also be extended in the following two directions: 2) including mobile energy712

storage systems (MESSs) into the emergency response strategies could be an effective way to713

improve the resilience of RNs; however, how to integrate MESSs into the traffic-power system714

model needs more research; 3) EVs are assumed to only replenish batteries in FCS, in the present715

paper: the V2G technology at FCSs can be considered to more efficiently operate the coupled716

traffic-power systems and strengthen their resilience.717

Appendix A. Data discription718

A partial highway network in NC, USA is shown in Figure 6. The used parameters of this719

studied network are listed in Tables A.4 and A.5. The node ID, its corresponding town or city720

name and its population within this area are listed in Table A.6. The cities or towns connected721

source-sink nodes are those whose population is more than 11000. Considering their geographic722

distances among these nodes and their population, the gravity model is used to generate the daily723

traffic demand. The generic form of the gravity model [75] is usually written as fod = Pα
o P

β
d /D

γ
od,724

where Po and Pd are the population sizes of origin a and destination d, respectively, Dod is the725

shortest distance between them, α, β and γ are fitting parameters. We set α = β = 0.92 and726

γ = 1, in this study. To consider the worst-case scenario, the traffic volumes at 17:00 and 18:00727

are adopted, which is the peak of traffic and accounts for approximately 15.3% of the whole daily728

traffic, in the basic time-of-day patterns [76]. The traffic volumes usually show the directional729

differences and it is difficult to get the applicable statistics for time-of-day travel by direction for730

each O-D pair [76]. For simplicity, only one direction is randomly selected for each O-D pair and731

traffic volumes in the other direction are ignored. The obtained traffic demand is shown in Table732

A.7.733

According to Ref. [77], the electricity demand in U.S. has peak hours similar to traffic volumes,734

and the demand does not change a lot during this period. For simplicity, it is assumed that the735

base load at each bus is constant during this period and follows the standard test data [73].736
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(a) The partial highway network in NC

(b) The approximated topology network

Figure 6: The studied highway network [74]
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Figure 7: System performance evolution over restoration horizon under different resource level
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Figure 8: Nominal cost for the studied traffic-power systems under different resource level
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Figure 9: The traffic-power systems performance evolution over restoration horizon under different EV penetration
levels
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Figure 10: EV charging demand under different EV penetration levels and decision environments
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