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20 Abstract 
21 In studies relevant to contaminant transport in geosphere, evolution of local physicochemical 

22 processes imparts potential challenges in safety and critical assessment issues. The 

23 transport of such contaminants in a rock pore structure could occur under advective or 

24 diffusive regime. Such transport over spatial and temporal scale depends upon coupling 

25 between physical properties of pore structure (permeability, pore size distribution, porosity) 

26 and chemical properties of dissolved ionic species (pH, ionic strength, and surface 

27 interactions). The nature of such interactions leads to generation of local imbalances in pore 

28 solution and enhances dissolution and precipitation of minerals. To predict occurrence of 

29 such processes over large spatial and temporal scales, it is imperative to demonstrate how 

30 the physical and chemical processes interact within the heterogeneous porous media. In this 

31 context, numerical simulations were conducted to model the results of experimental dataset 

32 investigating barite and gypsum precipitation in chalk. In the experimental approach, the 

33 selected two minerals are end-members of the sulfate-alkali family and exhibit large 

34 differences in kinetic rate and solubility, and the reference chalk sample resembles 

35 heterogeneity in its pore structure. The numerical simulations revealed that at 1D scale, it 

36 was possible to model overall experimental observations at boundary monitoring points such 

37 as chemistry evolution in reservoirs, porosity loss during barite and gypsum precipitation, 

38 total amount of barite and gypsum in clogging zone and threshold saturation index to initiate 

39 precipitation. However, these simulations could not validate the experimentally observed 

40 impact of barite and gypsum clogging on changes in water tracer transport. The underlying 

41 reasons for such behavior was the formation of a unique clogging zone due to barite and 

42 gypsum precipitation. We show that 2D simulations incorporating spatial heterogeneity are 

43 able to reproduce the observed precipitation patterns, both for the barite and gypsum 

44 experiments. Through 1D and 2D numerical results, we demonstrate the capability of a 

45 reactive transport model to validate experimentally observed barite and gypsum precipitation 

46 behavior   in   chalk   sample.   Furthermore,   it   also   highlights   the   interplays   between 

47 physicochemical heterogeneities, mineral reactivity and transport rates which are 

48 responsible for the precipitation pattern of the precipitates, and hence their impacts on 

49 transport properties. 

50 



51 1 Introduction 
52 Contaminant migration in geological formations over large spatial and temporal scales is 

53 mainly governed by reactive transport phenomena. Over time, these contaminants could 

54 interact with rock pore structures and due to their physicochemical nature they could 

55 generate a local imbalance in existing pH and ionic concentration of rock pore solution. 

56 Thus, these local imbalances would result in dissolution of the cemented rock minerals or 

57 formation of secondary mineral species via precipitation phenomena. Indeed, these 

58 secondary processes would modify the existing pore structure and therefore the transport 

59 properties of the rock. For safety and risk analysis, the evolution of such processes over 

60 larger temporal and spatial scales could impose conditions where migration of some 

61 radiotoxic elements is enhanced and with a possibility of their leaking into nearby important 

62 drinking water sources (Moldovan et al., 2003; Thakur et al., 2010). 

63 One such study concerning reactive transport in porous media deals with the trapping of 

64 atmospheric CO2 (global carbon sequestration or GCS) into the rock pore space (Berthe, 

65 2012; Jun et al., 2013; Snæbjörnsdóttir et al., 2020). The sites selected for such concept 

66 contains a porous and permeable rock that could easily trap injected CO2 within its pore 

67 space. Indeed, a layer of impervious cap-rock that potentially limits any ionic transport into 

68 the surrounding biosphere covers this permeable rock. However, over long term the trapped 

69 CO2 would gradually interact with the cap-rock and modify its local pore chemistry. These 

70 changes would trigger dissolution and precipitation of halite, sulfate- or carbonate-bearing 

71 minerals that would change cap-rock pore structure and alter its existing sealing properties. 

72 Under such scenario, the transport behavior of some ionic species that are trapped in both 

73 reservoir and sealing rock is altered and a potential risk is generated of their leak into the 

74 surrounding biosphere. Similarly, such secondary process over long times scales could also 

75 occur in deep geological host facilities capable for confining long-lived intermediate and 

76 high-level radioactive waste (Bradbury et al., 2014). For example, the degradation of cement 

77 structures, corrosion of steel assemblies and release of ionic species as fission products 

78 would result in generation of chemically active saline or alkaline plumes. Similar to CO2 

79 sequestration sites, these plumes could interact with cap rock and modify its intact transport 

80 properties. In this case, it could leak radiotoxic ions into surrounding biosphere and generate 

81 safety issues. Thus, to evaluate the long-term durability of deep geological disposal sites, it 

82 is imperative to obtain a robust understanding of the occurrence of such physicochemical 

83 processes and their impact on the properties of host rock as well as sealing rock over larger 

84 temporal and spatial scales. 

85 Over the years, the understanding of solute transport in geosphere is built upon lab-scale or 

86 field scale experimental   observations, combined with numerical simulations using 

87 geochemical models based on a continuum approach (Bear, 2013; Glaus et al., 2020; 

88 Lagneau, 2013; Landesman et al., 2018; Seigneur et al., 2019). The advantage of using 

89 such numerical models lies on the representation of the volume of interest as representative 

90 elementary volumes (REV) that characterize the local properties of the material such as 

91 porosity, diffusivity, permeability, etc. Using this assumption it is possible to simplify the 

92 natural but complex geometry of the material at 1D or 2D (homogenized) and to simulate its 

93 evolution on large time and space scales. In such models, minerals constituting a selected 

94 natural porous material are described in volume fractions and total porosity is the void space 

95 between these minerals. A multicomponent reactive fluid containing selected ions of interest 

96 is allowed to migrate through these void spaces. From experimental observations, one could 



97 now fix the initial and boundary conditions in the numerical simulations and observe the 

98 evolution of dominant physicochemical processes on selected spatial and temporal scale. In 

99 this model the dominant processes such as mineral dissolution or precipitation are modeled 

100 via classical kinetic rate law in which key input parameters such as kinetic rate constant, 

101 saturation index, reactive surface area are obtained from existing thermodynamic database 

102 in literature (Lasaga, 2014). Finally, the formation of new void spaces and their feedback on 

103 transport properties (permeability, local porosity, diffusivity) are modeled using empirical 

104 relationships such as Kozeny-Carman and Archie's relationships (Archie, 1942; Carman, 

105 1937). However, recent studies have shown that formation of secondary mineral is 

106 dependent on local pore chemistry and plays an important role in development of overall 

107 clogging zone and thereby changes on overall rock transport properties (Sabo and 

108 Beckingham, 2021; Seigneur et al., 2019; Steinwinder and Beckingham, 2019). 

109 109 
 

110 Thus, replacement of such empirical relationships is complex because rock pore matrix 

111 contains multiscale physical and chemical properties such as pore size distributions, surface 

112 charge, surface roughness, reactive/non-reactive phases, local precipitation/dissolution rate, 

113 pore pressure effect, and varying mineral solubility. In reality, rocks or porous soils may 

114 contain such physicochemical spatial properties from micron-size pore scale to submillimeter 

115 scale to the basin scale and their coupling  further control the interplay between mass 

116 transport and reaction kinetics, creating altered zones favoring precipitation/dissolution( 

117 Berkowitz et al., 2006; Bruns et al., 2017; Noiriel et al., 2021; Trinchero and Iraola, 2020). 

118 Thus, it is imperative to investigate local reaction kinetics and the corresponding mass 

119 transport changes at pore scale for diverse range of porous materials and minerals relevant 

120 of geochemistry for the development of new feedback relationships that could replace the 

121 existing Archie’s or Kozeny-Carman relationships (Nooraiepour et al., 2021; Steefel and 

122 Yang, 2021; Varzina et al., 2020). 

123 In this view, the aim of this study is to investigate numerically the impact of mineral intrinsic 

124 properties (solubility, precipitation rate, nucleation driven growth) on secondary mineral 

125 formation and the corresponding feedback on transport properties of reference porous 

126 media. The numerical simulations presented in this study are based upon experimental 

127 dataset that investigated barite and gypsum precipitation in natural chalk sample(Rajyaguru 

128 et al., 2019). The experimental dataset were obtained based on the following principle, “fix a 

129 physical property namely pore structure heterogeneity using chalk sample and combine it 

130 with chemical property using two extremities (solubility and rate of precipitation) of sulfate 

131 alkali minerals.” From this principle, it was possible to investigate the coupling effect of both 

132 properties on governing distributions of barite and gypsum mineral in the precipitation zone 

133 as well as their impact on the existing transport properties of chalk sample. The first 

134 experiment showed that barite precipitation resulted in the formation of a thin-layered 

135 clogged zone located in center of chalk sample. On the contrary, the second experiment 

136 showed that gypsum precipitation resulted in formation of isolated clusters type of clogged 

137 zone at the center of chalk sample. The water tracer tests conducted prior and after clogging 

138 phenomena showed that both of these distributions had contrasting impact on changes in 

139 chalk transport properties  (with barite  imparting significant reduction in  tracer  diffusivity 

140 compared to gypsum). 



141 Thus, numerical description of these experimental results required a two-step approach. In 

142 the first step, using the initial and boundary conditions from experiments, barite and gypsum 

143 precipitation simulations were carried out in a homogeneous 1D geometry with total porosity 

144 of 45% (representing the mean porosity of chalk sample). The aim of these simulations was 

145 to determine the time at which precipitation is initiated, the resulting width of clogged zone 

146 and subsequent porosity reduction, and finally the evolution of chemistry evolution in 

147 reservoirs when precipitates formation modifies the pore structure of chalk sample. Indeed, 

148 at 1D, the feedback of clogged zone formation on tracers transport was simulated using 

149 empirical Archie’s relationship. However, one must note that 1D simulations do not integrate 

150 spatial variability in pore size distribution of chalk sample. Thus in the second step, 2D 

151 simulations were required to accommodate this property, where pore size distribution of 

152 chalk was mimicked by integrating variable porosity (45%± 5%) while keeping the initial 

153 boundary and chemical conditions same as of 1D simulations. Since, one cannot fully 

154 resolve Archie’s relationship in 2D (Deng et al., 2021), the objective of the simulations in this 

155 step was to investigate underlying factors controlling changes in distributions of barite and 

156 gypsum minerals. 

157 157 
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158 2 Numerical methods 
159 2.1 Governing equations for numerical modeling 
160 The generalized equation for modeling at REV-scale in HYTEC is well described 

161 in(Cochepin et al., 2008; Lagneau, 2013; Lagneau and van der Lee, 2010). The kinetic rate 

162 equation to model experimentally observed barite or gypsum reacted zones in chalk is 

163 described in equation-1. 
 

𝑄𝑠 
𝑟𝑠 = −𝐴𝑏𝑢𝑙𝑘𝑘𝑟𝑎𝑡𝑒 [1 − ( 

𝐾 
)] 

(1) 

164 where, Qs : ion activity product, and K : mineral equilibrium constant. The bulk surface area 
165 Abulk represents the overall surface over which precipitation can occur. It is the combination 

166 of the precipitation over the existing pore walls as well as a growth on barite/gypsum nuclei. 

167 These bulk surface areas can be derived from the specific surface area 𝐴s using Equation-2 
 

𝐴𝑏𝑢𝑙𝑘(𝑚2. 𝑚−3
𝑢𝑡i𝑜𝑛) = 𝐴𝑠,𝑝𝑚𝐶pm + 𝐴𝑠,min𝐶min 

𝑠𝑜𝑙 (2) 

168 168 
 

or 𝐴𝑠 = 3/𝜌𝑟 (3) 

169 where, ρ: particle density, r: radius of spherical particle, C: Particle concentration (g/L). 

170 Hence, an initial reactivity of the porous medium is described using an unreactive mineral, 

171 with an uniform concentration (Cpm=1g/L) and a specific surface area of As,pm = 1 m²/g, in line 

172 with literature data(Hjuler and Fabricius, 2009; Røgen and Fabricius, 2002). Then, reactivity 

173 evolves as precipitation proceeds and provides an increasing value for the bulk surface area 

174 due to evolution of Cmin. This description is similar to the one used by (Noiriel et al., 2021). 

175 The feedback impact of clogging on diffusivity is modeled using modified Archie’s law as 

176 represented in equation 4(van der Lee et al., 2003) 
 

 ɸ − ɸ𝑐 𝛼 
𝐷𝑒(𝜔) = 𝐷𝑒(ɸ0) (

ɸ0 − ɸ𝑐
) 

(4) 

177 where 𝐷𝑒: effective diffusion coefficient, ɸ𝑐: percolation threshold, 𝛼: cementation factor 

178 2.2 Numerical Modeling 
179 2.2.1 1D simulations to model reacted zone 
180 The 1D simulations were carried out to mimic counter diffusion setup used in the 

181 experiments of (Rajyaguru et al., 2019). The geometry consists of two 1 mm reservoirs 

182 sandwiching a chalk sample of uniform porosity 45% and thickness of 6.7 mm. In the 

183 experiments, the actual reservoir volumes were 178 ml for BaCl2/CaCl2 reservoirs and 

184 138 ml for Na2SO4 reservoirs. In numerical, inserting such large volumes at boundary would 

185 result very large simulation time Thus, a bypass technique is used where 1 mm numerical 

186 reservoirs are created with porosities equal to 187 for Ca2+/Ba2+ reservoir and 145 for SO 2- 

187 reservoir. This trick yields the correct volume (and contents in solutes) while maintaining a 

188 short distance and maximizing diffusion between the reservoirs and the chalk sample. The 

189 sample in 1D simulations was discretized with dx = 100 µm. To initiate the counter diffusion, 

190 the initial chemical conditions in each reservoirs were derived from experimental conditions 

191 (Table-S1 in Supporting information). The modeling process starts by allowing these ionic 

192 species to counter diffuse and meet in the sample pore space. Over time, these ions locally 

193 increase supersaturation in pore solution with respect to barite or gypsum. Experimentally, 

194 the supersaturation state required to initiate precipitation is 4.0 for barite (Prasianakis et al., 



195 2017) and 0.3 for gypsum. Over time, the precipitation initiation only takes places in points 

196 that achieved this supersaturation threshold (Kashchiev and van Rosmalen, 2003; Prieto, 

197 2014), for which Equation (1) is used. In HYTEC, initiation of first precipitates is achieved 

198 using a kinetic rate law that represents homogeneous nucleation in the entire sample by 

199 spraying the system with a pseudo-mineral “nucleus” (concentration Cpm) of low reactive 

200 surface area (As,pm). Once the supersaturation in first line of precipitation is achieved, the 

201 nucleus will allow initiation of selected mineral precipitation. Nevertheless, at the beginning 

202 of experiment if a mineral is present in a system then precipitation will occur (possibly under 

203 kinetic control) as soon a saturation is reached (saturation index ≥ 0). The values of the 

204 kinetic rate constant (krate in mol m-2 s-1) and specific surface area (As,min in m² g-1) for barite 

205 and gypsum equal to krate_barite =1 x 10-11 ; krate_gypsum = 1.5 x 10-6 and As_barite = 0.32 and As_gypsum 

206 = 1.65 were initially derived from literature (Nagaraja et al., 2007; Potgieter and Strydom, 

207 1996; Zhang and Nancollas, 1992). During simulations, these base values were slightly 

208 calibrated to improve the match with experimental results. In the experimental results, the 

209 diffusion behavior of ionic species from respective reservoirs into the sample were measured 

210 by periodic concentration acquisition from beginning until 140th day of experimental time. 

211 Similar concentration curves were obtained via 1D simulations and were compared with 

212 experimental results to obtain an insight on how diffusion behavior of each species changes 

213 in response to evolving precipitation in chalk sample. Similarly, tracer tests were modeled 

214 from 0 to 70 days and 70 to 140 days to estimate the precipitation feedback on chalk 

215 transport properties at different times. This feedback effect in 1D simulations were modeled 

216 using equation-4. 

217 Sensitivity analyses were carried out to test the impact of, (1) the mesh size, by decreasing it 

218 from 100 µm, to 50 and 25 µm, (2) the cementation factor on evolution of reacted zone, with 

219 values varying from 1.5 to 2.1 and (3) the supersaturation values used to initiate the gypsum 

220 or barite precipitations. The results of each sensitivity test are presented in Supporting 

221 Information. 

222 222 
 

223 2.2.2 2D simulations 
224 224 

 

225 In these simulations, the initial concentration conditions of reactants in respective reservoirs 

226 and boundary conditions were kept identical as 1D simulations. However, the system in y- 

227 direction is increased up to 8 mm high with discretization as 100 µm along x- and y-axis. 

228 Similar to the 1D simulations, the reservoirs are described with porosity greater than one, to 

229 account for a larger volume, without having to resort to a too high number of nodes. 

230 As noted in previous section, the 1D base simulations for both barite and gypsum case were 

231 modeled using a homogeneous porosity distribution in chalk sample. The kinetic rate 

232 equation used to model evolution of reacted zone uses saturation indexes that purely 

233 depend upon thermodynamic solubilities derived for bulk systems. As explained in the 

234 introduction section, the aim of this study is to demonstrate the combined effect of pore 

235 geometry (pore-scale diffusion, pore pressure, reactive surface area) and mineral intrinsic 

236 properties (solubility, precipitation rate, nucleation driven growth). However, to quantify each 

237 of these parameters one needs quantified dataset explaining local dynamics of precipitates 

238 formation, nucleation kinetics and detailed pore size distribution(Rajyaguru et al., 2019). 



239 However, the choice of experimental setup and measurements techniques posed restriction 

240 on obtaining such local dynamic processes. Moreover, experimental observations have 

241 clearly shown a two-dimensional regime of precipitation, which cannot be represented by 1D 

242 simulations. Thus, 2D simulations were carried out and the end-results are compared with 

243 micro-tomographic images of clogged area formed by barite and gypsum in chalk samples. 

244 The aim of such comparison was to explain quantitatively the underlying processes 

245 governing global distribution of precipitates in the clogging area. To obtain a broader 

246 understanding of such underlying processes, simulations were performed using different 

247 approaches. First, 2D simulations were performed by using a non-uniform reactivity of the 

248 porous medium to account for varying reactive surfaces initially present in chalk sample and 

249 their impact on governing distributions of barite and gypsum in clogging area (non-uniform 

250 distribution of Cpm). Then, heterogeneous distribution of porosities was considered to 

251 describe impact of local variation in diffusion of ionic species. Two cases were considered: a 

252 initial purely random Gaussian heterogeneous porosity field (Fig. 1a) and a structured 

253 heterogeneous porosity field (Fig. 1b). Third, different kinetic scenarios were investigated to 

254 disentangle the nucleus-driven nucleation vs a crystal-growth nucleation (Table 1). A direct 

255 comparison of barite and gypsum distributions in latter case allowed us to derive the porosity 

256 field that closely mimicked pore structure of natural chalk used in the experimental study of 

257 (Rajyaguru et al., 2019). Finally, comparing results of both cases with experimental 

258 observations allowed us to demonstrate whether pore structure heterogeneity controlled 

259 transport local ionic species diffusion or generating varying reactive surface was responsible 

260 for distinct distribution of gypsum and barite in the chalk sample. 

261 Figure-1 shows two representative porosity fields accounting for purely random 

262 heterogeneity and structured heterogeneity. As shown in Figure1A, the first random porosity 

263 field was generated without spatial structure with a normal distribution centered on 0.45, with 

264 a standard deviation 0.05. The end results of simulations obtained using such random 

265 heterogeneous porosity field provide us a good starting point to inspect as whether initial 

266 presence of surface sites reactivity or pore structure heterogeneity had a pronounced impact 

267 on controlling distributions of barite and gypsum in chalk sample. However, one must note 

268 that the pore structure of natural chalk sample is formed via breaking down of algae known 

269 as coccolithophore into calcite grains. Depending upon the burial depth, the heterogeneity of 

270 pore structure in chalk sample consists of macropores stemming from coccolithophores and 

271 microporosity between   void   spaces   of   calcite   grains.   Several   studies   focusing   on 

272 petrophysics of natural chalk have shown that such heterogeneities could be decomposed 

273 into statistically representative elementary volumes (SREVs) of correlation lengths ranging 

274 from 5 μm to 100 μm (Bruns et al., 2017; Müter et al., 2014; Villanova et al., 2013). 

275 Nevertheless, as formation of chalk pore structure purely depends on the nature of 

276 sedimentation process and burial depth, these correlation lengths of SREVs could 

277 significantly vary for same family of micritic chalk at different burial sites (Faÿ-Gomord et al., 

278 2017; Yoon and Dewers, 2013). In the present study, such correlation lengths could be used 

279 to demonstrate if representation of a REV in form of such structured heterogeneities could 

280 result in closer prediction of barite and gypsum distributions in chalk samples. In this view, a 

281 second random porosity field shown in Figure-1B was generated with the same mean and 

282 deviation as purely random case, but integrating a spatial structure with a correlation length 

283 of 100 µm; the porosity field was simulated using the geostatistics library RGeostats (Renard 

284 et al., 2015). For both cases, the counter diffusion geometry, initial Ca/Ba and SO4 reservoir 



285 concentrations, diffusive coefficients, kinetic rate constants and specific surface area were 

286 kept similar to 1D simulations. 

287 287 
 

288 Table 1: Input parameters for kinetic rate expressions: chalk reactivity (As,pm in m2.g-1), and mineral 

289 surface area (Agypsum and Abarite in m2.g-1) and supersaturation (SI) used for gypsum and barite growth 

290 in subset nucleus driven and transport driven growth. 
 

Case aS,pm AS,Gypsum SIGYPSUM AS,Barite sibarite 

Nucleus driven growth 1 0.1 0.3 1.8 4 

Nucleus driven growth 100 0.1 0.3 1.8 4 

Transport driven growth 1 10 0.3 1.8 4 

291 291 
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292 292 

293 Figure 1: Random porosity fields used in the 2D simulations. A: purely random unstructured gaussian 

294 porosity field with mean 45% and std 5%. B: random gaussian porosity field with a correlation length 

295 of 100 µm. 
 

296 296 
 

297 3 Results and discussion 
298 3.1 Barite Base Simulation 
299 The 1D simulation results for barite precipitation and its feedback impact on tracer diffusivity 

300 are presented in Figure 2 with a comparison to experimental results from (Rajyaguru et al., 

301 2019). As the simulation starts, the reactants diffuse into the chalk sample and decrease the 

302 ionic concentrations in the reservoir (Figure 2e). Consequently, Figure 2a shows a simulated 

303 diffusion profile for Ba2+ and SO 2- from each side of chalk surface towards the center of the 

304 sample. Over the simulation time, Ba2+ and SO 2- ions meet in the center of the chalk sample 

305 and increase the saturation of pore solution with respect to barite mineral. Once the 

306 threshold super-saturation is achieved, barite precipitates locally. Owing to the very low 

307 solubility product for barite, the simulations show that barium and sulfate concentrations are 

308 kept very low within the precipitation zone. The simulations further show that most of the 

309 barite precipitates grow in this first line of precipitation and the resulting clogging front 

310 evolves in a thin zone (Figure 2c). A progressive porosity loss and consequent diffusivity 

311 decrease (Figure 2b and 2d, resp.) is evidenced in this clogging zone. Indeed, as the size of 

312 clogging zone starts to become significant, a clear feedback on porosity and diffusivity loss is 

313 observed on Ba2+ and SO 2+ concentration profiles in the reservoir (Figure 2a). After 50 days, 

314 the diffusive barrier created by the barite layer isolates the two reservoirs, consequently 

315 limiting any further precipitation process. This was observed experimentally with barium 

316 concentration reaching quasi-equilibrium state (Figure 2e). At this stage, using the initial and 

317 final concentration, it is possible to estimate the contribution of Ba2+ to barite precipitation in 

318 chalk sample. The simulations predicted that 2.7 mol of Barite precipitated in chalk sample. 

319 This estimate was well in accordance with experimental estimated barium contribution to 

320 barite precipitation, i.e. 2.5 mol “for detailed calculation refer to (Rajyaguru et al., 2019)”. At 

321 the end of the simulations, the predicted final thickness of clogging zone (highlighted in 
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322 orange in Figure 2f) is equal to ~600 μm (which is close to ~500 μm barite zone in chalk 

323 sample observed by BSE-SEM images in (Rajyaguru et al., 2019)). To estimate the 

324 feedback of barite precipitation on diffusion, water tracer tests performed at 0 days and 70 

325 days after the start of the clogging experiment. However, Figure 2f shows that the numerical 

326 simulations slightly underestimated the reduction in tracer profile for the case of 0 to 70 days 

327 and slightly overestimated the reduction in tracer profile for 70 to 140 days. This small 

328 contradiction between experimental and numerical results is due to the fact that in real 

329 sample the impact on tracer transport occurred due to the occurrence of clogging 

330 phenomena in a 3D-heterogeneous pore structure, whereas the numerical simulations 

331 calculated the tracer profiles based upon the total porosity loss at 1D using Archie’s 

332 relationship. One must note that the results presented in supporting information for 

333 sensitivity of mesh size and cementation factor reveals a limited impact of these parameters 

334 on the final outcomes of 1D simulations. Conversely, kinetic rate and chalk initial reactive 

335 surface area exhibit a larger control on simulation results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
336 336 

337 Figure 2: comparison between HYTEC and experimental data for chalk barite simulation. A: 

338 concentration profiles for Ba2+ and SO 2- at 5, 10, 20 and 50 days, B: evolution of the effective 
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339 diffusion coefficient, C: barite volume fraction profiles, D: evolution of porosity E: Evolution of 

340 reservoir concentrations for Ba2+ and SO 2 and comparison between models (1D & 2D) with measured 

341 values (circles), F: Experimental (circles) and numerical (continuous line) water tracer evolution in 

342 downstream reservoirs for water tracer injected at 0 days and 70 days after barite precipitation. One 

343 must note that the dashed line represents a translation of the initial blue model line, and orange zone 

344 represents central zone of the chalk sample. 
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345 3.2 Gypsum Base Simulation 
346 3.2.1 1D simulation 

347 Figure 3, represents the 1D numerical results for gypsum precipitation in chalk sample. The 

348 simulations show that as Ca2+ and SO 2- diffuse into the chalk sample, a progressive 

349 increase in the saturation with respect to gypsum is observed in the center of the sample 

350 (figure 3b). The concentration profiles of Ca2+ and SO 2+ (Figure 3a & 3e) show that each of 

351 the ion diffuses from their respective reservoirs into the chalk sample and then into the 

352 counter reservoir. These figures show an increase in Ca2+ and SO 2- concentration in 

353 counter reservoirs for initial 20 days, after which their concentration reach a quasi- 

354 equilibrium state for 140 days of experimental time. Such increase in their concentration 

355 resulted in small precipitation of gypsum in both reservoirs. The numerical simulations were 

356 able to reproduce these experimentally observed concentration profiles and hinted towards 

357 gypsum precipitation in reservoirs (Figure 3c). This is marked by the discontinuity in the 

358 reservoir concentration curves (Figure 3e), which occurs when supersaturation to initiate 

359 precipitation is reached in the reservoir. As a result, their diffusion profiles are very different 

360 compared to the barite case (compare Figure 3a to Figure 2a). Unlike barite, gypsum is a 

361 fairly soluble mineral, so that the pore solution requires more calcium and sulfate ions to 

362 reach the saturation threshold to initiate precipitation. Consequently, longer times are 

363 required to achieve such saturation values that could initiate precipitation and form a strong 

364 clogging zone capable of restricting the diffusion Ca2+ and SO 2- ions into the counter 

365 reservoir. However, once the precipitation starts a progressive increase of gypsum mineral in 

366 the chalk sample takes place (Figure 3c). Similar to barite case, the impact of gypsum 

367 precipitation on chalk sample was estimated by tracer tests performed at 0 days and 70 days 

368 and 70 to 140 days after the start of the clogging experiment. The corresponding numerical 

369 results presented in Figure 3f shows that the numerical simulations reproduced the tracer 

370 profile for the case of 0 to 70 days, but clearly underestimated the tracer profile for 70 to 140 

371 days. This limitation of 1D simulations to describe the impact of gypsum clogging on chalk 

372 transport properties clearly suggests that small-scale heterogeneity either in reactive surface 

373 area or in transport properties is likely to have a pronounced impact on distribution of 

374 precipitates, width of the clogging area and feedback on tracer diffusivity. Indeed, a direct 

375 comparison between Figure 3c and Figure 2c shows that even at 1D scale the final width of 

376 clogging zone is strongly dependent on the ratios between, solubility, precipitation kinetics 

377 and transport properties. Thus, to describe properly the barite and gypsum clogging in chalk 

378 samples it is imperative to perform numerical simulation with similar initial and boundary 

379 conditions as 1D scale but now taking into account the pore scale heterogeneities. For such 

380 approach, one needs to move from 1D scale to 2D scale. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

381  

382 Figure 3: comparison between HYTEC and experimental data for basic chalk gypsum simulation, A: 

383 
2- 

Concentration profiles of Ca2+ (solid lines) and SO4 (dashed lines) B: gypsum saturation index at 5, 

384 10, 20 and 50 days in the precipitation zone, C: gypsum volume fraction profile in the sample and in 

385 the reservoirs, D: porosity loss due to gypsum precipitation and its impact  on local  diffusivity 

386 reduction in the center of the sample, E: Experimental (circles) and numerical (continuous line) 

387 
2- 2+ 

concentration evolution of SO4 and Ca in their respective reservoirs for total experimental time of 

388 140 days, F: Experimental (circles) and numerical (continuous line) water tracer evolution in 

389 downstream reservoirs for water tracer injected at 0 days and 70 days after gypsum precipitation. One 

390 must note that the orange zone represents central zone of the chalk sample where most of the clogging 

391 occurred during precipitation process. 

392 
 
393 

 
3.2.2 2D simulations 

394 At first, gypsum simulations were performed using a varying reactivity of the porous medium 

395 within the chalk sample (Fig 4a) and using a purely random porosity field (Fig 4b). Fig 4a 



396 shows that presence of such reactive sites does not yield a final distribution of gypsum 

397 precipitation that is comparable to experimental results (see figure S4 in supporting 

398 information). Indeed, the location of nucleation control depends on where supersaturation is 

399 reached, which does not depend on reactivity. As further precipitation is dominated by the 

400 growth of gypsum, the precipitation front is very similar to the one observed for 1D 

401 simulations. Also, a purely random porosity field does not yield strong differences, as the 

402 lack of structure averages out the different path and yield a similar precipitation pattern (Fig 

403 4b). 
 

404 

405 Figure 4: Distribution of Gypsum precipitation for two scenarios at the end of simulation time of 140 

406 days. a) Homogeneous porosity with varying reactivity of the porous medium. b) Purely random 

407 porosity field. 
 

408 Conversely, using a porosity distribution exhibiting a certain degree of structure allows some 

409 locations to initiate precipitation before others and thereby leading to formation of a 

410 discontinuous zone of precipitation with certain clusters. The numerical simulation did show 

411 such behavior on formation of isolated clusters of gypsum (Fig. 5 a) and which is in very 

412 good visual agreement with tomographic images that are presented in figure S4 in 

413 supporting information. Based on these simulations, it seems that the appearance of 

414 clusters is dependent on the combined effect of relative rates of transport and reaction 

415 kinetics. Furthermore, the influence of nucleation kinetics on gypsum precipitation is 

416 illustrated in Figure-6. Figure-6a shows that nucleation driven kinetics leads to discrete spots 

417 of precipitation, while Figure-6b shows that growth-driven kinetics yields thin precipitation 

418 zone. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

419 419 

420 Figure 5: Final distribution of gypsum and associated porosity reduction for 2D simulations. Porosity 

421 of the reservoirs (above 1) is excluded from the color scale. 
 

422 422 

423 Figure 6: Influence of the nucleation mode. A) Nucleation driven precipitation modelled by a high 

424 initial porous medium reactivity. B) Gypsum-growth mechanism. One must note that the presented 

425 precipitation patterns were obtained at the end of simulation time of 140 days 
 

426 426 
 

427 3.3 Barite simulation with spatial variability 
428 We have shown that, for the gypsum case, incorporating a structured porosity field was 

429 required. One may wonder as what are the impacts of considering these pore-scale 

430 heterogeneities for the barite simulation. The results presented in Figure 7, shows a cross- 

431 section view of 2D barite simulation carried out in the two random heterogeneous porosity 

432 fields (with and without structure). In both cases, barite precipitation is confined within a thin 

433 zone in the center of the sample. Simulation suggests a significant porosity loss within the 

434 clogged zone in the porous medium at the end of the experiment (Figure 7). Both 

435 simulations display similar formation of a thin, continuous and regular, barite-clogged area. 

436 Comparison of both simulations confirms that for the barite experiment, spatial variability 



437 triggers small local variations in the diffusion of reactants towards the center of the sample; 

438 however, due to the low solubility of barite, the supersaturation to initiate precipitation is 

439 similar to the (1D) homogeneous base case. The slow kinetics further compensated the 

440 impact of local variation in selective precipitation initiation preventing the scenario of spheres 

441 formation. As simulations proceeds, barite grows at these first points of precipitates in the 

442 center of the sample. Nevertheless, one could clearly observe that the clogged zone 

443 formation using of structured porosity field produce barite distributions closer to experimental 

444 results (refer to Figure S5 in Supporting information). 
 

 
445 445 

446 Figure 7: evolution of barite volume fraction (top) and porosity field (bottom) mineral using HYTEC 

447 at the end of the simulation (140 days). 
 

448 448 
 

449 4 Conclusion: 
450 In this study, two sets of numerical simulations were performed to investigate coupled impact 

451 of physical properties in the form of pore structure heterogeneity with chemical properties in 

452 the form of mineral intrinsic properties (solubility, rate kinetics) in driving distribution and 

453 porosity loss via secondary mineral formation. The 1D modeling results derived crucial 

454 information on location of clogged area, total porosity loss and mass transfer from  inlet 



4 

4 

455 reservoirs to sample. For barite precipitation in chalk, the experiments showed the formation 

456 of clogging zone a thin layered structure and was located at the center of the sample. At 1D, 

457 it was possible to reproduce this clogging feature using numerical simulations and with 

458 correct estimation of Ba2+ and SO 2- diffusion from sample boundary, overall amount of 

459 barite precipitation in the sample, and fair estimation of feedback on water tracer diffusivity. 

460 Thus, these simulations show that for some mineral such as barite, 1D simulations are 

461 useful to derive the processes at boundary conditions. For gypsum experiments, the 

462 numerical simulations fairly determined the Ca2+ and SO 2- diffusion from sample boundary. 

463 The simulations also correctly hinted towards diffusion of ions into the counter reservoirs and 

464 contributing to precipitation at bulk conditions. However, in this case Archie’s relationship 

465 clearly underestimated the tracer transport after formation of clogging zone. Nevertheless, 

466 both   barite   and   gypsum   experiments   clearly   hinted   towards   performing   numerical 

467 simulations where clogging behavior could be modeled by taking into account the presence 

468 of small-scale structured heterogeneities that could not be resolved in 1D via sensitivity 

469 analysis by changing parameters such kinetic rate, cementation factor, mesh size and 

470 saturation index values. In this view, the first set of numerical simulations at 2D scale 

471 considered investigating precipitates distribution and local porosity loss in response to 

472 structured and unstructured random porosity fields. However, the second set of numerical 

473 simulations considered investigating the formation of clogging zone in a chalk sample that 

474 initially contains randomly sprayed reactive surfaces. In the former case, the aim of 

475 simulations was to investigate the competition between mass transport and reaction kinetics, 

476 and in latter case, the aim of simulations was to generate a competition between kinetic 

477 driven and nucleation growth precipitation. The results of both simulations exercise showed 

478 that the consideration of structured heterogeneous porosity field showed gypsum distribution 

479 very similar to experimental results. These findings clearly validate the assumption 

480 presented in (Rajyaguru et al., 2019), i.e. “gypsum precipitation behavior in chalk is due to 

481 strong coupling between reaction kinetics and pore structure heterogeneity.” However, the 

482 simulations results  for barite conducted for purely  random and structured porosity field 

483 showed a thin layered clogging front in the center of the sample. This observation clearly 

484 hints towards the fact that barite precipitation is indeed growth dependent. Thus, the 

485 numerical simulations presented in this study provide an essential information pertaining to 

486 the choice of scale that is necessary for studying clogging in porous media. A key 

487 information that could be derived from this exercise is the need to develop dedicated 

488 experimental datasets and test them using pore-scale modelling. It is imperative that the 

489 strong coupling of such experimental and numerical exercises could only derive the novel 

490 feedback relationship replacing Archie’s relationship. 

491 Finally, from 1D and 2D experimental results, we conclude that reactive transport 

492 simulations enabled to validate the model based on experimental results presented in 

493 (Rajyaguru et al., 2019), i.e. “how the physicochemical processes at stake yielded such 

494 different precipitation morphologies.” In the end, the understanding obtained by the reactive 

495 transport approach allows to draw conclusions that may be suited to other types of 

496 simulations with geoengineering relevance. 
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