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Abstract9

The two-phase flow dynamics involving mass transfer and coalescence is investigated.10

The model is specifically developed to describe the dynamics of bubble population dis-11

persed in glass forming liquids. The amounts of gas dissolved in the liquid are determined12

using the chemical equilibrium involving oxidation-reduction reactions. The gravitational13

bubble rising is used to write the coalescence kernel for which a collision efficiency is also14

introduced.15

Based on a Direct Quadrature Method of Moments (DQMOM), a numerical method is16

developed. This numerical tool is applied to melting of borosilicate glass beads for which17

temperature and residence time of the sample in a crucible are investigated. The bubble18

density decreases sharply at short times. This early stage decrease is well explained and19

quantified when the coalescence is taken into account in numerical computations. The20

bubble size density is very well described with a log-normal distribution. Using the first21

three moments, the bubble size distribution obtained numerically is in good agreement22

with experimental data.23

Numerical computations are also applied to soda-lime-silica glass in which the bubble24

release is driven by the mass transfer between the two phases. The faster decrease of25

bubble density than would be expected by temperature is reproduced by the numerical26

computation. The enhancement of the bubble release rate is mainly due to the increase27

of dissolved gas species with temperature.28
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1. Introduction31

Multiphase and in particular bubbly flows are present in geophysics with the out-32

gassing of volcanoes [1], in agribusiness industry with sparkling wines [2], in metallurgy33

in which bubbles are used to stir molten metal or enhance the heat and mass transfer34

[3], in power plants with boiling water in nuclear reactors [4], among others. Here, in-35

vestigations are focused in glass melting process in which outgassing process is a major36

phenomena leading to strong limitations in industrial plants. Understanding how bubbles37

appear, disappear, interact, grow remains fundamental and applied issues.38

In glass melting process, the bubble generation occurs mainly during the melting39

of raw materials. As generally accepted, bubbles are created due to the trapping of40

atmospheric gases and the decomposition of mineral species used as batch components41

[5]. As already shown long time ago by one of a first contribution devoted to fining42

process (impurity release) [6], the bubble release is mainly driven by the temperature.43

Recent experiments of glass cullet melting in a small crucible confirm this assertion [7, 8].44

Pereira et al. [8] pinpointed that the bubble dynamics (bubble density, mean radius)45

can be rescaled by the residence time of a bubble in the bath directly linked to the46

temperature via the dynamical viscosity. Cable [9] underlined that bubble coalescence47

can play a role in the dynamics in the early stages of the process. In the review paper,48

Cable [10] pointed out the “rate of refining, [i.e. rate of bubble release,] varies more49

with temperature than would be expected from the effects of temperature on bubble size50

and viscosity”. Predict the dynamics of bubble population undergoing gravitational51

rising, mass transfer and coalescence is a task not completely fulfilled. Consequently, the52

main purpose of this article is to study bubble populations rising in glass forming liquid53

undergoing mass transfer and coalescence.54

Describe the dynamics of a population undergoing processes such as mass transfer55

and coalescence needs a model based on the population balance equation developed56

long time ago by Randolph and Larson [11] and Hulburt and Katz [12]. Today, this57

theory becomes primordial to study dispersed media. This theory has been presented58

by Ramkrishna [13] for a large range of applications. Despite these contributions, the59

theory was mainly limited to spatial homogeneous problems. A new step was overcame60

with the major contribution of Marchisio and Fox [14] in which the theory and numerical61

methods are applied to spatial inhomogeneous cases allowing the introduction of such62

theory in Computational Fluid Dynamics software.63

In the context of glass science, the population balance theory has been initially pro-64

posed by Ungan et al. [15] to study the bubble density and the momentum coupling with65

the carrier phase. Nevertheless, the chemical process is completely ignored. Ungan et66

al. [16] investigated the silica grain dissolution in a glass bath with the same approach.67
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Roi et al. [17] developed a model to describe the bubble removal using a population68

balance equation with only mass transfer process. Balkanli and Ungan [18] improved the69

previous model by introducing a description of the bubble size distribution and the mass70

transfer with only one species (CO2). Bensberg and Breitbach [19] described the bubble71

population assuming a predefined bubble size distribution corresponding to a log-normal72

distribution and further solved the equations of first three moments to characterize the73

bubble size distribution. Only one gas species is considered and the coupling is limited74

to the momentum balance. Pilon et al. [20] proposed a population balance equation in75

which the general aspect of the glass chemistry is described. The chemical reaction of76

fining agents is seen as an irreversible chemical reaction. Pilon and Viskanta [21] applied77

the previous model on the modeling of a glass furnace limiting to two gas species using78

a modified characteristic method to solve the population balance equation [22] without79

coalescence. Finally, Oda and Kaminoyama [23] studied the fining process coupling with80

the bubble density conservation in two dimensional geometry.81

Despite these contributions, the development of the population balance equation tak-82

ing into account mass transfer and coalescence in glass melting process is not yet provided.83

This is the main purpose of this contribution which is an extended version of the theoret-84

ical model developed in [24]. First, problem statement is detailed in section 2 in which85

mass transfer and coalescence processes are presented. The direct quadrature method86

of moments (DQMOM) is described in section 3. Numerical computations detailed in87

section 4 are based on experimental observations done in [8, 6]. Few conclusions are88

finally drawn in section 5. Appendix A provides numerical data needed to achieve the89

numerical computations.90

2. Problem statement91

2.1. Bubble state in phase space92

The overall dynamics of a bubble population dispersed in a glass forming liquid in-93

volves mass transfer between the dispersed and continuous phases, coalescence among94

others. According to Ramos [25], and Pigeonneau [26], a bubble is composed by various95

gas species coming from the atmosphere above the glass bath, and from the liquid itself.96

Typically, gas species such as CO2, N2, H2O, O2 and SO2 are involved. According to97

Hulburt and Katz [12], the dynamics of a dispersed phase depends on external coordi-98

nates corresponding to the spacial position where inclusions are localized and internal99

coordinates characterizing the state of each particle. In the following, the temperature100

is assumed uniform and constant in time.101

Using the general drag force acting on a bubble [27, 28], the time scale required to102

reach the steady-state regime is proportional to a2/ν with a the bubble radius and ν103
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the kinematic viscosity of the liquid. The typical radius is around tens of micrometres104

and the kinematic viscosity is around 10−2 m2/s [8]. Consequently, a2/ν is order of105

magnitude of 10−9 s sufficiently small to neglect the bubble inertia. The bubble velocity106

is then removed from the internal coordinates since it can be explicitly determined. The107

relative bubble velocity is given by the terminal rising velocity according to Hadamard108

[29] and Rybczynski [30].109

In principle, the rate of variation of the bubble radius requires the writing of the110

Rayleigh-Plesset equation [31] given by111

ρ

[
aä+

3

2
ȧ2
]
= P − P0 −

2γ

a
− 4η

a
ȧ, (1)

with ρ the density of the liquid, P the pressure inside the bubble and P0 the pressure in112

the liquid without the hydrostatic contribution, γ the surface tension and η the dynamic113

viscosity.114

The normalization of the Rayleigh-Plesset equation with the atmospheric pressure115

leads to the inertia time scale of bubble variation equal to a
√
ρ/P0. Moreover, the time116

scale of the viscosity term is given by η/P0. These two characteristic times are around117

10−6 to 10−5 s. Since the time scale due to the bubble rising over a distance equal to the118

bubble radius, ν/(ga), is larger than 10 s and the time scale of the mass transfer is in119

general much larger than the rising time, a quasi-static state can be used to determine120

the bubble pressure.121

As already done by Pilon et al. [20], the molar fractions are considered as internal122

coordinates to take into account the multi-component bubble composition. External123

coordinates are r, i.e. the position in space. Internal variables are bubble radius a and124

the molar fractions xg,i with i = 1 to Ng − 1 and Ng the number of the gas species.125

Recall that the sum of the molar fractions over index i is equal to one. According to126

Pigeonneau [26], the rate of variation of r, a and xg,i are127

v = u− ga2

3ν
, (2)

ȧ =
1

2a

Ng∑
i=1

Sh(Pei)HiDi (xl,i − xg,i) , (3)

ẋg,i =
3

2a2

Ng∑
j=1

Sh(Pej)HjDj (δij − xg,i) (xl,j − xg,j) , ∀ i = [1;Ng − 1]. (4)

In this system of equations, t is the time, u the velocity field of the continuous phase,128

g the gravity field, ν is the kinematic viscosity. In the growth rate of a, eq. (3), Sh is129
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the Sherwood number depending on the Péclet number given by130

Pei =
2ga3

3νDi
. (5)

In the creeping flow, the Sherwood number is strongly linked to the mobility of the131

bubble/liquid interface [32, 33]. While for immobile interface, the Sherwood number132

scales as 3
√
Pe, Sh is proportional to

√
Pe for mobile interface in the limit of high Péclet133

number. According to Pigeonneau et al. [34], the study on the shrinkage of O2 bubble in134

glass forming liquid shows that the bubble/liquid interface can be considered as mobile.135

Consequently, the Sherwood number is determined by the correlation proposed by Clift136

et al. [33] equal to137

Sh(Pe) = 1 +
(
1 + 0.564Pe2/3

)3/4

. (6)

The quantity Hi is the dimensionless solubility given as a function of the Henry138

coefficient139

Li =
Cs

i

Pi
(7)

by [35]140

Hi = RTLi, (8)

with R the perfect gas constant and T the temperature in K. In eq. (7), Cs
i is the141

molar concentration at the interface between the liquid and the atmosphere in which the142

gas species has a partial pressure equal to Pi. In eqs. (3) and (4), Di is the diffusion143

coefficient of the species i in the liquid. The dimensionless variable xl,i corresponds to144

the gas saturation in the liquid of the i species defined by145

xl,i =
Cl

i

LiP
, (9)

in which Cl
i is the molar concentration of the gas species dissolved in the liquid. According146

to Pigeonneau [26], the effects of the hydrostatic and Laplace pressures can be neglected.147

The total pressure in each bubble P is assumed equal to the atmospheric pressure above148

the liquid bath.149

2.2. Population balance equation150

Integration of equations (2-4) associated with initial conditions gives a particular151

trajectory in the phase space (r, a,xg) with xg = (xg,1, · · · , xg,Ng−1). Applied to a large152

number of bubbles, a density function can be defined in the limit of the large number153

of particles written f(r, t; a,xg) in which by convention the Eulerian variables (r, t) has154

been separated by a semicolon of the internal coordinates. This function is assumed155
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sufficiently smooth to be differentiable [14]. From this definition f(r, t; a,xg)drdadxg is156

the number of inclusions in an elementary hyper-volume embodied between r and r+dr,157

a and a + da, xg and xg + dxg. According to Ramkrishna [13] and Marchisio and Fox158

[14], the balance equation of population is given by159

∂f

∂t
+∇ · (vf) + ∂(ȧf)

∂a
+

Ng−1∑
i=1

∂(ẋg,if)

∂xg,i
= h(r, t; a,xg), (10)

in which v, ȧ and ẋg,i are the right-hand side of eqs. (2-4) respectively and h is a source160

term resulting of the birth and the death of bubbles due to coalescence, breakup or161

nucleation.162

The mass transfer between the bubble population changes the amount of dissolved163

gas in the liquid which can be introduced in molar conservation of the gas species i as164

follows165

∂xl,i
∂t

+∇ · (uxl,i) = Di∇2xl,i − 2π

∫ ∞

0

∫
Ωxg

a Sh(Pei)Di(xl,i − xg,i)f(r, t; a,xg)dxgda,

(11)

for all i ∈ [1, Ng]. The domain Ωxg
in the space xg is equal to [0, 1]Ng−1.166

To solve the population balance equation, a size-conditioned density is defined as167

follows [36, 14]168

n(r, t; a) =

∫
Ωxg

f(r, t; a,xg)dxg, (12)

and a size-conditioned of a quantity G is then defined by169

⟨G|a⟩ =

∫
Ωxg

Gf(r, t; a,xg)dxg

n(r, t; a)
. (13)

The moment of the k order is given by170

µk(r, t) =

∫ ∞

0

akn(r, t; a)da. (14)

The zeroth order moment is simply the bubble density. The second order moment is pro-171

portional to the interfacial area concentration and the third order moment is proportional172

to the volume fraction of bubble.173

The population balance equation applied to n(r, t; a) is then given by174

∂n

∂t
+∇ · (⟨v|a⟩n) + ∂(⟨ȧ|a⟩n)

∂a
= S(r, t; a), (15)
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after integration over the total space of molar fractions with S(r, t; a) the integral of175

h(r, t; a,xg). Equation on the gas saturation becomes176

∂xl,i
∂t

+∇ · (uxl,i) = Di∇2xl,i − 2π

∫ ∞

0

aSh(Pei)Di(xl,i − ⟨xg,i|a⟩)n(r, t; a)da. (16)

2.3. Coalescence source term177

The release of bubbles in a molten glass is mainly driven by the buoyancy force. Due178

to large initial bubble density, collision and coalescence are strongly likely to happen.179

The source term S(r, t; a) due to the coalescence process is equal to [14]180

S(r, t; a) =
1

2

∫ a

0

a2

(a3 − a′3)
2/3

K
(
a′,

3
√
a3 − a′3

)
n(r, t; a′)n

(
r, t;

3
√
a3 − a′3

)
da′ −

n(r, t; a)

∫ ∞

0

K (a, a′)n(r, t; a′)da′, (17)

with K (a, a′) the coalescence kernel.181

This quantity depends on the nature of the bubble motion and the kind of the flow,182

laminar or turbulent [37]. In the case of the bubble rising motion in creeping regime,183

K (a, a′) is written as follows [38]184

K (a, a′) =
gπ

3ν
(a+ a′)

2 ∣∣a2 − a′2
∣∣Ecol (a, a

′) , (18)

with Ecol (a, a
′) the collision efficiency. The physical meaning of this quantity is simply185

the ratio of the collision section due to hydrodynamic interactions divided by the collision186

section without interaction equal to π (a+ a′)
2
[39, 38]. According to these two previous187

contributions, the coalescence efficiency in the limit of spherical bubbles taking into188

account the hydrodynamic interaction does not change significantly with the bubble189

ratio a/a′ and is roughly equal to 0.2.190

3. Direct quadrature method of moments191

Various numerical methods have been developed over the years to solve the popu-192

lation balance equation. A first class of methods is based on a discretization of the193

internal coordinate. This kind of method has been used to study the rain formation by194

Kovetz and Olund [40]. A same approach has been used to study droplet population in195

homogeneous isotropic turbulence [41]. Finite element and orthogonal collocation have196

been developed by Gelbard and Seinfeld [42]. Ramkrishna [43] developed a method of197

weighted residuals with Laguerre function as trial functions (see also [44]). In the context198

of glass melting process, Pilon and Viskanta [22] determined directly the density function199
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using a reverse characteristic method. Hulburt and Katz [12] proposed to solve equations200

on the moments of the density function. To close the system of equations the density201

function is written with Γ-distribution and associated Laguerre polynomials [45].202

Here, the direct quadrature method of moments initially proposed by Marchisio and203

Fox [46] is used. This method enables to take into account the various processes such as204

bubble growth, coalescence, break-up and nucleation phenomena with a simple closure205

procedure.206

3.1. Spatial inhomogeneous formulation207

In method of moments, the density function n(r, t; a) is written as a summation of208

Dirac delta functions as follows [46]209

n(r, t; a) =
N∑

α=1

ωα(r, t)δ [a− aα(r, t)] , (19)

in which ωα(r, t) is the weight of integration of the node (abscissa) aα(r, t) and N210

corresponds to the number of classes representing the density function. The 2N first mo-211

ment equations are required to determine the N couples (ωα, aα). Generally, a product-212

difference [47] or Wheeler algorithms [48] are used to find the weights and abscissas. It213

is well-known that this kind of method can be ill-posed if two abscissas become equal.214

To circumvent this difficulty, Marchisio et al. [49] proposed an alternative method to215

determine directly the N couples (ωα, aα). Before to detail the direct quadrature method216

of moments, a dimensionless form of (15) and (16) is written. Our main goal is to study217

the release of bubble population from a glass forming liquid in a crucible with a height218

H. According to Pereira et al. [8], the characteristic time is equal to Hν/(ga20). The219

characteristic bubble radius a0 is defined as follows220

a0 = 3

√
µ3

µ0
. (20)

If N0 is the initial bubble density in m−3, the bubble density function n (r, t; a) is221

reduced by the ratio N0/a0. The velocity field is normalized by ga20/ν and spatial coordi-222

nates by H, the liquid height. For convenient reason, dimensionless variables are written223

with the same symbols used previously meaning that the population balance equation224

(15) does not change. Bubble growth rate and the coalescence kernel are modified as225
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follows226

⟨ȧ|a⟩ =
1

2a

Ng∑
i=1

Sh (Pei)Hi Foi (xl,i − ⟨xg,i|a⟩) , (21)

K (a, a′) =
K0Ecoa

12
(a+ a′)

2 ∣∣a2 − a′2
∣∣ , (22)

in which Foi corresponding to a Fourier number and K0 are given by227

Foi =
νHDi

ga40
, (23)

K0 = 4πN0a
2
0H. (24)

The rate of the size-conditioned molar fraction has to be written as follows228

⟨ẋg,i|a⟩ =
3

2a2

Ng∑
j=1

Sh(Pej)Hj Foj (δij − ⟨xg,i|a⟩) (xl,j − ⟨xg,j |a⟩) , ∀ i = [1;Ng − 1]. (25)

Finally, the transport equation in the saturation of the gas species i takes the following229

form230

∂xl,i
∂t

+∇·(uxl,i) =
a20 Foi
H2

∇2xl,i−
3φ0

2

∫ ∞

0

aSh(Pei) Foi(xl,i−⟨xg,i|a⟩)n(r, t; a)da, (26)

with231

φ0 =
4πa30N0

3
, (27)

corresponding to the initial volume fraction of the bubble population. The coefficient232

K0 given by eq. (24) characterizes also the initial bubble population. It is equal to233

the product of the interfacial area concentration by the crucible height. Physically, this234

dimensionless group can be seen as the surface area ratio of the bubble population to235

the free surface of the fluid domain. A large value of K0 means that the coalescence is236

important and the mass transfer is mainly between the bubble population and the liquid.237

According to Marchisio and Fox [49], the transport equations of theN couples (ωα, aα)238

are obtained by introduction of (19) in the population balance equation (15) which gives239

∂ωα

∂t
+∇ · (vαωα) = Aα, (28)

∂ζα
∂t

+∇ · (vαζα) = Bα, (29)

with ζα = ωαaα and vα = ⟨v|aα⟩. The 2N right-hand sides Aα and Bα are solution of240
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the linear system241

(1− k)

N∑
α=1

akαAα + k

N∑
α=1

ak−1
α Bα = Ck, ∀ k ∈ [0; 2N ], (30)

and Ck is equal to242

Ck =

N∑
α=1

N∑
β=1

ωαωβK(aα, aβ)


(
a3α + a3β

)k/3

2
− akβ

+ k

N∑
α=1

ak−1
α ȧαωα, (31)

with ȧα = ⟨ȧ|aα⟩ given by eq. (21) with the bubble size equal to aα.243

To close the growth rate, the Ng − 1 molar fractions and for each bubble class α244

written as ⟨xg,i|aα⟩ have to be solved using the following transport equation245

∂⟨xg,i|aα⟩
∂t

+∇·(vα⟨xg,i|aα⟩) =
3

2a2α

Ng∑
j=1

Sh(Pej,α)Hj Foj (δij − ⟨xg,i|aα⟩) (xl,j − ⟨xg,j |aα⟩) ,

(32)

∀ i = [1;Ng − 1]. Quantity Pej,α is the Péclet number given by (5) based on the bubble246

size aα. Finally the Ng gas saturations are solution of247

∂xl,i
∂t

+∇ · (uxl,i) =
a20 Foi
H2

∇2xl,i −
3φ0

2

N∑
α=1

aαωα Sh(Pei,α) Foi(xl,i − ⟨xg,i|aα⟩). (33)

The total number of equations to solve the dispersed phase is equal to 2N+N(Ng−1)248

completed by the Ng transport equations on xl,i. The system of equations is close to249

the previous one provided by Pigeonneau [24] to study the interaction between a bubble250

population and the chemistry of glass forming liquid without the interaction between251

bubble classes.252

3.2. Spatial homogeneous formulation253

The previous system of equations needs to be completed by the balance equations254

to determine the velocity and the pressure of the continuous phase. Since our main255

objective is to compare with experiments achieved in a crucible in which only volume256

averages data are known, only spatial homogeneous formulation is presented and solved257

in the following. To determine the volume average equations, the appropriate method is258

to first average the population balance equation which becomes259

∂⟨n⟩
∂t

+
∂(⟨ȧ|a⟩⟨n⟩)

∂a
= ⟨S⟩(t; a)− ⟨n⟩a

2

3
, (34)
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in which ⟨⟩ corresponds to the volume average. The extra sink term of the right-hand260

side of the previous equation represents the bubble release through the free surface of261

the glass bath. In this formulation, the mass interaction between the liquid and the262

atmosphere is neglected at the free surface of the domain. This assumption is justified263

when the K0 product is larger than one. This will be fulfilled in the next section.264

The development of the direct quadrature method of moments does not change. In265

this case, all quantities are averaged on the total volume of the domain. The ordinary266

differential equations are then the following267

dωα

dt
= Aα,∀α ∈ [1, N ], (35)

dζα
dt

= Bα,∀α ∈ [1, N ], (36)

d⟨xg,i|aα⟩
dt

=
3

2a2α

Ng∑
j=1

Sh(Pej,α)Hj Foj (δij − ⟨xg,i|aα⟩) (xl,j − ⟨xg,j |aα⟩) ,

∀i ∈ [1, Ng − 1], (37)

dxl,i
dt

= −3φ0

2

N∑
α=1

aαωα Sh(Pei,α) Foi(xl,i − ⟨xg,i|aα⟩), ∀i ∈ [1, Ng]. (38)

The N couples (Aα, Bα) are always solution of (30) but Ck takes the following form268

Ck =

N∑
α=1

N∑
β=1

ωαωβK(aα, aβ)


(
a3α + a3β

)k/3

2
− akβ

+ k

N∑
α=1

ak−1
α ⟨ȧ|aα⟩ωα

−
N∑

α=1

ωαa
k+2
α

3
, (39)

with ⟨ȧ|aα⟩ given by eq. (21) with the bubble size equal to aα.269

Initially, the bubble size distribution is imposed using results obtained in [8]. Using a270

Wheeler algorithm, weight and abscissa of the α class are determined at t equal zero. The271

system of ordinary differential equations, (35-38) completed by (39) and (21) is solved272

using a Runge-Kutta method at the fourth order. The software is accessible in the github273

platform, see the link given at the end of the article.274

4. Results and discussion275

4.1. Glass melting of borosilicate glass beads276

To study experimentally the dynamics of the bubble in a glass forming liquid, glass277

powders are prepared from synthesized borosilicate glasses. The accurate composition278
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can be found in [8]. Sizes of the granular media are in the range of (250-500) µm.279

The glass powder is introduced in a cylindrical alumina crucible with an inner diameter280

equal to 28mm and a height equal to 40mm. The density of the glass forming liquid is281

taken equal to 2270 kg/m3 [50]. The dynamic viscosity is a function of the temperature282

determined from the Vogel-Fulcher-Tammann’s law [51] as follows283

η(T ) = 8.39 · 10−3 exp

(
6026.88

T − 610.16

)
, (40)

with T in Kelvin. The glass transition temperature is found equal to 523 ◦C and284

the softening (Littleton) temperature is equal to 637 ◦C. The former is defined for285

η(Tg)=1012 Pa s, while the latter for η(Ts) = 106.65 Pa s [52]. The Littleton tempera-286

ture corresponds to the value above which the media collapses under its own weight.287

After filling, each crucible is introduced in a furnace controlled in temperature during288

a certain time. When the desired residence time is over, the crucible is removed from289

the furnace to be cooled down until the room temperature. Each crucible is cut from290

the middle. One half is mounted in epoxy resin and then polished for optical microscope291

imaging. Figure 1 presents binarized optical microscope images obtained for T equal to292

1000 and 1100 ◦C. Three melting times are shown at 20, 40, and 60min. At 20min and293

1000 ◦C, the sample has a large population of small bubbles in comparison to the sample294

at the same melting time but at 1100 ◦C. For longer times at 1000 ◦C, samples show295

that the bubble population stays relatively elevated. Heterogeneity is clearly visible in296

Figure 1. Large bubbles are observed close to the crucible walls. The largest bubbles are297

mainly localized close to the vertical boundaries of the crucible and to the free surface.298

For T equal to 1100 ◦C, the bubble population decreases strongly with time. A large299

fraction of tiny bubbles in the two bottom corners is observed for T equal to 1100 ◦C and300

a residence time of 60min. Remark that the free surface are strongly curved while it is301

not expected at a temperature larger than Ts [7]. This effect comes from the thermal302

cooling leading to a thermal contraction of the gas phase and also a shrinkage due to the303

glass transition temperature.304

From the binarized optical microscope images, an analysis is done to determine the305

bubble numbers by surface unit, the surface fraction and average size over the time. A306

detailed presentation has been already published in [8]. Since the theoretical model has307

been developed for a 3D configuration, the 2D data obtained by image analysis from the308

cut views depicted in Figure 1 must be converted in 3D data. To do so, the general309

principle of the stereology [53] is used. Mainly, the equality between the surface fraction310

and volume fraction is used to determine the bubble volume density. Since the bubble311

dimensions are determined at room temperature, a correction is applied to estimate the312
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T=1000 ◦C
(a) 20min (b) 40min (c) 60min

T=1100 ◦C
(d) 20min (e) 40min (f) 60min

Figure 1: Binarized optical microscope images of samples for two temperatures and three melting times.

bubble size and volume at the temperature T . The glass forming liquid behaves like a313

solid when the temperature becomes smaller that the softening temperature, Ts. The314

volume correction is determined by multiplied the bubble volume at room temperature315

by a factor T/Ts. For the radius, the factor is 3
√
T/Ts.316

The initial conditions for the numerical computations are taken from the experimental317

data for the smallest residence time, i.e. 20min. The relevant parameters for T equal318

to 1000, 1050 and 1100 ◦C are reported in Table 1. The initial bubble density is a huge319

quantity of bubbles since in a volume of one cubic millimeter, the number of bubbles320

reaches more than few hundreds. This relative large amount of bubbles is related to a321

small granulometry of the initial glass beads as seen by Boloré et al. [7]. It is important322

to stress that the volume fraction is small in comparison of the expected value in the323

original granular media. Due to the collapse of glass beads during the heating, large324

quantity of the gas phase are removed from the liquid [7]. Consequently, the height of325

the liquid is roughly reduced by a factor two. Even if the crucible is fully filled of granular326

media at room temperature, the height of liquid during the residence of the crucible in327

the furnace is taken equal to one-half of the crucible height, i.e. 20mm. For the three328

temperatures, the values of K0 are always larger than one meaning that the coalescence329

is expected to be the most relevant phenomena. As already pointed out above, the K0330

product is the area ratio of the bubble population to the free surface of the crucible. This331
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Table 1: Initial bubble density, φ0 and K0 used in the numerical computation for three temperatures.

T (◦C) N0 (m−3) φ0 K0

1000 3.45× 1011 1.21× 10−1 165.96
1050 1.90× 1011 1.47× 10−1 155.00
1100 6.88× 1010 1.68× 10−1 121.00

Table 2: Parameters µ and σ of the log-normal distribution, eq. (41) for the three temperatures.

T (◦C) µ σ
1000 3.34 0.54
1050 3.57 0.56
1100 3.72 0.68

means that the surface exchange is roughly around one hundred more efficient through332

the bubble surface than from the free surface.333

Bubble size distributions are determined from images taken at 20min. The proba-334

bility density functions under histogram form and for each temperature are depicted in335

Figure 2. Due to a limit of the bubble detection, there is no bubbles for radius smaller336

than 15µm. The bubble size distribution is more and more spread when the tempera-337

ture increases. As already found in [7], the bubble size distribution is well described by338

a log-normal distribution written as follows339

f(a, µ, σ) =
1

aσ
√
2π

exp

[
− (ln a− µ)2

2σ2

]
. (41)

The two dimensionless coefficients, µ and σ are computed from the mean radius and the340

variance of experimental data. The numerical values are reported in Table 2 for a size341

bubble distribution determined in µm−1.342

Solid lines in Figure 2 are the log-normal distributions using the data of Table 2. As343

underlined in [7], the bubble density function is well described by a log-normal distribu-344

tion because the void in the initial granular material follows a log-normal distribution as345

shown by Reboul et al. [54].346

In the following, numerical computations are achieved with N equal to 3. The log-347

normal distribution obtained at each temperature is used to determine the initial values348

of aα and ωα by the Wheeler algorithm for α equal from 1 to 3. Since each couple349

(aα, ωα) is a Dirac representation of the bubble distribution, Figure 2 provides also the350

two first couples (aα, ωα). The two first classes exhibit the largest magnitude centered351

in the range of radius where the probability density function is important. For both352

temperature, the weight of the last class is very small and the respective abscissa is out353

of the range of the x axis of Figure 2.354
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Figure 2: Initial normalized probability density function as a function of a determined from image
analysis for the three temperatures at 20min. Log-normal distribution and the amplitudes of initial ωα

are also reported for α equal 1 and 2.

From these data, numerical computations solving the problem presented in the pre-355

vious section have been done for the three temperatures of the experiment. Three gas356

species are considered: O2, N2 and CO2. Since the bubble formation is mainly due357

to the collapse of the liquid when the temperature becomes larger than the softening358

temperature, the initial composition of bubbles is taken close to the air composition.359

According to Pereira et al. [8], the molar fractions of O2, N2 and CO2 are initially taken360

equal to 0.2, 0.7 and 0.1 respectively. Solubilities and diffusion coefficients are gathered361

in Appendix A. The concentrations of dissolved gas in the liquid has been determined362

using the oxidation-reduction reaction of cerium given by363

Ce4+ +
1

2
O2− −−→←−− Ce3+ +

1

4
O2. (42)
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The equilibrium constant of this reaction is given by364

KCe =
Cl

Ce3+
4

√
Cl

O2

Cl
Ce4+

= exp

(
−∆GCe

RT

)
, (43)

with Cl
Ce4+

, Cl
Ce3+

the molar concentration of Ce4+ and Ce3+ in the liquid. The Gibbs365

energy is written as follows366

∆GCe = ∆HCe − T∆SCe. (44)

The enthalpy and entropy of the reaction (42) has been determined by Pinet et al. [55]367

and are given in Appendix A. Nitrogen and carbon oxide have a molar concentrations368

equal to 10−2 mol/m3 and 4× 10−2 mol/m3 respectively. Data needed to compute solu-369

bilities and diffusion coefficients are given in Appendix A.370

To measure the relevance of the coalescence phenomena, numerical simulations have371

been done with and without the coalescence source term. Figure 3 depicts the zeroth372

order moment corresponding to the bubble density as a function of the normalized time.373

This quantity is normalized by the initial bubble density. The solid line is the result374

obtained with coalescence and the dashed line without coalescence. Black dots are the375

experimental data.376

While without coalescence source term, µ0 decreases slowly due to the release of the377

bubble from the crucible, the behavior changes dramatically when the coalescence is378

accounted for. A fast decrease of the bubble density is observed at short experimental379

durations. This first stage is followed by a small decrease of bubble as a function of380

time. This general behavior is found regardless of temperature. Numerical computations381

achieved with coalescence reproduce very well the experimental observations. In the early382

stages, the coalescence is the main phenomena involved in the bubble dynamics rising in383

the glass forming liquid as proposed by Cable [9]. The coalescence efficiency has been384

taken equal to 0.175 to obtain the best comparison for the three temperatures.385

With the decrease of the bubble density, coalescence events are scarcer and scarcer386

since the source term of the coalescence is proportional to the square of the probability387

density function. These numerical results justify also to consider a coalescence kernel388

due to the bubble rising. The coalescence becomes negligible when the zeroth moment389

decrease of one order of magnitude. The relevance of the coalescence is measured by the390

magnitude of K0 given by eq. (24). As reported in Table 1, the value of K0 computed391

with the bubble densities at the smallest residence time in the crucible is order to few392

tens. With a decrease of the bubble density of one order of magnitude, the importance of393

the coalescence becomes relevant when K0 is larger than one. The bubble density should394
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Figure 3: µ0 as a function of t obtained numerically with and without coalescence and experimentally
for three temperatures.
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Figure 4: φ = 4πµ3/3 as a function of t obtained numerically with and without coalescence and experi-
mentally for three temperatures.

be larger than 102 cm−3 to have a significant effect of the coalescence. In other words,395

the probability of coalescence is mainly linked to distance between two bubbles. Since396

the distance separating two bubbles is proportional to 1/ 3
√
N0 [56], the probability of397

coalescence becomes relevant when the distance between two bubbles is less than 1mm.398

Figure 4 presents the behavior of the volume fraction as a function of normalized399

time. Once again, the effect of the coalescence is clear. The comparison with experimental400

results is less satisfying. The unexpected increase of volume fraction at short times is due401

to an experimental artifact. Bubbles with a size smaller than the detection threshold402

are not taken into account in the volume fraction at short times. Due to the bubble403

dynamics, these tiny bubbles become enough large to be detected for larger residence404

times. This artifact disappears for T equal to 1100 ◦C. It is mainly due to the faster405

bubble dynamics leading to observation of tiny bubbles at the first residence times. Apart406

from this beginning, experiments exhibits a strong decrease of the volume fraction with407

a rate close to this one determined numerically.408

The probability density functions after 2 h in the furnace are determined from ex-409
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Figure 5: Normalized probability density function as a function of a determined from image analysis for
the three temperatures at 120min. Log-normal distribution and the amplitudes of ωα are also reported
for α equal 1 and 2.
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perimental data. Numerical results are used to determine the bubble size distribution410

following a log-normal distribution. The three first moments of numerical solutions are411

needed to determine µ and σ of eq. (41). The zeroth moment is required to renormalize412

ωα. The first and second moments allow to determine the mean and the standard devi-413

ation of the bubble size distribution. Figure 5 depicts the probability density function414

under histogram form obtained from image analysis for the three temperatures after a415

residence time in the furnace of 120min. The log-normal distributions obtained from the416

numerical values of the first three moments are also plotted in solid line. The amplitude417

and position of each class are also provided. The comparison between experimental and418

numerical distributions is very good for the two first temperatures. For T=1100 ◦C, an419

over-representation in the smallest radius is observed. This large source of tiny bubbles420

is the result of the observation of Figure 1(f). This source of tiny bubbles could be an421

artificial bubble creation due to the post-morten treatment. It is particularly observed422

at this temperature and time because the total of bubbles are the smallest. Nevertheless,423

the decrease of the distribution as a function of the bubble radius is very well reproduced424

with the numerical results.425

After two hours, the bubble size distribution does not change significantly. It is426

noteworthy to see that the numerical method allows to reproduce the probability density427

function. These results underline that the numerical method developed in this work is428

useful to describe the dynamics of bubble undergoing coalescence.429

4.2. Fining process during the glass melting430

Fining process is the limiting step in glass melting. As already pinpointed in section431

1, the bubble removal in industrial plant is strongly enabled by the addition of “fining432

agents”. Hujová and Vernerová [57, 58] did a review of this mechanism in which the433

various fining agents are presented. Since the bubble removal is mainly driven by the434

bubble rising, the addition of chemical species disolving gas when the temperature in-435

creases leads to a bubble growth. Moreover, the increase of temperature decreases the436

viscosity leading to an enhancement of the bubble rising velocity. The effect of sodium437

sulfate introduced in raw materials as Na2SO4 is studied in this subsection. According438

to Chopinet et al. [59], the following chemical reaction439

Na2SO4 −−→ Na2O+ SO2(g) +
1

2
O2(g) (45)

is involved with “g” gas species. This last reaction is observed when the glass forming440

liquid is enough oxidized. For soda-lime-silicate glasses, the oxidation-reduction state441

is controlled by the quantity of the molecular oxygen, O2, dissolved in the liquid. It442

depends on the redox state of the iron, the main transition metal found in industrial443
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glasses. The oxidation-reduction is then controlled by444

Fe3+ +
1

2
O2− −−→←−− Fe2+ +

1

4
O2(g). (46)

Equation (45) can be also written in terms of ionic species as follows [59]445

SO 2−
4 −−→ SO2(g) +

1

2
O2(g) + O2−. (47)

Knowing the redox state of the iron defined by446

RFe =
Cl

Fe2+

Cl
Fe

, (48)

the oxygen concentration, in mol/m3, dissolved in the glass forming liquid is then deter-447

mined by448

Cl
O2

=

[
(1−RFe)KFe

RFe

]4
, (49)

in which KFe is the equilibrium constant of the chemical reaction (46). In (48), Cl
Fe2+

is449

the molar concentration of Fe2+ and Cl
Fe is the total molar concentration of iron equal450

to Cl
Fe2+

+ Cl
Fe3+

, assumed constant all over the time.451

From the reaction equilibrium of (47), the concentration of SO2 dissolved in the liquid452

is given by453

Cl
SO2

=
Cl

SKS

KS +
√
Cl

O2

, (50)

in which KS is the equilibrium constant of the reaction (47) and Cl
S is the total amount454

of sulfur introduced in the liquid.455

Beside SO2 and O2 species, the nitrogen and carbon dioxide are generally dissolved456

in glass forming liquid. Since these two species come from the combustion atmosphere457

above the liquid bath and also from the carbon release of raw materials, the amount of458

N2 and CO2 dissolved in the glass forming liquid can be simply estimated by knowing459

the partial pressure in atmosphere above the glass bath [60]. This means that Cl
N2

and460

Cl
CO2

are given by461

Cl
N2

= LN2
PN2

, (51)

Cl
CO2

= LCO2
PCO2

. (52)

One of the first contributions devoted to a quantitative analysis of the fining process462

has been done by Bastick [6]. He showed that the number of bubbles decreases expo-463
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T (◦C) Cl
SO2

(mol/m3) Cl
O2

(mol/m3) Cl
N2

(mol/m3) Cl
CO2

(mol/m3)

1320 8.05 1.35× 10−3 1.24× 10−2 3.89× 10−2

1370 7.27 4.92× 10−3 1.41× 10−2 3.66× 10−2

1420 6.59 1.66× 10−1 1.58× 10−2 3.46× 10−2

Table 3: Molar concentration of gas species dissolved in a window glass for three temperatures.

nentially with time. The rate of bubble release increases with temperature but more464

quickly that expected from the effects of temperature on bubble size and viscosity. The465

numerical computations are applied to the equivalent situation studied by Bastick [6].466

There are done for a window glass with 0.1wt% of iron and a redox state equal to 0.23.467

The density is equal to 2350 kg/m3 and the viscosity are given by468

η(T ) = 1.95 · 10−3 exp

(
9855.06

T − 539.15

)
, (53)

with T in Kelvin. The total amount of sulfur is set equal to 0.39wt%. Partial pressure of469

N2 and CO2 are determined considering a combustion with air and natural gas. Equilib-470

rium constants of reactions (46) and (47) and Henry coefficients are given in Appendix471

A. The initial molar concentrations for SO2, O2, N2 and CO2 determined with the above472

developments are reported in Table 3 for three temperatures considered in [6].473

The numerical application considers a bubble population dispersed in a crucible ob-474

tained by the melting of raw materials or cullet [6]. The initial bubble density is set equal475

to 2 × 109 m−3. Initially, the bubble size distribution is log-normal, see eq. (41), with476

σ = 0.434 and µ = −9.33 given in meter. The initial volume fraction is equal to 1.35%477

and the dimensionless parameter K0 is equal to 2.2. Initially, bubbles are assumed to be478

composed of air, i.e. 21% of O2 and 79% of N2. The bubble population is described by479

taken N equal to 3.480

Figure 6 depicts the zeroth order moment corresponding to the bubble density nor-481

malized by the initial value. The solid lines are obtained with the mass transfer. The482

dashed lines report the numerical results without mass transfer. The experimental results483

obtained by Bastick [6] have been provided in Figure 6 in solid circles. Colors are the484

same for all data. The absence of the mass transfer underestimates the bubble release. In485

dimensionless form, the behavior without mass transfer is completely similar for all tem-486

peratures. When the mass transfer is introduced, the bubble release enhances in large487

proportion. For both temperatures, the bubble density decreases quasi-exponentially.488

The bubble release is mainly driven by the rising of bubble and their escape from the489

free surface of the glass bath. If the increase of the bubble release would be due to the490

only viscosity, the behavior of µ0 should be the same for both temperatures due to the491
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Figure 6: µ0 as a function of dimensionless time for T=1320, 1370 and 1420 ◦C. Solid lines are obtained
with mass transfer while dashed lines are determined without mass transfer. Experimental results
obtained by Bastick [6] are plotted with solid circles.

normalization of time by the residence time of bubble with a radius a0. Globally, the492

agreement with the experimental data of Bastick [6] is satisfying even if the numerical493

computation predicts a larger rate of decrease for T equal to 1370 and 1420 ◦C. Note494

that the experimental conditions of Bastick [6] have not clearly known. Few of data have495

been estimated to do the computations. The numerical computations reproduce well the496

fact that the bubble release rate increases faster that the temperature should be done.497

The addition of fining agent enhances the bubble release during the glass melting.498

The Sauter mean radius determined as follows499

r32 =
µ3

µ2
(54)

is plotted as a function of time in Figure 7 for the three temperatures used in the nu-500

merical computations. It is noteworthy to see a non-monotonic behavior of r32 for both501

temperatures. At the early times, the growth rate is quasi similar for all temperatures.502

The maximum of bubble size differs with the temperature. The increase of the temper-503

ature leads to an increase of the Sauter mean radius. After a decrease of bubble size, an504

uniform growth rate is observed for a dimensionless time larger than 3. The growth rate505

is larger and larger when the temperature increases. For the smallest temperature, the506

Sauter mean radius is only 60% larger than in the initial condition while for the largest507

temperature, the bubble size is multiplied by a factor of order 2.17 to the initial value.508

Figure 8 depicts the size-conditioned molar fraction of the four gas species for the509

three values of α. Only results obtained for T=1320 ◦C are reported in Figure 8 since510
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Figure 7: r32 as a function of dimensionless time for T=1320, 1370 and 1420 ◦C.
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Figure 8: ⟨xg,i|aα⟩ as function of dimensionless time at T=1320 ◦C for the four gas species and for the
three classes.

24



the behavior of the molar fractions does not significantly change with the temperature.511

Initially composed by air, the bubble composition changes quickly. Nitrogen and oxygen512

are replaced by SO2 gas species which is the most dissolved species. The mass transfer513

of SO2 is very efficient due to a large value of the driver force at early stage. At long514

times, CO2 becomes more significant than O2. The final composition of bubbles is515

mainly given by SO2, N2 and CO2. This result is in agreement with the simpler model516

developed in [26] for unique bubble initially composed by oxygen. This behavior on the517

bubble composition underlines that the dynamics of gas species differs for one species518

to another. The important factor in the mass transfer is the Hi Foi corresponding to519

a gas permeability. For SO2, O2, N2 and CO2, these products are equal to 3.52, 3.76,520

5.27 × 10−2 and 1.44 × 10−1 respectively. The change of composition is mainly due to521

the mass transfer of SO2 and O2 species. Even if the molar fraction of N2 decreases in522

large proportion it is mainly due to the migration of SO2.523

Figure 9 presents the temporal behavior of the molar fraction of the four species524

dissolved in the glass forming liquid. Results obtained at the three temperatures are525

provided. Globally, the composition of dissolved gas species changes due to mass transfer526

from the liquid to bubble population. Apart from O2 species, the dissolved gas species527

decrease with the time. For O2 species, the non-monotonic behavior is due to the mass528

transfer of bubbles rich in oxygen at short times.529

Theses results show the complex coupling between the two phases. As expected the530

bubble population can play important role in the chemistry of the liquid. The model531

developed in this work is able to quantify the mass transfer and the bubble release.532
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Figure 9: xl,i as function of dimensionless time four the three temperatures.

26



5. Synthesis and perspectives533

To see the relevance of the bubble coalescence after the glass bead melting and the534

fining agents on the mass transfer, an original theoretical model based on a popula-535

tion balance equation is developed. Both mass transfer and coalescence are accounted536

for. To solve numerically the population balance equation, a direct quadrature method537

of moments (DQMOM) has been implemented. The numerical method is applied to538

experiments achieved by Pereira et al. [8] and by Bastick [6].539

According to Pereira et al. [8], it was observed that the bubble density decreases540

strongly at short time. Using a coalescence kernel due to the relative rising of bubble,541

the numerical results well reproduce the experimental behavior. This underlines that the542

coalescence, as suggested by Cable [9], is the main mechanism of the bubble dynamics543

in a glass forming liquid. From the numerical results, it is possible to quantify this544

mechanism. The coalescence becomes significant when the bubble density is larger than545

102 cm−3 or in other words, when the mean distance between inclusions gets shorter than546

1mm. Apart from the effect of coalescence, both experimental and numerical predictions547

allow to highlight that the bubble size distribution follows a log-normal law. This result548

already underlined by Boloré et al. [7] can be useful to follow the bubble dynamics in549

CFD software. The experimental data provided here can be used to determine the initial550

bubble size distribution.551

The application of the numerical model in the case driven by the mass transfer is also552

efficient. The faster bubble release mentioned by Cable [10] is reproduced and explained.553

It is mainly due to the change of the glass chemistry with the temperature. The increase554

of gas release dissolved in the glass forming liquid is the most important phenomena555

explaining the bubble release. The important feature of the model developed in this556

work is the coupling with the liquid phase leading to the modification of the chemistry557

of the liquid.558

The DQMOM method developed for this work allow to describe the mass transfer by559

writing balance equation of each molar fraction of relevant gas species dissolved in the560

liquid. As already presented in [24], it is possible to couple the bubble dynamics with561

the chemistry of the glass forming liquid. The future step is to develop this model in562

CFD software and applied it to furnace design. As it is well documented in the textbook563

of Marchisio and fox [14], DQMOM fails when it is applied to multidimensional cases.564

The conditional quadrature method of moments proposed by Yuan and Fox [61] could565

be a relevant choice to extend the work presented here. This work is a main issue since566

both two-phase flow and the coupling with the glass chemistry are poorly described in567

existing CFD tools to design glass furnaces.568

The numerical software developed for this work is accessible following the link DQ-569
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MOM.570

Appendix A. Numerical parameters used in the numerical computations571

Appendix A.1. Henry coefficients572

The solubility of a gas species i is written as a function of the temperature T as573

follows574

Li = Asol
i exp

(
Bsol

i

T

)
. (A.1)

The constants Asol
i and Bsol

i to determine solubilities of the four gas species have been575

taken from Beerkens [60] for the pressure in Pa and the molar concentration in mol/m3.576

Table A.4 gathers values for the four gas species used in this work.577

Species O2 SO2 CO2 N2

Asol
i (mol/m3/Pa) 1.37× 10−4 6.44× 10−7 5.6× 10−7 1.1× 10−5

Bsol
i (K) -6633 7860 3120 -6633

Table A.4: Values of Asol
i and Bsol

i used to compute the Henry coefficient given by eq. (A.1) according
to [60].

Appendix A.2. Diffusion coefficients578

The diffusion coefficients of each species are determined as a function of temperature579

following the relation580

Di = Adiff
i exp

(
−Bdiff

i

T

)
, (A.2)

for which Adiff
i and Bdiff

i are provided in Table A.5.581

Species O2 SO2 CO2 N2

Adiff
Gi

(m2/s) 4.2× 10−3 4.45× 10−7 1.92× 10−5 4.3× 10−5

Bdiff
Gi

(K) 26 646 15 360 21 516 19 364

Table A.5: Values of Adiff
i and Bdiff

i used to compute the coefficient coefficient given by eq. (A.2)
according to [60].

Appendix A.3. Equilibrium constants582

According to Kondepudi and Prigogine [62], the equilibrium constant is written as583

follows584

Kr = exp

(
−∆Gr

RT

)
, (A.3)
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with the Gibbs energy given by585

∆Gr = ∆Hr − T∆Sr. (A.4)

The numerical values of the enthalpy and entropy of cerium reaction, (42), iron re-586

action, (46), and sulfur reaction, (47), are reported in Table A.6. Equilibrium constants587

are written with the molar concentration of O2. Consequently, the values of ∆Hr and588

∆Sr provided in Table A.6 take into account the oxygen solubility.589

Reaction Ce Fe S

∆Hr (kJmol−1) 77.5 141 233

∆Sr (Jmol−1 K−1) 51.06 64.56 97.58

Table A.6: Enthalpy and entropy of Ce reaction, (42), from [55] and reactions (46) and (47) according
to [60].
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