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Abstract: KKL observer design consists in transforming the system dynamics into a filter of
the output, which admits a trivial observer, and left-inverting the transformation to recover an
estimate of the state in the system coordinates. This left-inversion is typically guaranteed under
a backward-distinguishability condition. In this paper, instead, we demonstrate how this KKL
approach may also be applied without any such observability assumption. We show that there
exist appropriate choices of the filter such that any filter solution asymptotically contains the
full information about the state indistinguishable class, namely the set of points generating the
same output. Then, we investigate the existence of a set-valued left-inverse allowing to estimate
asymptotically this indistinguishable class, in the Hausdorff sense. We prove that the estimate
tends to be included asymptotically in the indistinguishable classes of the limit points of the
system solution. Finally, we provide a numerical example illustrating this convergence.

Keywords: KKL observer design, indistinguishability

1. INTRODUCTION

We consider an autonomous dynamical system

ẋ = f(x) , y = h(x) (1)

with state x ∈ Rnx , output y ∈ Rny , f : Rnx → Rnx locally
Lipschitz and h : Rnx → Rny continuous. We assume that
the trajectories of interest remain in a compact subset
X ⊂ Rnx .

A standard question is the so-called observation problem:
at each time t ≥ 0, knowing the past history of the output
y on [0, t], can we produce an estimate x̂(t) of the state
x(t) such that the error x̂(t)− x(t) asymptotically goes to
zero? Among many possible methods, a possible path is
the design of an observer, namely a dynamical system

ż = F (z, y) , x̂ = T (z, y) (2)

fed with the known signal y that asymptotically estimates
the real system state. Such designs are reviewed in Bernard
et al. (2022). However, for an observer to exist, detectability
or observability properties are typically required to ensure
that the output carries enough information to determine
the system state uniquely. In this paper, instead, we are
interested in building an algorithm extracting from the
output y all the possible information about the state x,
which may not be uniquely determined without observ-
ability properties.

1.1 KKL observer design with distinguishability

When the system is observable, one of the possible
routes towards an observer is the nonlinear Luenberger
or Kazantzis-Kravaris-Luenberger (KKL) design. Its idea
originates from Luenberger (1964) where he first intro-
duced his observer for single-output linear systems

ẋ = Fx , y = Hx

with observable pair (F,H) ∈ Rnx×nx ×R1×nx . Indeed, he
showed that, for any controllable pair (A,B) ∈ Rnx×nx ×
Rnx with A Hurwitz and having no common eigenvalue
with F , there exists a linear invertible change of coordi-
nates T ∈ Rnx×nx such that z = Tx follows the dynamics

ż = Az +By . (3)

Then, since A is Hurwitz, implementing (3) for any initial
condition asymptotically provides an estimate of Tx; thus,
an estimate of x can be recovered through x̂ = T−1z.

It turns out that this procedure extends to nonlinear
systems. Indeed, the idea is to look for a (nonlinear) change
of coordinates T : Rnx → Rnz with nz ≥ nx such that
z = T (x) is governed by (3) in the new coordinates. In
other words, T is chosen such that

∂T

∂x
(x)f(x) = AT (x) +Bh(x) ∀x ∈ X . (4)

Then, if the map T is injective and admits a (uniformly)
continuous left-inverse T inv : Rnz → Rnx , an estimate of x
is obtained with x̂ = T inv(z) for any solution z to (3).

The existence of the map T was first considered in Shoshi-
taishvili (1990), Kazantzis and Kravaris (1998) and Krener
and Xiao (2001) in the analytic context and around an
equilibrium point. Then, the localness was dropped follow-
ing another perspective in Kreisselmeier and Engel (2003),
where a global existence result was proposed based on a
strong observability assumption which unfortunately did
not provide an indication on the necessary dimension nz

of the pair (A,B). This problem was solved in Andrieu and
Praly (2006) by proving the existence of the injective map
T under a weak backward-distinguishability condition, for
A complex diagonal of dimension nx + 1, with a generic



choice of nx +1 distinct complex eigenvalues and recently
in Brivadis et al. (2022) for almost any real controllable
pair (A,B) of dimension nz = 2nx + 1 with A diagonal-
izable. In this latter paper, an existence result was also
provided in a different paradigm, where, instead of picking
a sufficient number of distinct eigenvalues, the filter (3) is
picked triangular with a single eigenvalue of sufficiently
large multiplicity, but without any indication about the
necessary dimension nz.

The distinguishability property assumed in Andrieu and
Praly (2006); Brivadis et al. (2022) and guaranteeing the
existence of an observer basically says that any distinct
states xa, xb in X can be distinguished from their re-
spective past output. In this paper, we are interested in
the state estimation problem for (1) when no such distin-
guishability is assumed.

1.2 KKL observer design without distinguishability

If distinct solutions to (1) produce the same output,
namely, they are indistinguishable, without asymptotically
tending to each other, there is no hope to design an
observer producing an asymptotic estimate of x. However,
we could imagine to have an algorithm producing at each
time a set guaranteed to converge asymptotically – for a
certain distance to be defined – to the indistinguishable
class of x. In other words, build a set-valued observer.

The interest for such an algorithm comes from the ap-
plication of electrical machines where nonlinear models
producing finite numbers of indistinguishable states have
been exhibited (see, e.g., Moreno et al. (2017); Verrelli
et al. (2018) or Bernard and Praly (2021) in the context
of induction motors and permanent magnet synchronous
motors (PMSM) respectively) Note that this phenomenon
could not appear in a linear context where non observabil-
ity necessarily implies an infinite number of indistinguish-
able states.

Indeed, when the number of possible indistinguishable
states is finite at each time, one could hope to design an
observer estimating this finite number of possibilities. This
was done in Moreno et al. (2017); Moreno and Besançon
(2017) through sliding mode tools for systems that can be
written in an “observable-like” form, but which, due to un-
observability, involves a set valued map that is considered
as an unknown input in the design. Instead, in Bernard and
Praly (2021), the KKL route is employed on a particular
application featuring a PMSM with unknown resistance.
Indeed, it is shown that undistinguishable trajectories ex-
ist, but always less than six, and that there exists a map
T : Rnx → Rnz transforming the dynamics into (3) whose
inversion enables to reconstruct all the possible states.

In this paper, we theoretize this approach in a general
context and investigate whether the KKL paradigm may
be used for non observable systems. We show in Section
2 that there exists appropriate choices of the pair (A,B)
such that any solution t 7→ z(t) to (3) asymptotically con-
tains the full information about the indistinguishable class
of x, namely the set of points generating the same output
as x. Then, after studying continuity and convergence of
set-valued maps in Section 3, we investigate in Section 4
the existence of a set-valued map T inv : Rnz ⇒ Rnx such

that T inv(z) converges to the indistinguishable class of x.
Finally, a numerical example is provided in Section 5.

Remark 1. Another paradigm exploiting KKL design for
non observable systems is the so-called functional observer
problem in Spirito et al. (2022), where the full state is not
necessarily observable but only a function of the state q(x)
is estimated. This does not lead to set-valued observers
since q(x) is assumed observable and is thus reconstructed
uniquely by the observer.

1.3 Notations

We denote X(x, t) the solution of (1) initialized at x at
time 0 and evaluated at time t, and (σ−(x), σ+(x)) its
maximal domain of definition. For x ∈ Rnx and ε > 0, we
denote B(x, ε) the open ball centered at x and with radius
ε. The identity matrix of dimension m is denoted Im.

2. INJECTIVITY WITH RESPECT TO
INDISTINGUISHABLE CLASS

Following the KKL methodology, we propose to look for
a map T : Rnx → Rnz transforming the dynamics (1)
into (3), namely solution to (4). This first step is the
same as in (Andrieu and Praly, 2006, Theorem 1) in the
observable context and can be simplified as follows when
X is compact.

Lemma 1. Pick nz ∈ N. There exists ρ > 0 such that for
any Hurwitz matrix A ∈ Rnz×nz and for any B ∈ Rnz×ny

with A+ ρInz
Hurwitz, there exists a C1 map T : Rnx →

Rnz such that (4) holds.

But then, without observability/distinguishability we can-
not hope to prove injectivity of T on X , namely the fact
that for all (xa, xb) ∈ X × X ,

T (xa) = T (xb) =⇒ xa = xb . (5)

Instead, we would like to prove that T (x) contains all the
possible distinguishable information about x.

Definition 1. Two states xa, xb ∈ Rnx are said backward-
indistinguishable, which we denote xa ∼

I
xb, if

h(X(xa, t)) = h(X(xb, t)) ∀t ∈ (max{σ−(xa), σ
−(xb)}, 0] .

Given O ⊆ Rnx , for a state x ∈ Rnx , we then denote

IO(x) = {x′ ∈ O, x′ ∼
I
x} (6)

its backward indistinguishable class in O.

In other words, IO(x) contains all the states in O that
cannot be distinguished from x based on the knowledge
of the past output. To ease the notation, we will omit the
mention of O when O = Rnx .

Note that for analytic systems, t 7→ X(x, t) is analytic in
time, and therefore, equality of outputs during an arbi-
trarily short amount of time implies equality of outputs
on the whole interval of definition. In other words, two
solutions t 7→ X(xa, t) and X(xb, t) are indistinguishable,
i.e., have the same output, on some interval of time is
equivalent to them being indistinguishable on their whole
interval of definition, and equivalently, X(xa, t)∼

I
X(xb, t)

at all times.



The following result shows the existence of a map T :
Rnx → Rnz transforming the dynamics (1) into (3) such
that T distinguishes the distinguishable states.

Theorem 1. Assume there exists an open bounded set O,
containing X , that is backward invariant by f . Denote
n0 = 2nx + 1 and nz = (2nx + 1)ny. There exists ρ > 0
such that for almost any pair (A0, B0) ∈ Rn0×n0×Rn0 with
A0 + ρIn0

Hurwitz, there exists T : Rnx → Rnz verifying
(4) with

A = Iny
⊗A0 , B = Iny

⊗B0

and for all (xa, xb) ∈ O ×O,

T (xa) = T (xb) ⇐⇒ xa ∼
I
xb . (7)

Remark 2. The “almost any” comes from the fact that the
pair (A,B) is picked controllable, with A diagonalizable,
and with almost any pC eigenvalues in C and pR eigenval-
ues in R, all distinct with real part smaller than −ρ, such
that 2pC + pR ≥ 2n+ 1.

Remark 3. It is always possible to make the set O back-
ward invariant by modifying f outside of O. However,
then, (7) holds for the modified system. It follows that
T (xa) = T (xb) ensures equality of the outputs of the orig-
inal system only as long as X(xa, t) and X(xb, t) remain
in the set where f has not been modified. Note however
that for any t 7→ x(t) evolving in the compact set X ,
its omega-limit set is compact and backward invariant. It
means that the values taken by T at those limit points are
not impacted by the modification of f .

Proof. We adapt the proof of Theorem 3.4 in Brivadis
et al. (2022) by removing the “backward-distinguishability”
assumption, and replacing the injectivity of T by (7).
Indeed, we first note that the proof follows in the same way
if Proposition D.1 holds with Tdiag verifying (7) instead of
being injective. Digging into the proof of Proposition D.1,
we see that Tdiag is of the form

Tdiag(x) = (T0(λ1, x), . . . , T0(λ2nx−ℓ+1, x))

where ℓ is the number of independent complex eigenvalues

of A0, (λi) ∈ Cℓ
ρ × R2(nx−ℓ)+1

ρ where

Rρ = {λ ∈ R : λ < −ρ} , Cρ = {λ ∈ C : Re(λ) < −ρ} ,

and by backward-invariance of O, for (λ, x) ∈ Cρ ×O,

T0(λ, x) =

∫ 0

−∞
e−λsh(X(x, s))ds .

From this expression, it is clear that for all (xa, xb) ∈
O × O, xa ∼

I
xb implies Tdiag(xa) = Tdiag(xb). Then,

the converse of this implication is obtained by following
Section D.2.3, but applying Lemma D.3 to

Υ = {(xa, xb) ∈ O2,∃t < 0, h(X(xa, t) ̸= h(X(xb, t))}
instead of

Υold = {(xa, xb) ∈ O2, xa ̸= xb} .

Indeed, by continuity of h and of (x, s) 7→ X(x, s), Υ is
open and by definition, for all (xa, xb) ∈ Υ, there exists
s < 0 such that ∆(xa, xb, s) ̸= 0, where

∆(xa, xb, s) = exp(ρs)(h(X(xa, s)− h(X(xb, s)) .

Lemma D.3 then allows to say that for almost any (λi) ∈
Cℓ

ρ × R2(nx−ℓ)+1
ρ , and for all (xa, xb) ∈ O2, Tdiag(xa) =

Tdiag(xb) implies (xa, xb) /∈ Υ, which is equivalent to
xa ∼

I
xb. In other words, (7) holds for Tdiag. ■

Thanks to (4), we know that for any initial condition,
solutions to (3) converge to T (x). Since T is not injective
we cannot deduce a unique x̂ converging to x by left-
inversion of T . However, exploiting (7), we may hope to
estimate the class of indistinguishability of x, or some
elements of it, by looking for the set of pre-images of z
by T . Indeed, (7) says that for all x ∈ O and for any
subset S of O, the pre-image set in S, corresponds to the
set of indistinguishable states in S, i.e,

T−1(T (x)) ∩ S = IS(x) . (8)

In particular, for the given compact set X , this allows to
consider a set-valued map T inv : Rnz ⇒ Rnx verifying

T inv(T (x)) = IX (x) ∀x ∈ X , (9)

for instance,

T inv(z) = argmin
xs∈X

∥T (xs)− z∥ . (10)

Since z converges to T (x), it is natural to study the
convergence properties of T inv(z) towards IX (x).

3. CONTINUITY AND CONVERGENCE OF
SET-VALUED MAPS

3.1 Definitions

In order to compare T inv(z) and IX (x), we consider the
Hausdorff distance dH defined as follows (see for instance
Aubin and Frankowska (2009)).

Definition 2. Given two subsets Sa and Sb of Rnx , the
Hausdorff distance is defined as

dH(Sa,Sb) := max
{
δ(Sa,Sb), δ(Sb,Sa)

}
where

δ(Sa,Sb) := sup
xa∈Sa

d(xa,Sb) = sup
xa∈Sa

inf
xb∈Sb

d(xa, xb) .

Note that, for closed sets, we have

δ(Sa,Sb) = 0 ⇐⇒ Sa ⊆ Sb (11a)

dH(Sa,Sb) = 0 ⇐⇒ Sa = Sb (11b)

Considering now a set-valued map T inv : Rnz ⇒ Rnx , eval-
uating limits of quantities of the type dH(T inv(za), T

inv(zb))
typically requires (Hausdorff) continuity, which contains
two concepts : upper semicontinuity (usc) and lower semi-
continuity (lsc) (see (Aubin and Cellina, 1984, Chapter
1)).

Definition 3. A set-valued function T inv is said to be
upper semicontinuous at z⋆ if for any open neighbourhood
V containing T inv(z⋆) there exists a neighbourhood W of
z⋆ such that for all z ∈ W , T inv(z) ⊆ V . This is equivalent
to

lim
z→z⋆

δ(T inv(z), T inv(z⋆)) = 0 . (12)

Definition 4. A set-valued function is said to be lower
semicontinuous at z⋆ if for any x ∈ T inv(z⋆) and any
neighborhood V of x, there exists a neighborhood W of z⋆

such that for all z ∈ W , V ∩T inv(z) ̸= ∅. This is equivalent
to

lim
z→z⋆

δ(T inv(z⋆), T inv(z)) = 0 . (13)

The following result is a direct consequence of the Maxi-
mum Theorem (see (Aubin and Cellina, 1984, Chap 1, Sec
2, Theorem 6)).



Lemma 2. The map T inv defined in (10) is upper semicon-
tinuous.

However, T inv is a priori not lower-semicontinuous, so
that Hausdorff continuity and Hausdorff convergence of
T inv(z) to IX (x) is not guaranteed. However, exploiting
upper-semicontinuity, i.e., (12), and (11a), one could hope
to have asymptotically at least some inclusion of T inv(z)
into IX (x), or the reverse. The following counter-examples
show that this is not even guaranteed when both z and x
move with time.

3.2 Counter-examples

Consider the map

T (x) = −x5 + 2x3 − x (14)

on the domain X = [−1.5, 1.5]. Its plot is given on Figure
1. Imagine that the system solution t 7→ x(t) tends to
x∗ = 1 asymptotically. Then, any solution t 7→ z(t)
converges to T (x∗) = 0 marked by the orange dashed
line on Figure 1. We have IX (x∗) = T inv(T (x∗)) =
{−1, 0, 1} marked by the red dots. Now let us compare
T inv(z(t)) and IX (x(t)) = T inv(T (x(t))). On the one
hand, T inv(T (x(t)) equals after a certain time a set with
three elements marked by the three green dots below the
orange dashed line, which asymptotically converge to the
set {0, 1}. On the other hand, if z converges to zero from
above, T inv(z(t)) equals after a certain time a set with
three elements marked by the three green dots above the
orange dashed line, which asymptotically converge to the
set {−1, 0}. It follows that T inv(z(t)) tends to be included
asymptotically in IX (x∗), i.e.,

lim
t→∞

δ(T inv(z(t)), IX (x∗)) = 0

which illustrates the upper semicontinuity of T inv. This
asymptotic inclusion in the limit indistinguishable set of x∗

is formalized and extended in Theorem 2 below. However,
we do not have the Hausdorff convergence, i.e.,

lim
t→∞

dH(T inv(z(t)), IX (x∗)) ̸= 0

since 1 ∈ IX (x∗) will never be “visible” in T inv(z(t)).

But now if we compare T inv(z(t)) and IX (x(t)) dynami-
cally throughout time, we neither have

lim
t→∞

δ(T inv(z(t)), IX (x(t)) = 0

nor
lim
t→∞

δ(IX (x(t)), T inv(z(t))) = 0

and therefore even less

lim
t→∞

dH(T inv(z(t)), IX (x(t)) = 0 .

In other words, we can state a convergence result only with
respect to the limit indistinguishable set IX (x∗).

Note that this example seems to suggest at least some
asymptotic “intersection” between T inv(z(t)) and IX (x(t)),
namely the fact that

lim
t→∞

inf
x′∈T inv(z(t))

d(x′, IX (x(t))) = 0 ,

but this is not even ensured as illustrated on Figure 2
for a particular map T exhibiting a plateau. Indeed, if
t 7→ x(t) tends to -0.5 from the left, t 7→ T (x(t)) tends
to zero from below so that t 7→ IX (x(t)) tends to {−0.5},
while if t 7→ z(t) tends to zero from above T inv(z(t)) tends
to {0.5}.

Fig. 1. Counter-example to asymptotic inclusion between
T inv(z(t)) and I(x(t)) = T inv(T (x(t)))

Fig. 2. Counter-example to asymptotic intersection be-
tween T inv(z(t)) and I(x(t)) = T inv(T (x(t)))

4. CONVERGENCE OF KKL OBSERVER

As we have seen, the fact that T inv may not be Hausdorff
continuous heavily restricts the kind of convergence result
we can state in the KKL context. However, we can still
state an interesting asymptotic property if we no longer
consider the distance of T inv(z(t)) to the current indistin-
guishable set IX (x(t)), but rather to the indistinguishable
set of a limit point of x, as suggested by the examples
above.

Theorem 2. Assume there exist a C1 map T : Rnx → Rnz

verifying (4) and an upper semicontinuous map T inv :
Rnz → Rnx verifying (9). Consider a trajectory t 7→ x(t) of
(1) in the compact set X and x⋆ a limit-point of t 7→ x(t).
Then, for every time sequence (tk)k∈N such that

lim
k→∞

tk = +∞ , lim
k→∞

x(tk) = x⋆

and any solution t 7→ z(t) of (3), we have

lim
k→∞

δ(T inv(z(tk)), IX (x⋆)) = 0 (15)

In other words, T inv(z(t)) tends to be included asymptot-
ically in the indistinguishable sets of the limit points of
x. In particular, if the system solution t 7→ x(t) converges
to a periodic limit-cycle t 7→ x⋆(t) with period τ , then we
have for any solution t 7→ z(t) of (4) and for any t⋆ ∈ [0, τ ],

lim
n→∞

δ(T inv(z(t⋆ + nτ)), IX (x⋆(t⋆))) = 0 .



Fig. 3. Phase portrait of ẋ = f(x) with f defined in (16).

Proof. First, x⋆ exists and is in X since X is compact.
Then, according to (4), t 7→ T (x(t)) is solution to (3). Since
A is Hurwitz, z(t)− T (x(t)) tends to zero asymptotically,
and therefore, by continuity of T and definition of (tk),
limk→∞ z(tk) = T (x⋆). Let α = T (x⋆), ε > 0 and the
open set

Vε =
⋃

x∈IX (x⋆)

B(x, ε)

By upper semicontinuity of T inv, since T inv(α) = IX (x⋆)
according to (9), there exists a neighborhood W of α such
that for all z ∈ W , T inv(z) ⊆ Vε. Since (z(tk)) converges to
α, we know that there exists kε ∈ N such that for k > kε,
z(tk) ∈ W . Therefore, for any k > kε, T

inv(z(tk)) ⊆ Vε

and, by definition of Vε, δ(T
inv(z(tk)), T

inv(α)) < ε. The
result follows by making ε go to zero. ■

5. NUMERICAL EXAMPLE

Consider

f(x) =

(
x2 + x1(1− (x2

1 + x2
2))

−x1 + x2(1− (x2
1 + x2

2))

)
h(x) =

(
x2
1 − x2

2
2x1x2

) (16)

and a set of interest X = B(0, 1.7), where the solutions
to be estimated evolve. The phase portrait of the corre-
sponding dynamics are given in Figure 3. It is easily seen
that if t 7→ x(t) is a solution of ẋ = f(x), then −x is too.
Since h(x) = h(−x), x and −x are thus indistinguishable
and we actually have for any x ∈ R2, IX (x) = {x,−x}.
In order to fall into the scope of Theorem 1, we need to
make an open set O, containing X , backward invariant
for the dynamics, while preserving the dynamics on X
and the indistinguishable sets. This is done by considering
f̌(x) = χ(∥x∥)f(x), where χ : R → R is a C1 map, equal
to 1 when ∥x∥ ≤ 2 and 0 when ∥x∥ ≥ 10.

Inspired by Theorem 1, we should pick a pair (A,B) of
dimension (2n+1)ny = 10. However, to reduce dimension,
following Remark 2, we may try to pick pC = n + 1
eigenvalues in R (included in C) leading to a real pair
(A,B) of dimension (n+ 1)ny = 6, aware that this choice
might be in the zero-measure set that does not ensure (7).
For the simulations, we choose A = −diag(3, 4, 5, 6, 7, 8)

and B = I2 ⊗

(
1
1
1

)
, which is not exactly the form

recommended by Theorem 1 and shows the flexibility of
the result.

5.1 Numerical computation of T

In order to compute numerically a map T satisfying (4),
we use the algorithm developed in Ramos et al. (2020) and
the associated toolbox Buisson-Fenet et al. (2022):

(1) Create a grid of x0 points covering X .
(2) Simulate ẋ = f̌(x) backward initialized with x0

during a time tb sufficiently large compared to the
slowest eigenvalue ofA. This gives a new grid of points
x0,b. Note here the interest of using f̌ instead of f ,
which explodes in finite backward time.

(3) Simulate forward during tb units of time the aug-
mented system (x, z) made of (1)-(3) and initialized
at (x0,b, 0).

(4) We obtain a grid of regression points (x0, z0), where
z0 is an approximation of T (x0) if tb is sufficiently
large for (3) to “forget” its initial condition.

(5) Fit a neural network model of T .

Applying this method, we obtain an approximation of a
map T : R2 → R6 such that for any solution t 7→ x(t) to (1)
remaining in X , any solution t 7→ z(t) of (3) converges to
T (x) as illustrated on Figure 4. We use a data set with 105

points uniformly chosen in X and a neural network with
5 hidden layers of 50 neurons, ReLU activation function,
learning rate 0.001, weight decay 10−6, and scheduler with
factor 0.1, patience 3 and threshold 0.0001. Note that, as
expected from Theorem 1, the mean relative error between
T (x) and T (−x) is low (under 3%).

Fig. 4. Convergence of the error z − T (x)

5.2 Inversion of T

The next step is to compute numerically the pre-image of
T in order to reconstruct online at least one element of the
indistinguishable class of x.

In Buisson-Fenet et al. (2022), written in the spirit of
observer design where T is injective, this is done by
learning a neural model of a left-inverse T inv of T such that
x0 ≈ T inv(z0) on the previously obtained grid. However,
due to the non-injectivity of T , we cannot exploit such a
method here. Indeed, the minimization cost will be flawed
by the presence of distinct targets for the same input. For
instance, if a given z0 should be mapped both to x0 and
−x0, then, the algorithm typically finds

T inv(z0) = argmin
x̂

{∥x̂− x0∥2 + ∥x̂− (−x0)∥2} = 0



Fig. 5. Simulation results in the x-coordinates via gradient
descent algorithm.

(a) Simulation 1, State Space (b) Simulation 2, State Space

(c) Simulation 1, x̂1 (d) Simulation 2, x̂1

(e) Simulation 1, x̂2 (f) Simulation 2, x̂2

everywhere. An alternative would be to learn T inv on a
reduced data set where only one pre-image of each z0
is kept. But this raises regularity and threshold issues.
Instead, we implement a gradient descent algorithm online,
solving (10) at each time step. Results of simulations
appear on Figure 5.

As expected, once z has converged to T (x), the algo-
rithm gives as estimate either x or −x, with possible
jumps depending on the initialization of the optimization
(see Simulation 1). A “warm start” of the optimization
around the previously found estimate allows to follow a
continuous selection in T inv(z(t)) and avoid those jumps
(see Simulation 2). This does not ensure to follow the
trajectory x, but a potential indistinguishable trajectory,
namely −x here. Note that more efficient algorithms could
be implemented to follow the optimum through time, or
better yet, reconstruct both candidates x and −x.

6. CONCLUSION

Even without any observability assumption, the KKL ap-
proach is well-suited to estimate information about the
state, up to its indistinguishable class. We studied which
kind of convergence could be expected from the estimator.
The advantage of such an approach is that no partic-
ular normal form is needed unlike high-gain or sliding-
mode based methods in Moreno et al. (2017); Moreno
and Besançon (2017). Further work includes improving the
obtained convergence theorem and finding better sufficient
conditions guaranteeing Hausdorff continuity. In particu-
lar, the apparent link between critical points of T and lack
of lower semicontinuity of T inv could be studied.
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(2017). A global bivalued-observer for the sensorless
induction motor. IFAC World Congress.
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