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Semiglobal High-Gain Hybrid Observer
for a Class of Hybrid Dynamical Systems

with Unknown Jump Times
Pauline Bernard, Ricardo G. Sanfelice

Abstract— We study the problem of observer design
for hybrid dynamical systems in the challenging setting
where the times at which jumps occur are unknown or,
equivalently, cannot be detected immediately. We show that
when the solutions of interest admit a uniform dwell-time
and when the flows are strongly differentially observable,
a sufficiently fast high-gain observer can be designed to
estimate the state during flow, but using the output of the
system near its jump times is counterproductive. To solve
this problem, we propose to “disconnect” the high-gain
observer when its estimate gets close to the jump set.
More precisely, the proposed hybrid observer generates
an estimate that, during flow, is obtained via the high-gain
observer and, around jump times, is obtained by integrating
forward the flow map of the system, until reaching the
jump set. Under appropriate assumptions around the jump
set of the system, we show that the proposed observer
guarantees local uniform asymptotic stability of an appro-
priately defined zero-error set. Then, we develop a method
to turn any such local hybrid observer into a semiglobal
hybrid observer. This observer operates sequentially by
first employing a continuous-time high-gain observer, and
then, after a finite amount of time, solely determined by
the current estimate, employing the available local hybrid
observer. The capabilities and performance of the proposed
hybrid observer are illustrated on a hybrid dynamical sys-
tem modeling a spiking neuron model.

I. INTRODUCTION

A. Background

THE problem of designing observers for general hybrid
systems presenting both a continuous-time behavior and

a discrete-time behavior is still largely unsolved, mainly due
to the fact that the system jump times, that is, the times at
which discrete events occur in the system solution, generally
depend on its initial condition, which is unknown in the
context of observer design. When the system jump times
are known or can be detected immediately, it is natural to
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Centre Automatique et Systèmes (CAS), Mines Paris, Université PSL,
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design an observer that is synchronized with the system,
namely, a hybrid observer whose jumps are triggered at the
same time as those of the system. This has been done under
assumptions on the time elapsed between successive jumps
(reverse/average dwell-time for instance) in a large variety
of contexts, including impulsive (possibly switched) systems
[1], [20], [27], sampled continuous-time systems [11], [23],
[26], and general hybrid systems [7], [8], [24], among others.
Because the observer jumps at the same time as the system,
both observer and system solutions are defined on the same
(hybrid) time domain, which facilitates the analysis of the
estimation error and the design of an observer. Unfortunately,
exact synchronization between the system and the observer is
usually difficult to achieve in practice, due to noisy/delayed
jump detection. Robustness with respect to delays in the jump
triggering has been studied in [7], but only practical stability
outside the delay intervals may be expected. In other contexts,
it may even be impossible to detect the jumps of the system
from the measurements available.

When the observer jumps are not triggered at the same
time as those of the system, the mismatch of time domains
between the system and observer solutions makes the for-
mulation of observability and, in turn, observer design very
challenging [4]. In the particular context of switched systems,
a lot of work appeared to design observers able to estimate
the switching signal [2], [22], [28], among many others. On
the other hand, very few observer results exist for general
hybrid systems [14] when the system jump times are unknown.
Exceptions are [18], [21], where the existence of a change of
coordinates transforming the jump map into the identity map
is studied, thus allowing the use of a continuous-time observer
in those new coordinates. Also in [12], an observer with non-
synchronized jumps is designed for billiard-type systems, but
the knowledge of the system jump times is still needed to
trigger the jumps.

B. Contributions

Motivated by the shortcomings mentioned above, we pro-
pose hybrid observers that can be designed without relying on
the knowledge or perfect detection of the jumps of the hybrid
dynamical system. For starters, in the preliminary version of
this work [5], we proposed a local hybrid observer for a class
of hybrid dynamical systems modeled as in [14], with linear
flow, jump, and output maps, assuming the flow dynamics are



observable and solutions of interest admit a uniform dwell-
time and evolve within a compact set. We showed that, while
it is tempting to use a sufficiently fast observer during flow
and trigger the jumps when its estimate reaches the jump set,
using the system output around the jump times to define the
innovation term is actually counterproductive. Indeed, an arbi-
trarily small mismatch between the jump times of the system
and of the observer typically leads to large estimation errors,
even in nominal (noise-free) conditions. Under appropriate
assumptions on the behavior of solutions around the jump set,
we proposed a hybrid observer that – via an innovation term –
properly injects the measurements during continuous evolution
of the hybrid system and, around the jump times, produces an
(open-loop) estimate until it reaches the jump set.

In this paper, we make the following contributions:
1) We show that the local design of [5] can be extended to

handle the larger class of nonlinear hybrid systems with
strongly differentially observable flow dynamics, for which
a sufficiently fast continuous-time high-gain observer can
be used during flow. Because the latter is generally not in
the system coordinates an additional state is added to the
observer and the hybrid logic appropriately adapted.

2) Unlike in [5] where only local asymptotic convergence to
an appropriate zero-error set is presented, we prove here
local uniform asymptotic stability.

3) We then propose a novel general method enabling to
adapt any local asymptotic observer designed for this class
of systems into a semiglobal one. The idea is to run a
preliminary high-gain observer and “switch” to the local
hybrid observer at an appropriate time. But this “switching”
time has to be chosen with care in order to ensure that the
estimation error is sufficiently small at that time, no matter
when the system may have jumped in the meantime. We
thus provide an algorithm to choose this “switching time”
based on the value of the high-gain estimate and show
semiglobal convergence of the obtained hybrid observer.

Finally, the performance of such a design are illustrated in
simulations for different scenarios of initial conditions and
compared to a more standard synchronous observer design
with delayed jump detection, on an example featuring a
spiking neuron.

C. Notation and Preliminaries
We denote R (resp. N) the set of real numbers (resp.

integers), R≥0 := [0,+∞), R>0 := (0,+∞), and N>0 =:
N \ {0}. For x in Rn and A subset of Rn, |x|A denotes
the distance from x to A and ∂A the boundary of A. For
a symmetric real matrix P , λ(P ) (resp. λ(P )) stands for its
smallest (resp. largest) eigenvalue. For a C1 map V : Rn → R,
LFV (x) := dV

dx (x)F(x) denotes the Lie derivative along the
vector field F . For a differential equation ẋ = f(x) with
f locally Lipschitz, Ψf (x, τ) denotes the value at time τ
of the solution initialized at x. We recall that a C1 map
T : O ⊆ Rn → Rm with m ≥ n is an immersion on
O if ∂T

∂x (x) is full-rank for all x ∈ O. We consider hybrid
dynamical systems of the form (1) introduced in Section II-
A, as defined in [14], whose solutions are defined on so-
called hybrid time-domains. A subset E of R≥0 × N is a

compact hybrid time-domain if E =
⋃jm−1
j=0 ([tj , tj+1], j)

for some finite sequence of times t0 ≤ t1 ≤ . . . ≤ tjm ,
and it is a hybrid time domain if for any (tm, jm) ∈ E,
E∩ [0, tm]×{0, 1, . . . , jm} is a compact hybrid time domain.
For a solution (t, j) 7→ x(t, j) (see [14, Definition 2.6]), we
denote domx its domain, domt x (resp. domj x) its projection
on the time (resp. jump) component, and Ij := {t ∈ domt x :
(t, j) ∈ domx} the jth interval of flow. We say that x is
maximal if there does not exist any other solution x′ defined
on domx′ ⊃ domx and agreeing with x on domx. We say
that x is t-complete if domt x is unbounded and that it has
a dwell-time τm > 0 if it flows at least τm units of time
in between consecutive jumps. Finally, as defined in [4], [6],
xr is a j-reparametrization of x if there exists a function
ρ : N → N verifying ρ(0) = 0, ρ(j + 1) − ρ(j) ∈ {0, 1},
and such that xr(t, j) = x(t, ρ(j)) for all (t, j) ∈ domxr. If
in addition domx =

⋃
(t,j)∈dom xr(t, ρ(j)), then it is a full

j-reparametrization.

II. PROBLEM STATEMENT

A. Framework
We consider a hybrid system of the form [14]

H
{

ẋ = f(x) x ∈ C
x+ = g(x) x ∈ D , y = h(x) (1)

with state x ∈ Rnx and output y ∈ Rny , flow and jump maps
f and g locally Lipschitz, output map h, flow and jump sets
C and D. For this broad class of hybrid dynamical systems,
denoted H = (C, f,D, g, h), we are interested in estimating
the state of H when its solutions are initialized in a bounded
subset X0 ⊂ C ∪ D. We denote SH(X0) the set of maximal
solutions of H with initial condition in X0.

If the system jump times were known or immediately
detected as in [7], [8], [24], one could design an observer
for (1) of the form

Ĥ
{

ξ̇ ∈ F(ξ, y) when H flows
ξ+ ∈ G(ξ, y) when H jumps

, x̂ = T (ξ) (2)

that is synchronized with the system, for some maps F ,G :
Rnξ × Rny → Rnξ and T : Rnξ × Rny → Rnx to be chosen
such that x̂ asymptotically reconstructs the system state x. The
advantage of such a setting is that the observer and system
solutions are defined on the same domain, which facilitates
the analysis of the estimation error.

Unfortunately, exact synchronization between the system
and the observer is usually difficult to achieve in practice, due
to noisy/delayed jump detection. Motivated by this issue, in
this paper, we design an observer whose jumps are triggered
based on its own estimate of the system state, rather than
an exogenous signal. More precisely, we aim for a hybrid
observer of the form

Ĥ
{

ξ̇ ∈ F(ξ, y) (ξ, y) ∈ C
ξ+ ∈ G(ξ, y) (ξ, y) ∈ D , x̂ = T (ξ) (3)

for some maps F ,G, T and sets C,D to be designed. In this
setting, y = h(x) is a hybrid signal defined on the domain of
the system solution domx, which typically differs from the
domain of the observer solutions given by (3).



To cope with this mismatch, following [4], [6], solutions to
(3) are defined as pairs (ξ, yr), where dom ξ = dom yr and
yr is a j-reparametrization of y. More precisely, jumps in the
domain of the input y (namely, system jumps) trigger a jump
in the domain of the solution to (3), with the observer state ξ
either reset identically (trivial jump) or in G(ξ, y) depending
on the logic defined in [4], [6]. Similarly, ξ may jump using G
at times that are not jump times of the system solution x, so
such trivial jumps are also added in the domain of y leading to
its reparametrization yr. This purely analytical process enables
us to build a j-reparametrization of the system solution x and
its output y on the same domain as the observer solution.
However, this artificial addition of trivial jumps for analysis
purposes does not change the fact that the system and observer
solutions “truly” jump using g and G, respectively, at different
times. Consequently, even when x̂ “tends” to x asymptotically,
x̂ may always be slightly ahead/behind x around the jump
times, which typically prevents the estimation error x̂ − x to
converge to zero asymptotically around the jump times (see
this peaking phenomenon also in the context of tracking [10]).

As in [4], we consider more general notions of convergence
of (x, ξ) to appropriate observation sets A that are as close as
possible to the ideal zero-error set

Aideal = {(x, ξ) ∈ Rnx × Rnξ : T (ξ) = x}

where x̂ = x. Our goal is formulated as follows.
Problem statement: Given H = (C, f,D, g, h) and X0 ⊂

C ∪ D, design an observation set A ⊂ Rnx × Rnξ , hybrid
data (C,F ,D,G, T ) and an initializations set Ξ0 ⊂ Rnξ such
that for any maximal solution x to H with x(0, 0) ∈ X0

and any maximal solution (ξ, yr) to Ĥ defined by (3) with
input y = h(x) and with ξ(0, 0) ∈ Ξ0, there exists a full
j-reparametrization (xr, ξr) of x and ξ such that domxr =
dom ξr and

lim
t+j→∞

|(xr, ξr)(t, j)|A = 0 .

B. Assumptions

The following assumption describes the class of hybrid
systems considered in this study.

Assumption 2.1: Given H = (C, f,D, g, h) and X0 ⊂ C ∪
D, there exist τm > 0 and a compact subset X of C ∪D such
that any solution x ∈ SH(X0)

• is t-complete with dwell-time τm; and
• remains in X at all times.
The uniform dwell-time condition enables our design to rely

on an arbitrarily fast continuous-time observer. Under well-
posedness, the existence of such a dwell-time is guaranteed if
g(D) ∩ D = ∅ using [25, Lemma 2.7] and the fact that the
solutions evolve in the compact set X .

We assume that a “high-gain” continuous-time observer ż =
F`(z, y) is available, allowing to estimate (arbitrarily fast) a
certain function T of the state during flow. More precisely, we
make the following assumption.

Assumption 2.2: GivenH = (C, f,D, g, h), there exist λ >
0, `0 > 0, rational functions c and c, an open set O containing

cl(C ∪D), an injective immersion T : O → Rnz , and for all
` > `0, maps F` : Rnz ×Rny → Rnz and V` : O×Rnz → R
such that

c(`)|z − T (x)|2 ≤ V`(x, z) ≤ c(`)|z − T (x)|2

∀(x, z) ∈ X × Rnz (4a)

LF`V`(x, z) ≤ −`λ V`(x, z) ∀(x, z) ∈ (C∩X )×Rnz (4b)

with F`(x, z) = (f(x),F`(z, h(x)).
Note that the subscript ` highlights the dependency of V`

and F` with respect to the gain `. This gain controls the decay
rate in (4b), which can be chosen as large as necessary. The
following two examples show that Assumption 2.2 holds when
(f, h) is a linear observable pair and, more generally, when
(f, h) is strongly differentially observable.

Example 2.3 (Linear observable pair): Following [5], as-
sume the flow and output maps ofH are defined by f(x) = Ax
and h(x) = Hx with the pair (A,H) observable. Define
V ∈ Rnx×nx a change of coordinates transforming (A,H)
into a block-diagonal observable form, namely such that

VAV−1 = A + BH , HV−1 = H

with A := blkdiag(A1, . . . , Any ), B :=
blkdiag(B1, . . . , Bny ), H := blkdiag(H1, . . . ,Hny ),

Ai =


0 0 . . . 0
1 0
...

. . . . . .
0 1 0 0
0 . . . 0 1 0

 ∈ Rni×ni

Hi =
(

0 . . . 0 1
)
∈ R1×ni ,

Di ∈ Rni×1, and ni integers such that
∑ny
i=1 ni = ny .

Consider vectors Ki such that Ai − KiHi is Hurwitz, and
for a positive scalar `, define Li(`) := diag(`di−1, . . . , `, 1).
Then, let us take F` defined by

F`(z, y) = Az − V−1(B + `L(`)K)(Hz − y) (5)

where K := blkdiag(K1, . . . ,Kny ), L :=
blkdiag(L1, . . . ,Lny ). Consider a positive definite matrix
P ∈ Rnx×nx such that

(A−KH)>P + P (A−KH) ≤ −λP

for some λ > 0. Then, for any C,D, g, (4) holds with T = Id,

V`(x, z) = (x− z)>V>L(`)−1PL(`)−1V (x− z) ,

`0 = 0 , c(`) =
λ(V>PV)

`2(d−1)
, c(`) = λ(V>PV) ,

where n = maxni. �

Example 2.4 (Strongly differentially observable pair):
Assume that H has ny = 1, and its flow/output pair (f, h) is
strongly differentially observable of order nz on an open set
O ⊂ Rnx containing cl(C ∪D), i.e., the map T : Rnx → Rnz
defined by

T (x) = (h(x), Lfh(x), ..., Lnz−1
f h(x)) (6)



is an injective immersion on O. Consider a map Φ : Rnz →
Rnz of the form

Φ(z) = sat ◦Lnzf h ◦ Tinv(z) ,

where Tinv is a locally Lipschitz left-inverse of T verifying
Tinv ◦ T = Id on X , which is guaranteed to exist due to
the properties of T , and sat is a bounded C1 map verifying
sat = Id on Lnzf h(X ). Then, a high-gain observer [17] can
be built for the flow dynamics, with

F`(z, y) = Az +BΦ(z) + `L(`)K(y − z1) , (7)

A =


0 1 . . . 0
0 0 1
...

. . . . . . . . .
... 0 1
0 . . . . . . 0 0

 ∈ Rnz×nz , B =


0
...
0
1

 ∈ Rnz

L(`) = diag(1, `, `2, . . . , `nz−1), and K such that A−KH is
Hurwitz with H = (1, 0, . . . , 0). Standard high gain computa-
tions [17] show that conditions (4) then hold for the Lyapunov
function

V`(x, z) = (T (x)− z)>L(`)−1PL(`)−1(T (x)− z) ,

with P a positive definite matrix such that

(A−KH)>P + P (A−KH) ≤ −λ0P

for some λ0 > 0, c(`) = λ(P )
`2(nz−1) , c(`) = λ(P ), λ > 0

depending on the Lipschitz constant of Φ, and ` larger than
a threshold `0 > 0 also depending on that Lipschitz constant.
Note that the same tools can be used for multi-output triangular
normal forms [15]. �

In what follows, we consider a strict compact superset Xm
of X in O, with X defined in Assumption 2.1 and O defined
in Assumption 2.2. Because T is an injective immersion on
O, it admits a Lipschitz left-inverse Tinv : Rnz → Rnx such
that

Tinv ◦ T (x) = x ∀x ∈ Xm (8)

(see for instance [3, Lemma A.12]).
It is shown in [7] that when the jump times of the system are

known or detected instantaneously, a possible observer consists
of Ĥ defined in (2), with the high-gain observer F := F` given
by Assumption 2.2 during flow, a jump map G of the form

G (z) := sat ◦T ◦ g ◦ Tinv(z) , (9)

with sat a C1 bounded map verifying sat = Id on T ◦
g(X ), and an estimate given by x̂ = Tinv(z). Indeed, for
` sufficiently large compared to the Lipschitz constant of G
and the dwell-time τm, one can show that the (exponential)
decrease of the Lyapunov function V` during flow wins over
its (polynomial) increase at jumps and the estimation error;
thus, it asymptotically converges to zero.

Still relying on the dwell-time and the available high-gain
continuous-time observer, the goal of this paper is to design a
hybrid observer that, unlike (2), does not rely on the detection
of the system jumps. More precisely, rather than detecting
when x ∈ D, which is not always possible, we propose to

use the information that x̂ := Tinv(z) ∈ D to trigger the
observer jumps, at least when the initial estimation error is
sufficiently small. The construction of a local hybrid observer
solving this problem is presented in Section III and the uniform
asymptotic stability of its estimation error is proved in Section
IV. Then, in Section V, we propose a general procedure to
build a semiglobal hybrid observer from such a local design.
Their performance is illustrated in simulations in Section VI.

III. LOCAL HIGH-GAIN HYBRID OBSERVER

An initial approach for the design of a local observer could
be to use the flow map F` given by Assumption 2.2 during
flow, and simply trigger the jumps of the observer when
x̂ ∈ D, with the jump map G defined in (9). Indeed, if the
estimation error sufficiently decreases during flow, one can
expect that the observer jumps will occur close in time to those
of the system and somehow the observer will synchronize and
converge. However, around the observer jump times, because
the system typically jumps slightly sooner or later than the
observer, the input y feeding the observer flow map might
actually constitute a disturbance and hinder the convergence
of the observer. More precisely, assume that x̂ and x are both
close to D and x jumps first. Then, the observer input y after
the jump could steer x̂ away from D so as to allow x̂ to catch
up with x via flow, which could cause x̂ to miss its jump.
The same reasoning holds in the reverse case where x̂ jumps
slightly ahead of x, and where the use of y would force x̂ to
track the value of x before it jumps, instead of simply waiting
for x to catch up via a jump.

This issue is dealt with in [12] by making x̂ follow a
mirrored image of x with respect to D during the jump time
mismatches. But this approach solves the problem in a very
particular setting of billiard systems, where g◦g is the identity,
and more importantly, the knowledge of the system jump
times is necessary to decide whether x̂ should follow x or
its mirrored image. In the problem tackled in this paper, the
system jump times are unknown (and g ◦g is not the identity),
so the paradigm of [12] cannot be applied.

A. Open-Loop Estimation around Jump Times
Following the approach presented in our preliminary work

in [5], we propose to “disconnect” the high-gain observer when
x̂ is nearby the jump set D. More precisely, we propose a
hybrid mechanism that lets x̂ flow in “open-loop” according
to f until it naturally reaches D, and only reconnects the
correction term in the observer a small amount of time ∆
later, in a way that ensures the system has also jumped in
the meantime. This process is illustrated in Figure 1. For this
strategy to work, we assume that (i) the system eventually
reaches D when entering a certain neighborhood of D (see
(P1) below), (ii) the system necessarily jumps from D (see
(P2)), and with τm given by Assumption 2.1, iii) the system
takes at least 0 < τ0

m < τm units of time to reach that
neighborhood again (see (P3)). Similar conditions are used
in [13] in the context of trajectory tracking.

More precisely, consider a projection map Π : Rnx →
cl(C ∪D) verifying Π ◦Π = Π, Π(Xm) ⊂ Xm and for which



D

Dδ1

Dδ0
ż = F`(z, y)
x̂ = Tinv(z)
q = 2

˙̂x = f(x̂)

q = 1

˙̂x = f(x̂)

q = 0

x

x̂
x̂+ = g(x̂)

0 ≤ τ̂ ≤ ∆

τ̂ = ∆

ż = F`(z, y)
x̂ = Tinv(z)
q = 2

z+ = T (x̂)

Fig. 1: Sketch of hybrid mechanism in observer (13), with
system trajectory in black, observer trajectory in blue/yellow,
with blue (resp. yellow) representing observer flow (resp.
jumps), in the case where x̂ remains in cl(C ∪ D) so that
Π(x̂) = x̂.

there exists ap ≥ 1 such that

|x−Π(x̂)| ≤ ap|x− x̂| ∀(x, x̂) ∈ X × Rnx . (10)

In particular, (10) implies that Π = Id on X . The main role
of this projection is to reset the estimate in cl(C ∪D) at the
observer jumps, and to ensure that, given δ > 0, we have, for
all x ∈ Rnx ,

Π(x) /∈ Dδ =⇒ |x|D > δ

where
Dδ = {x ∈ cl(C ∪D) : |x|D ≤ δ} .

We make the following assumption.
Assumption 3.1: Given H = (C, f,D, g), X defined in

Assumption 2.1 and Xm verifying (8), there exist δ0 > 0 and
compact sets X ′m, X ′′m such that X ⊂ X ′′m ⊂ X ′m ⊂ Xm with

inf
x∈X
|x|∂X ′′m > 0 (11)

and the following hold:
(P1) for any x ∈ Dδ0 ∩ X ′′m, there exists τD ≥ 0 such that

• Ψf (x, τD) ∈ D,
• Ψf (x, t) ∈ (Dδ0 ∩ X ′m) \D for all t ∈ [0, τD),
where Ψf is the flow operator along the vector field f . In
addition, the map T : Dδ0∩X ′′m → R≥0 which associates
τD to each x ∈ Dδ0 ∩ X ′′m, is Lipschitz.

(P2) No flow in Dδ0 is possible for ẋ = f(x) starting from
D ∩ X ′m, namely there does not exist any solution t 7→
x(t) such that x(0) ∈ D ∩ X ′m and x(t) ∈ Dδ0 on [0, ε]
for some ε > 0.

(P3) g(D∩X ′m)∩Dδ0 = ∅ and there exists τ0
m > 0 such that

every solution t 7→ x(t) of ẋ = f(x) with x(0) ∈ g(D∩
X ′m) is defined over the interval [0, τ0

m], with x(t) ∈ Xm
and Π(x(t)) /∈ Dδ0 for all t ∈ [0, τ0

m].
Note that only the largest compact set Xm and the pa-

rameters δ0 and τ0
m are design parameters. The existence of

the intermediary compact sets X ′m and X ′′m is only required
for analysis in order to use the Lipschitz constants of the

nonlinear maps along the estimate trajectory. In particular, the
strict inclusion of X into X ′′m given by (11) allows to say
that if the estimation error x̂− x is sufficiently small, x ∈ X
implies x̂ ∈ X ′′m. Also, the reason why we need to differentiate
the compact sets X ′m and X ′′m is that there may not exist an
invariant compact set by the flow ẋ = f(x) in (P1). Indeed,
we only know by Assumption 2.1 that solutions initialized in
X0 remain in X but there is no reason why other solutions, in
particular x̂ flowing with f , should remain in a given compact
set. So we assume solutions starting in Dδ0 ∩ X ′′m remain in
a (possibly larger) compact set X ′m until they reach D, and
then remain in a possibly even larger Xm after their jump
while they flow on the interval [0, τ0

m]. Note that Assumption
3.1 was shown in [5] to hold for the model of a bouncing
ball, modulo a regularization of its jump set D encoding the
absence of Zeno. It is also shown to hold for a spiking neuron
model in Section VI.

Remark 3.2: Sufficient conditions on the data f , C, and
D ensuring the Lipschitzness of the time-to-impact function
T in (P1) are given in a more general context in [19] and
references therein. Actually, when there exists a continuously
differentiable function $ : Rnx → R such that the map T is
characterized at each x ∈ Dδ0 ∩ X ′′m by $(Ψf (x,T(x))) = 0
with Ψf (x,T(x)) ∈ D ∩ X ′m, the continuous differentiability
of T is guaranteed by the implicit function theorem under the
transversality condition

∂$

∂x
(x)f(x) 6= 0 ∀x ∈ D ∩ X ′m . (12)

Note that (12) also ensures that no flow is possible in D ∩
X ′m, namely (P2) holds. Alternatively, conditions involving the
tangent cone of the flow set at points in C ∩D ∩X ′m and the
flow map can be formulated to assure that flow in D ∩X ′m is
not possible.

B. Hybrid Observer Construction
Suppose Assumption 3.1 holds with δ0 and τ0

m, and pick
0 < δ1 < δ0 and 0 < ∆ <

τ0
m

2 . To implement the observation
strategy explained in the previous section, we define our hybrid
observer with state (z, χ, τ, q), where z and χ are used to
construct the estimate x̂ of the system state x, τ is a resettable
timer, and q ∈ {0, 1, 2} is a logic variable that describes
the “operating mode” of the observer. The hybrid observer
operates as follows (see also Figure 1 in the case where
Π(x̂) = x̂):
• When q = 2, z flows governed by the high-gain map F` and
x̂ is obtained by inverting T , namely x̂ = Tinv(z). In this
mode, the estimate x̂ approaches x over the flow interval
for sufficiently large values of `. On the other hand, the
states χ and τ are unused and, hence, remain constant. For
simplicity, τ is forced to be always 0 when q = 2.

• When Π(x̂) reaches Dδ1 , the observer jumps to mode q = 1
with χ initialized at Π(x̂), so as to store the current estimate
of x. During this mode q = 1, χ flows governed by f and
the estimate x̂ is given by χ. On the other hand, z and τ
are unused and remain constant, with still τ = 0.

• When χ reaches D, which we know happens in finite flow
time thanks to (P1), χ is reset to g(χ) and the mode changes



to q = 0. Indeed, no flow is possible from D in C. During
this mode q = 0, the timer τ counts flow time and χ flows
governed again by f for ∆ units of time. The estimate x̂ is
still given by χ and z is still unused, so it is kept constant.

• When the timer expires, namely when τ = ∆, the observer
jumps back to mode q = 2, with z updated to T (Π(χ)).

Naturally, since q is a logic variable, it is constant during flow
in each mode. In the following, we refer to the period of time
where z flows governed by F` and q = 2 as the high-gain
phase, and to the period of time where χ flows governed by
f with q ∈ {0, 1} as the open-loop phase.

This observation strategy is modeled by the following
hybrid system, denoted Ĥ:


ż
χ̇
τ̇
q̇

 =




F`(z, y)

0
0
0

 if (z, χ, τ, q) ∈ C2


0

f(χ)
0
0

 if (z, χ, τ, q) ∈ C1


0

f(χ)
1
0

 if (z, χ, τ, q) ∈ C0

(13a)


z+

χ+

τ+

q+

 =




z

Π(Tinv(z))
0
1

 if (z, χ, τ, q) ∈ D2


z

g(χ)
0
0

 if (z, χ, τ, q) ∈ D1


T (Π(χ))

χ
0
2

 if (z, χ, τ, q) ∈ D0

(13b)

with estimate given by

x̂ = T (z, χ, q) :=

{
Tinv(z) if q = 2
χ if q ∈ {0, 1} (13c)

the (disjoint) flow sets defined by

C2 = Czδ1 × Rnx × {0} × {2}
C1 = Rnz ×Dδ0 × {0} × {1}
C0 = Rnz × Rnx × [0,∆]× {0}

and the (disjoint) jump sets by

D2 = Dz
δ1 × Rnx × {0} × {2}

D1 = Rnz ×D × {0} × {1}
D0 = Rnz × Cδ0 × [∆,+∞)× {0}

where

Cδ0 = {x ∈ Rnx : Π(x) ∈ cl(Rnx \Dδ0)} (14a)
Czδ1 = {z ∈ Rnz : Π(Tinv(z)) ∈ cl(Rnx \Dδ1)} (14b)
Dz
δ1 := {z ∈ Rnz : Π(Tinv(z)) ∈ Dδ1} . (14c)

Of course, the system H evolves simultaneously with the
observer Ĥ, with jumps that are not necessarily synchronized
with those of the observer. However, as long as the estimation
error x̂−x is sufficiently small, the hybrid observer Ĥ in (13)
guarantees the following properties:
i) When the observer flows in mode q = 2, |Π(Tinv(z))|D =
|Π(x̂)|D ≥ δ1 so x /∈ D and system H is also flowing, with
y evolving continuously;

ii) When the observer enters mode q = 1, |Π(Tinv(z))|D =
|Π(x̂)|D = δ1, so x ∈ Dδ0 and from (P1)-(P2), x jumps in
a near future, some time during the open-loop phase where
q ∈ {1, 0};

iii) Once x has jumped, the observer has time to finish the open-
loop phase with q ∈ {1, 0} and to start again the high-gain
phase with q = 2, before x reenters Dδ0 (according to (P3)
and the fact that ∆ < τ0

m/2).
Item iii) ensures that the estimation error has time to decrease
via the use of the high-gain observer F` before another open-
loop phase starts.

It is interesting to note that the definition of the flow
and jump sets ensure a certain robustness of implementation
because 0 < δ1 < δ0. Indeed, at the end of a high-gain phase
in C2, a jump occurs in D2 when Π(Tinv(z)) reaches Dδ1 . At
this point, χ is reset to Π(Tinv(z)), thus it belongs to Dδ1 , and
flow is allowed for χ in the strictly larger set Dδ0 by definition
of C1. Similarly, a jump cannot happen before χ has reached
D by definition of D1. In other words, at the beginning of
the open-loop phase, χ is initialized “δ0 − δ1”-away from the
boundary of the flow set and “δ1”-away from the jump set,
which leads to a robustness margin equal to min{δ1, δ0− δ1}.

Remark 3.3: Note that, compared to [5], an additional state
χ ∈ Rnx is used in the open-loop phases with q ∈ {1, 0},
because the state z of the high-gain observer is generally in
other coordinates with possibly nz > nx and cannot be used
during that time. If z is directly in the x-coordinates, with
Tinv = Id, then χ can be removed as in [5].

C. Locally Asymptotically Stable Observer
With O and T given by Assumption 2.2, let us consider

A = A2 ∪ A10 ∪ A1 ∪ A0 (15)

where

A2 = {(x, z, χ, q) ∈ O × Rnz × Rnx × {2} : z = T (x)}
A10 = {(x, z, χ, q) ∈ Rnx × Rnz × Rnx × {1, 0} : χ = x}
A1 = {(x, z, χ, q) ∈ g(D)× Rnz ×D × {1} : x = g(χ)}
A0 = {(x, z, χ, q) ∈ D × Rnz × g(D)× {0} : χ = g(x)}

which, according to (8), are such that for each x ∈ X , with
X defined in Assumption 2.1, and x̂ defined in (13c),

(x, z, χ, q) ∈ A2 ∪ A10 =⇒ x̂ = x

(x, z, χ, q) ∈ A1 =⇒ x̂ ∈ D and x = g(x̂)

(x, z, χ, q) ∈ A0 =⇒ x ∈ D and x̂ = g(x)

The sets A2 and A10 correspond to a zero estimation error,
while the sets A1 and A0 correspond to x̂ being one jump



right ahead or behind of x. Unless exact synchronization of
the system and observer jump times is achieved, including A1

andA0 cannot be avoided in an asymptotic analysis of a hybrid
observer, since such errors are inevitable arbitrarily close to
the jump times. This is known as the peaking phenomenon.

The following theorem shows that for ` sufficiently large,
A is locally uniformly asymptotically stable for the intercon-
nection of H and Ĥ.

Theorem 3.4: Suppose Assumptions 2.1, 2.2, and 3.1 hold
with X0, `0, δ0, τ0

m and X ′′m. Pick 0 < δ1 < δ0 and 0 < ∆ <
τ0
m

2 . Then, there exists `∗ ≥ `0 such that for all ` > `∗, there
exist β` ∈ KL and ε` > 0 such that for any x ∈ SH(X0), any
maximal solution φ := (z, χ, τ, q) to Ĥ defined by (13) with
input y = h(x) and

φ(0, 0) ∈ C2 ∪
(
Rnz × (Dδ1 ∩ X ′′m)× {0} × {1}

)
such that

|(x, z, χ, q)(0, 0)|A < ε` (16)

is t-complete and there exists a full j-reparametrization xr of
x such that for all (t, j) ∈ domφ,

|(xr(t, j), z(t, j), χ(t, j), q(t, j))|A
≤ β`(|(x, z, χ, q)(0, 0)|A, t+ j) . (17)

In other words, (17) says that during the high-gain phases
where q = 2, z asymptotically converges to T (x) (captured
by A2), and during the open-loop phases where q ∈ {0, 1}, χ
either asymptotically converges to x (captured by A10), or is a
jump ahead/behind x during the jump time mismatches (cap-
tured by A1 and A0). However, thanks to T being Lipschitz,
the length of those time mismatches asymptotically goes to
zero.

Remark 3.5: The analysis of the estimation error heavily
relies on items i), ii), and iii) described above and, thus,
necessitates a sufficiently small initial error, guaranteeing that
x̂ is only one jump ahead or behind x. One may proceed
with initialization of (z, χ, τ, q) as follows. If we know that
at the initial time, x is not about to jump or has not just
jumped (namely x(0, 0) is not close to either D or g(D)),
one may initialize (z, χ, τ, q) to q(0, 0) = 2, τ(0, 0) = 0 and
z(0, 0) = T (x̂0) with x̂0 ∈ X \Dδ1 such that the estimation
error x̂0−x(0, 0) is sufficiently small to have (16) hold. On the
other hand, if we know that x(0, 0) is in Dδ0 or close to g(D),
one should initialize (z, χ, τ, q) to q(0, 0) = 1, τ(0, 0) = 0
and χ(0, 0) ∈ Dδ1 ∩ X such that either χ(0, 0) − x(0, 0) or
g(χ(0, 0))− x(0, 0) is sufficiently small according to (16).

IV. PROOF OF THEOREM 3.4
In this entire section, we impose Assumptions 2.1, 2.2,

and 3.1. We will start by showing that as long as the high-
gain Lyapunov function V` is sufficiently small during high-
gain phases, solutions to Ĥ are t-complete and alternating
between high-gain phases and open-loop phases. This is done
by following a solution and considering all possible cases (see
Lemma 4.1). Then, we study the evolution of the estimation
error through one cycle of high-gain and open-loop phases, and
finally, by iterating over those cycles, prove that a sufficient

large gain and small initial estimation error ensure the Lya-
punov function remains small enough and A is asymptotically
stable.

Consider 0 < ε < min{δ1, δ0 − δ1} such that

Xε := {x ∈ Rnx : |x|X ≤ ε} ⊂ X ′′m ,

with X defined in Assumption 2.1 (possible according to (11)).
Then, for all (x, χ) ∈ Rnx × Rnx ,
(a) If x ∈ D and |x− χ| ≤ ε, then |χ|D < δ1
(b) If |χ|D ≤ δ1 and |x− χ| ≤ ε, then |x|D ≤ δ0.
(c) If x ∈ X and |x− χ| ≤ ε, then χ ∈ Xε ⊂ X ′′m.

Denoting ainv the Lipschitz constant of Tinv, let

v` := c(`)

(
ε

apainv

)2

(18)

where ap and c(`) are defined in (10) and Assumption 2.2
respectively. Then, from (4a), (8), and (10), V`(x, z) ≤ v`
with (x, z) ∈ X × Rnz implies

|x−Π(Tinv(z))| ≤ ap|x− Tinv(z)|
≤ ap|Tinv(T (x))− Tinv(z)|
≤ apainv|z − T (x)| ≤ ε .

Therefore, items (a), (b), and (c) hold when V`(x, z) ≤ v` for
χ = Π(Tinv(z)) and, since ap ≥ 1, also for χ = Tinv(z).

A. t-Completeness of Observer Solutions
Let us start by showing that, given a solution x ∈ SH(X0),

any observer solution φ := (z, χ, τ, q) verifying V`(x, z) ≤
v` during the high-gain phases is t-complete, with the mode
q sequentially taking values 2 → 1 → 0 or 1 → 0 → 2
depending on the initial condition. Note that by definition of
solutions to hybrid systems with hybrid input y given in [6],
jumps of the input (and thus here of the system H) can trigger
artificial trivial jumps in the observer solution, which leads
us to consider in the next lemma a sub-parametrization φsub

which describes the behavior of φ without those trivial jumps.
Lemma 4.1: Consider x ∈ SH(X0) and a maximal solution

φ = (z, χ, τ, q) of Ĥ with input y = h(x) such that for all
(t, j) ∈ domφ such that q(t, j) = 2 and all j′ ∈ N such that
(t, j′) ∈ domx, V`(x(t, j′), z(t, j)) ≤ v` with v` defined in
(18). Then, φ is t-complete, and is a full j-reparametrization
of a hybrid arc φsub verifying either

qsub(t, j) = 2− j (mod 3) ∀(t, j) ∈ domφsub (19a)

if φ(0, 0) ∈ C2, or

qsub(t, j) = 1− j (mod 3) ∀(t, j) ∈ domφsub (19b)

otherwise.

B. Evolution of Estimation Error through a Cycle
q = 2→ 1→ 0→ 2

Consider the positive maps W : O×Rnz×Rnx×{0, 1, 2} →
R≥0 and U : Rnx × Rnz × Rnx × {0, 1} → R≥0 defined by

W (x, z, χ, q) =

{
V`(x, z) if q = 2
|χ− x|2 if q ∈ {0, 1}



U(x, χ, q) =

{
|g(χ)− x|+ |x|g(D) + |χ|D if q = 1
|χ− g(x)|+ |x|D + |χ|g(D) if q = 0

which verify

W (x, z, χ, q) = 0 ⇐⇒ (x, z, χ, q) ∈ A2 ∪ A10 , (20a)
U(x, χ, q) = 0 ⇐⇒ (x, z, χ, q) ∈ A1 ∪ A0 . (20b)

In high-gain phases, when q = 2, we know from Assump-
tion 2.2 that V` and thus W decrease exponentially at rate `λ.
The following lemma describes the evolution of the estimation
error through an open-loop phase. This error is measured by
W or U depending on the period: U is used when x is one
jump ahead or behind χ, i.e., during the interval of time with
jump mismatch, and W is used the rest of the time. The next
lemma roughly says that if the observer starts an open-loop
phase with V` sufficiently small, it will go through modes 1, 0
and then back to 2, and V` will have grown at most by a c(`)c(`)
through this process. Besides, x will have jumped only once
in the meantime. Then, either φ flows in mode 2 for all time,
or it reaches another open-loop phase with a dwell-time of at
least τ0

m−2∆, so that V` grows at most by a c(`)c(`)e
−`λ(τ0

m−2∆)

over the full cycle “open-loop + high-gain” phases.

Lemma 4.2: Consider x ∈ SH(X0) and a maximal solution
φ = (z, χ, τ, q) of Ĥ with input y = h(x). Consider a
transition from mode 2 to 1, namely a jump j ∈ domj φ such
that q(tj , j − 1) = 2 and q(tj , j) = 1. Assume

V`(x(tj , j
′), z(tj , j − 1)) < min

{
v`,

c(`)

a2
pa

2
inv

∆2

a2
τ

}
with j′ ∈ N such that (tj , j

′) ∈ domx, v` defined in (18),
ainv the Lipschitz constant of Tinv, ap defined in (10), and aτ
the Lipschitz constant of T on X ′′m∩Dδ0 given by (P1). Then,
j+ 3 ∈ domj φ and x jumps exactly once in the time interval
(tj , tj+3), i.e., j′ is unique such that

(tj , j
′) ∈ domx , (tj+3, j

′ + 1) ∈ domx .

More precisely, q(t, j) = 1 for all t ∈ [tj , tj+1], q(t, j+2) = 0
for all t ∈ [tj+2, tj+3], q(tj+3, j + 3) = 2, and there exist
a1, a0, a01 > 0 (independent from `, x and φ) such that

|χ(t, j)− x(t, j′)| ≤ a1|χ(tj , j)− x(tj , j
′)| ∀t ∈ [tj , tj+1]

|χ(t, j + 2)− x(t, j′ + 1)|
≤ a0|χ(tj , j)− x(tj , j

′)| ∀t ∈ [tj+2, tj+3]

and1

• either x jumps before φ reaches D1, so j + 1 is a trivial
jump in φ, q(t, j + 1) = 1 for all t ∈ [tj+1, tj+2], and
during the interval with jump mismatch

U(x(t, j′ + 1), χ(t, j + 1), q(t, j + 1))

≤ a01|χ(tj , j)− x(tj , j
′)| ∀t ∈ [tj+1, tj+2]

• or x jumps after φ has reached D1 so j + 2 is a trivial
jump in φ, q(t, j + 1) = 0 for all t ∈ [tj+1, tj+2], and

1x could also jump at the exact time where φ reaches D1, but in that case
it is equivalent to counting two jumps, one after the other, for easiness of
presentation, since the jump maps are independent.

during the interval with jump mismatch

U(x(t, j′), χ(t, j + 1), q(t, j + 1))

≤ a01|χ(tj , j)− x(tj , j
′)| ∀t ∈ [tj+1, tj+2]

Moreover, there exists a > 0 (independent from `, x and φ)
such that

V`(x(tj+3, j
′ + 1), z(tj+3, j + 3))

≤ ac(`)
c(`)

V`(x(tj , j
′), z(tj , j − 1)) , (21)

with c(`), c(`) given by Assumption 2.2. Finally, if in addition,

V`(x(tj , j
′), z(tj , j − 1)) <

1

a

c(`)

c(`)
v` , (22)

then, either q(t, j+3) = 2 for all t ≥ tj+3, or j+4 ∈ domj φ
with q(t, j+3) = 2 for all t ∈ [tj+3, tj+4], q(tj+4, j+4) = 1,
and

tj+4 − tj+3 ≥ τ0
m − 2∆ > 0

so that

V`(x(tj+4, j
′ + 1), z(tj+4, j + 3))

≤ ac(`)
c(`)

e−`λ(τ0
m−2∆)V`(x(tj , j

′), z(tj , j − 1)) . (23)

C. Iterating Cycles

Exploiting exponential growth over polynomial growth, let
us pick ` sufficiently large such that

µ` := ae−`λ(τ0
m−2∆) c(`)

c(`)
< 1 (24a)

and v1 sufficiently small such that

v1 <
c(`)

a2
pa

2
inv

min

{
∆2

a2
τ

,
1

a

c(`)

c(`)
ε2

}
(24b)

Then, if we ensure that the observer verifies V`(x, z) < v1

before each transition from high-gain to open-loop phase, we
ensure that i) V`(x, z) < v` after the open-loop phase (once it
has switched back to q = 2) thanks to (24b) and (18), and that
ii) V`(x, z) < v1 again at the next transition from high-gain
to open-loop phase, namely when q = 2→ 1, thanks to (24a).
Then, these transitions can be iterated by repetitively using
Lemma 4.2. Therefore, denoting vk the value of V` before the
kth transition q = 2→ 1, we have vk ≤ µk−1

` v1.
If q(0, 0) = 2, choosing |(x, z, χ, q)(0, 0)|A sufficiently

small ensures that |(T (x)−z)(0, 0)|, and thus V`, are initially
smaller than v1. Because V` decreases in high-gain phase when
q = 2, the observer necessarily verifies V`(x, z) < v1 at
its first transition to open-loop q = 2 → 1. On the other
hand, if q(0, 0) = 1, by assumption χ(0, 0) ∈ Dδ1 ∩ X ′′m and
choosing |(x, z, χ, q)(0, 0)|A sufficiently small ensures that
|(x−χ)(0, 0)| and thus W is initially sufficiently small, so that
all the previously described steps are still valid and V` is also
smaller than v1 at its first transition to open-loop q = 2→ 1.



D. Asymptotic stability of A
For each system jump, the observer solution jumps four

times: three times for its own transitions between modes 2→
1→ 0→ 2, with its state reset using the observer jump map
(13b), and once trivially at the system jump with its state reset
via the identity map. For each j ∈ domj φ, let us thus denote

k(j) :=

{
b 1

4 (j + 3)c , if q(0, 0) = 2

b 1
4jc , if q(0, 0) = 1.

At each hybrid time (t, j) ∈ domφ, the integer k(j) repre-
sents the number of transitions from high-gain to open-loop
phase, i.e., q = 2 → 1, that have occurred in the observer
solution since the start. In the following, we denote xr the j-
reparametrization of x such that domxr = domφ, containing
trivial jumps whenever φ jumps and x does not.

According to (20) and by continuity, there exists K-maps
ρ, ρ′ such that on the compact set containing the solutions,

ρ′(W (x, z, χ, q)) ≤ |(x, z, χ, q)|A2∪A10
≤ ρ(W (x, z, χ, q))

ρ′(U(x, χ, q)) ≤ |(x, z, χ, q)|A0∪A1
≤ ρ(U(x, χ, q))

and

ρ′(min{W (x, z, χ, q), U(x, χ, q)}) ≤ |(x, z, χ, q)|A
≤ ρ
(

min{W (x, z, χ, q), U(x, χ, q)}
)

If k(j) = 0 for all j ∈ domj φ, it means no transition
from mode 2 to 1 occurs, namely the solution is eventually
continuous in mode 2. Exponential decrease of W during this
high-gain phase allows to conclude. Now, assume instead there
exists j1 ∈ N such that k(j1) = 1, namely the jump index
marking the first transition between q = 2 and q = 1, and
denote w1 := W (xr(tj1 , j1 − 1), z(tj1 , j1 − 1), χ(tj1 , j1 −
1), 2) = V`(x

r(tj1 , j1 − 1), z(tj1 , j1 − 1)), the value of the
Lyapunov function right before this transition. By applying
Lemma 4.2 iteratively, on each cycle of “open-loop + high-
gain” phases happening after hybrid time (tj1 , j1), we deduce
that there exists π` ≥ 1 (depending on `, a, a0, a1, a01) such
that for all (t, j) ∈ domφ with k(j) ≥ 1, one of the following
holds:
• W (xr(t, j), z(t, j), χ(t, j), 1) ≤ π`µ

k(j)−1
` w1 during the

first period of the open-loop phase where q = 1 and neither
x nor χ has jumped,

• U(xr(t, j), z(t, j), χ(t, j), q(t, j)) ≤ π`µ
k(j)−1
` v1 during

the jump time mismatch,
• W (xr(t, j), z(t, j), χ(t, j), 0) ≤ π`µ

k(j)−1
` w1 in the last

period of the open-loop phase where q = 0 and both x
and χ have jumped,

• W (xr(t, j), z(t, j), χ(t, j), 2) ≤ π`e
−λ`(t−tj−1)µ

k(j)−1
` w1

if q(t, j) = 2.
Those upper bounds ensure asymptotic convergence to A since
the mode q = 2 is persistently visited, µ` < 1 and t is
unbounded by t-completeness of solutions. However, in order
to show asymptotic stability as in (17), we need a KL-bound
with respect to both t + j and the initial condition. First,
concerning the initial condition, note that if q(0, 0) = 2, we
have j1 = 1 and

w1 ≤ e−λ`t1W (x(0, 0), z(0, 0), χ(0, 0), 2) .

Otherwise, if q(0, 0) = 1, we have j1 = 3, and

w1 ≤ π`e−λ`(t3−t2)W (x(0, 0), z(0, 0), χ(0, 0), 1)

On the other hand, concerning t + j, we need to be more
precise about the exponential decrease during each high-gain
phase. In particular, the bounds by µk(j)−1

` only account for a
decrease of W by e−`λτ

′
m during each high-gain phase with

q = 2 (see the definition of µ` in (24a)), while a high-gain
phase could last for more than τ ′m amount of time. In order to
obtain a KL-bound, we need to reestablish this unaccounted
decrease. Because each open-loop phase where q ∈ {0, 1}
lasts at most 2∆, and because τ ′m amount of flow is taken
into account in µ` at each high-gain phase where q = 2, extra
exponential decrease should be accounted for whenever

t ≥ (k(j) + 1)(2∆ + τ ′m)

so that we actually have

|(xr(t, j), z(t, j), χ(t, j), q(t, j))|A
≤ ρ
(
π2
`µ

k(j)−1
` e−λ`max{t−(k(j)+1)(2∆+τ ′m),0}

ρ′−1(|(x, z, χ, q)(0, 0)|A)
)

which gives the result.

V. SEMIGLOBAL HYBRID ASYMPTOTIC OBSERVER

With the high-gain hybrid observer formulated in Section III
assuring local uniform asymptotic stability of the set A for the
interconnection between H and Ĥ, in this section we provide
a hybrid observer that, through the use of a continuous-
time high-gain observer, which we call preliminary high-
gain observer, enlarges the region of attraction and leads
to a semiglobal result. The resulting observer, which we
refer to as semiglobal hybrid observer, sequentially switches
from the preliminary high-gain observer to the local hybrid
observer when (16) holds. A key challenge in enlarging the
basin of attraction is the presence of jumps of H when the
preliminary high-gain observer is used, which may prevent
the state estimate from converging to the state of H. To
overcome this issue, we exploit the properties in Assumption
2.1, as we describe below. Also, since the system is no longer
in its initialization set X0 at the switching time where the
local observer is launched, and since this switching time
will be chosen smaller than τm, we introduce an additional
initialization set X ′0.

Assumption 5.1: There exists a compact subset X ′0 of X
such that any solution x ∈ SH(X0) remains in X ′0 for (t, j) ∈
domx such that t ∈ [0, τm].

Since the construction of the semiglobal hybrid observer we
provide works for any observer that assures local convergence
to the set A, we design it for a general local hybrid observer.
To this end, we assume the existence of a local hybrid observer

Ĥ
{

ξ̇ ∈ F(ξ, y) (ξ, y) ∈ C
ξ+ ∈ G(ξ, y) (ξ, y) ∈ D , x̂ = T (ξ) (25)

for H, for instance, through the design proposed in Section
III. Similar to the properties in Theorem 3.4, we assume
that Ĥ induces the following local convergence property; see



Section II-A for the definition of solutions to (25) with hybrid
input y.

Assumption 5.2: Consider A ⊂ Rnx × Rnξ . Let X ′0 come
from Assumption 5.1. There exists a set Ξ0 ⊂ Rnξ and ε > 0
such that for any x ∈ SH(X ′0), any maximal solution (ξ, yr) to
Ĥ defined by (25) with input y = h(x) and with ξ(0, 0) ∈ Ξ0

such that x̂(0, 0) := T (ξ(0, 0)) verifies

|x̂(0, 0)− x(0, 0)| < ε , (26)

is t-complete and there exists a full j-reparametrization
(xr, ξr) of x and ξ such that domxr = dom ξr and

lim
t+j→∞

|(xr, ξr)(t, j)|A = 0 .

In other words, Ĥ is a local observer relative to A in the
sense of [4].

Example 5.3: Assume any solution x ∈ SH(X ′0), with X ′0
from Assumption 5.1, still verifies Assumption 2.1, namely
is t-complete with dwell-time τm and remains in X at all
times. If Assumptions 2.2 and 3.1 hold, we can apply Theorem
3.4 from X ′0. Therefore, Ĥ defined by (13) with state ξ =
(z, χ, τ, q) is a local observer for H. Indeed, for ` sufficiently
large, Assumption 5.2 is verified for A defined in (15), with

Ξ0 = C2 ∪
(
Rnz × (Dδ1 ∩ X ′′m)× {0} × {1}

)
for X ′′m from Assumption 3.1, and ε sufficiently small in (26)
for (16) to hold.

A. Preliminary High-Gain observer and Switching Logic

Building upon the local observer in (25) satisfying As-
sumption 5.2, we design an observer that ensures semiglobal
asymptotic convergence of the estimation error. Given an
arbitrary compact set Z0 ⊂ Rnz , we propose the following
time-driven logic:

1) Run a preliminary high-gain observer

żp = F`p(zp, y) , x̂ = Tinv(zp) (27)

on the time interval [0, tp], initialized in Z0, with F`p
and Tinv defined in Assumption 2.2 and (8);

2) After time tp, launch the local observer Ĥ defined in (25),
initialized at ξ0 ∈ Ξ0 such that T (ξ0) = x̂(tp),

with tp chosen in a way that ensures the estimation error x̂−x
provided by (27) at time tp, is sufficiently small to verify (26),
so that Ĥ can be launched from an appropriate initialization
guaranteeing asymptotic convergence to A. In the following,
we consider a map Ξ : Rnx → Ξ0 such that for any x̂ ∈ Rnx ,
ξ0 := Ξ(x̂) verifies T (ξ0) = x̂.

The observer (27) guarantees that the Lyapunov function
V`p defined in Assumption 2.2 decreases arbitrarily fast for a
sufficiently large gain `p, while the system H flows. However,
jumps of H could make V`p increase as (27) is not designed
to account for the effects of those jumps. And because the
jump times of H are unknown, we cannot adapt tp to the
first jump of H as it may happen any time. Fortunately, under
Assumption 2.1, we know that H can jump only once in the
interval [0, τm]. Therefore, choosing tp ≤ τm ensures that only

one jump of H should be handled in the error analysis on the
interval [0, tp).

A first idea could be to choose `p sufficiently large for V`p
to decrease by a sufficient amount over a time window smaller
than τm and fix tp = τm. The problem is when the system H
jumps right before τm: V`p may increase at the jump and does
not have enough time to decrease again before Ĥ is launched
at time τm.

A second idea could be to choose `p sufficiently large for
V`p to decrease by a sufficient amount over a time window
smaller than τm

2 and then authorize an immediate switch to
Ĥ as soon as Π(x̂) ∈ Dδ1 in the time interval

[
τm
2 , τm

]
, or at

time τm at the latest if this does not happen. Indeed, the fact
that Π(x̂) ∈ Dδ1 announces a system jump if the estimation
error x̂ − x is sufficiently small. But this strategy raises a
similar issue as above if H jumps right before τm

2 , since Π(x̂)
could happen to be near D right after τm2 without having x̂−x
sufficiently small to launch Ĥ. Actually, in this latter case, it
would have been better to stick to the first strategy and wait
till time τm in order for the estimation error to decrease again
after the system jump.

Due to those reasons, we propose to combine both strategies
and, considering τ1 < τ2 in (0, τm), switch to Ĥ either
• at time τm if the event “Π(x̂) ∈ Dδ1” happens in the time

window [τ1, τ2] or does not happen at all over the window
[0, τm]; or

• as soon as Π(x̂) ∈ Dδ1 if such an event happens after τ2.
To make this strategy more precise, and following the def-
inition of T in (P1), let ∆max be an upper bound of T on
Dδ0 ∩X , namely an upper bound of the time elapsed between
the time where a solution x of H enters Dδ0 ∩ X and the
time it reaches D. The existence of ∆max is guaranteed by
(P1) and it verifies ∆max ≤ aτδ0 where aτ is the Lipschitz
constant of T. Consider 0 < δ1 < δ0 sufficiently small such
that ∆max < τm, and times τ1, τ2 ∈ [0, τm], such that

0 < τ1 < τ2 < τ2 + ∆max < τm .

We show that for `p sufficiently large, the switching time tp to
Ĥ can be chosen in [τ2, τm] based on when Π(x̂) ∈ Dδ1 , with
x̂ provided by (27). The strategy is described in Algorithm 1
(for simplicity, we index the solutions to (27) on continuous
time only, even though its input y is an hybrid signal).

B. Semiglobal Hybrid Observer Construction

The solutions produced by Algorithm 1 are generated by a
hybrid observer Ĥsg, defined below in (28), with state ξsg =
(zp, τp, qp, qw, ξ), where zp is the state of the preliminary
observer (27), ξ is the state of the local observer Ĥ, τp ∈
[0, τm] is a timer, qw ∈ {0, 1} is a warning state used to
determine the time tp to switch to Ĥ, and qp ∈ {0, 1} is
used to indicate whether the observer is in preliminary mode
(qp = 1) or local mode (qp = 0). Actually, in order to
check the robustness of our algorithm, we also include the
solutions obtained by allowing either qw ← 1 or tp ← t at the
frontier time τ2 in Algorithm 1. This allows to obtain an outer
semicontinuous jump map with a closed jump set. Given the



Algorithm 1 Semiglobal observer strategy

Pick 0 < τ1 < τ2 < τm such that τ2 + ∆max < τm.
Pick zp(0) ∈ Z0.
qw ← 0, tp ← τm, t← 0.
while t < tp do

Run (27) with input y = h(x) and output x̂.
if Π(x̂(t)) ∈ Dδ1 and qw = 0 then

if t ∈ [τ1, τ2) then
qw ← 1

else if t ∈ [τ2, τm] then
tp ← t.

end if
end if

end while
Pick ξ(tp, 0) ∈ Ξ0 such that T (ξ(0, 0)) = Π(x̂(tp)).
while t ≥ tp do

Run Ĥ in (25) with input y = h(x) and output x̂.
end while

local and preliminary observers (25),(27), the dynamics of the
observer Ĥsg are thus defined by


żp
τ̇p
q̇p
q̇w
ξ̇

 =




F`p(zp, y)

1
0
0
0

 if ξsg ∈ Csg,1


0
0
0
0

F(ξ, y)

 if ξsg ∈ Csg,0

(28a)


z+
p

τ+
p

q+
p

q+
w

ξ+

 ∈




zp
τp
0
0

Ξ(Π(Tinv(zp)))

 if ξsg ∈ Dsg,1 \ Dwsg,1


zp
τp
qp
1
ξ

 if ξsg ∈ Dwsg,1 \ Dsg,1


zp
τp
qp
1
ξ

 ∪


zp
τp
0
0

Ξ(Π(Tinv(zp)))

 if ξsg ∈ Dsg,1 ∩ Dwsg,1


zp
τp
qp
qw
G(ξ, y)

 if ξsg ∈ Dsg,0

(28b)
with estimate given by

x̂ = Tsg(ξsg) :=

{
Tinv(zp) if qp = 1
T (ξ) if qp = 0

(28c)

the flow and jump sets defined by

Csg,1 =
(
Rnz × [0, τm]× {1} × {1} × Rnξ

)
∪
(
Rnz × [0, τ1]× {1} × {0} × Rnξ

)
∪
(
Czδ1 × [τ1, τm]× {1} × {0} × Rnξ

)
Csg,0 = Rnz × [0, τm]× {0} × {0, 1} × C
Dsg,1 =

(
Rnz × {τm} × {1} × {0, 1} × Rnξ

)
∪
(
Dz
δ1 × [τ2, τm]× {1} × {0} × Rnξ

)
Dwsg,1 = Dz

δ1 × [τ1, τ2]× {1} × {0} × Rnξ

Dsg,0 = Rnz × [0, τm]× {0} × {0, 1} × D

where C and D are defined in (25) and Czδ1 and Dz
δ1

in (14).
Solutions Ĥsg initialized in Z0 × {0} × {1} × {0} × Rnξ

flow in Csg,1 with qp = 1 and qw = 0 until either
• the timer τp reaches τm; or
• Π(x̂) ∈ Dδ1 at some time in [τ1, τm].
In the former case, the solution is in Dsg,1 \ Dwsg,1 so that qp
is reset to 0, marking the end of the interval over which the
preliminary observer is used, ξ is reset to Ξ(Π(x̂)), and the
solution then evolves according to Ĥ. In the latter case, either
• τp ∈ [τ1, τ2), the solution is in Dwsg,1 \ Dsg,1 and, after the

jump, qp remains at 1 and qw is equal to 1; or
• τp ∈ (τ2, τ3], the solution is in Dsg,1 \ Dwsg,1, qp is reset to

0, marking the end of the preliminary observer mode; or
• τp = τ2, the solution is in Dsg,1 ∪ Dwsg,1 and we have a

choice between the former two items.
In the first item, after qw has been reset to 1, the preliminary
observer evolves continuously with the solution in Csg,1 until
the timer τp reaches τm. When this happens, the solution is
in Dsg,1, so qp is reset to 0 and Ĥ is launched from Ξ(Π(x̂)).

C. Semiglobal Result
The hybrid observer Ĥsg guarantees the following

semiglobal property for the set A.
Theorem 5.4: Suppose Assumptions 2.1, 2.2, 3.1, 5.1 and

5.2 hold with δ0 sufficiently small such that ∆max < τm
(guaranteed since ∆max ≤ aτδ0 where aτ is the Lipschitz
constant of T). Consider a compact subset Z0 of Rnz and
0 < τ1 < τ2 < τm such that τ2 + ∆max < τm. Then,
there exists `∗ > `0 such that for all `p > `∗ and for any
x ∈ SH(X0), any solution φ = (zp, τp, qp, qw, ξ) to Ĥsg

defined in (28) and initialized in Z0×{0}×{1}×{0}×Rnξ
is t-complete and verifies

lim
t+j→∞

|(xr, ξr)(t, j)|A = 0 (29)

for some full j-reparametrizations xr and φr =
(zr
p, τ

r
p, q

r
p, q

r
w, ξ

r) of x and φ respectively such that
domxr = domφr.

Note that this result ensures asymptotic convergence, but not
stability. In particular, if Ĥ is chosen as in (13), the stability
provided by Theorem 3.4 ensures stability of |(x, ξ)|A with
respect to its value at time tp, but not with respect to its
initial condition. Indeed, the preliminary observer (27) running
on [0, tp] may miss up to one jump of x. In other words,
|(x, ξ)(0, 0)|A = 0 does not imply |(x, ξ)|A remains zero. In



order to ensure semiglobal stability, other observers must be
designed able to follow the jumps of H from the start.

On the other hand, the observer data is chosen verifying the
hybrid basic conditions, namely with closed sets, and outer
semicontinuous locally bounded maps (see [14, Assumption
6.5]). Due to the absence of stability with respect to the
initial error, we cannot directly claim robustness through [14,
Theorem 7.21]. However, the observer sequentially uses robust
elements (robust preliminary high-gain observer, hysteresis
in the choice of tp, robust local observer) which provide
robustness as observed in simulations in Section VI, although
of course, this design does not escape from the well-known
limitations of the performance of high-gain observers in the
presence of output noise.

Proof: Consider x ∈ SH(X0) and φ a solution to (28)
initialized in Z0 × {0} × {1} × {0} × Rnξ with input y =
h(x). The solution φ evolves as detailed above the statement
of Theorem 5.4, with first a preliminary observer mode (qp =
1) and then a local observer mode (qp = 0). Let us denote
tp ∈ [τ1, τm] the time at which the preliminary observer stops
and the associated jump jp ∈ {1, 2} verifying

qp(tp, jp − 1) = 1 , qp(tp, jp) = 0 .

If jp = 2, it means that Π(x̂) has been in Dδ1 in [τ1, τ2],
leading to the warning state qw being reset to 1 and tp
necessarily equal to τm. On the other hand, if jp = 1, it
means that no warning state has been used (i.e., qw(t, 0) = 0
for all t ∈ [0, tp]) and tp ∈ [τ2, τm]. Then, for all t ≥ tp and
all j ≥ jp such that (t, j) ∈ domφ, (t, j) 7→ ξ(t, j) evolves
according to the local observer dynamics Ĥ. By Assumption
2.1, the system solution x jumps at most once on [0, tp] and
x(tp, j

′) ∈ X , for j′ ∈ {0, 1} such that (tp, j
′) ∈ domx.

Since ξ is initialized to Ξ(Π(x̂(tp, jp))) at the beginning of
the local observer mode, Assumptions 5.1 and 5.2 imply the
result if

|Π(x̂(tp, jp))− x(tp, j
′)| < ε . (30)

Without loss of generality, we assume 0 < ε < min{δ1, δ0−
δ1}. Then, similarly to Section IV, for all (x, χ) ∈ Rnx×Rnx ,
(a’) If x ∈ D and |x− χ| ≤ ε, then |χ|D < δ1.
(b’) If |χ|D ≤ δ1 and |x− χ| ≤ ε, then |x|D ≤ δ0.

Still denoting ainv the Lipschitz constant of Tinv, let

v`p := c(`)

(
ε

apainv

)2

(31)

where ap and c(`) are defined in (10) and in Assumption 2.2,
respectively. Then, for all (x, z) ∈ X × Rnz ,

V`p(x, z) < v`p =⇒ |x−Π(Tinv(z))| ≤ ap|x−Tinv(z)| < ε .

In particular, it is enough to show that

V`p(x(tp, j
′), zp(tp, jp)) < v`p (32)

to ensure (30) holds.
Let us study the evolution of V`p(x, zp) on [0, tp]. Define

r0 = max
(x,z)∈X0×Z0

|T (x)−z| , r1 = max
x∈X
|T (g(x))−T (x)| .

Before the first jump of x, i.e. for all t ∈ [0,min{t1(x), τm}],
and for j ∈ {0, 1} such that (t, j) ∈ domφ,

V`p(x(t, 0), zp(t, j)) ≤ e−`pλtV`p(x0(0, 0), zp(0, 0))

≤ c(`p)e−`pλt|zp(0, 0)− T (x(0, 0))|2

≤ c(`p)r2
0e
−`pλt (33a)

Then, if t1(x) < tp, i.e., if the first jump of the system happens
before tp, x jumps to g(x) while zp does not jump. Since for
all (x, z) ∈ X × Rnz ,

V`p(g(x), z) ≤ c(`p)|z − T (g(x))|2

≤ c(`p)

2
(|T (x)− T (g(x))|2 + |z − T (x)|2)

≤ c(`p)

2

(
r2
1 +

1

c(`p)
V`p(x, z)

)
we have for all t ∈ [t1(x), tp], and for j ∈ {0, 1} such that
(t, j) ∈ domφ,

V`p(x(t, 1), zp(t, j))

≤ c(`p)

2

(
r2
1 +

c(`p)

c(`p)
r2
0e
−`pλt1(x)

)
e−`pλ(t−t1(x))

≤ c(`p)

2

(
r2
1e
−`pλ(t−t1(x)) +

c(`p)

c(`p)
r2
0e
−`pλt

)
.

(33b)

Denoting τ3 := τ2 + ∆max < τm and exploiting exponential
decay over polynomial growth, pick `p sufficiently large such
that

c(`p)r
2
0e
−`pλτ1 < v`p (34a)

c(`p)

2

(
r2
1e
−`pλmin{τ2−τ1,τm−τ3} +

c(`p)

c(`p)
r2
0e
−`pλτ2

)
< v`p

(34b)

We have the following cases:
• if t1(x) ≤ τ1, (32) holds according to (33b) and (34b) since
tp ∈ [τ2, τm] and thus tp − t1(x) ≥ τ2 − τ1.

• if τ1 < t1(x) ≤ τ2, we have according to (33a) and (34a),

V`p(x(t, 0), zp(t, 0)) < v`p

for any τ1 ≤ t ≤ t1(x), and thus, according to item
(a’), there exists t∗ ∈ [τ1, t1(x)) ⊆ [τ1, τ2) such that
Π(Tinv(zp(t

∗, 0))) ∈ Dδ1 . According to the behavior of
solutions described above (see also Algorithm 1), tp = τm
and (32) holds at time tp thanks to (33b) and (34b) since
tp − t1(x) ≥ τm − τ2 > τm − τ3.

• if τ2 ≤ t1(x) ≤ τm, still through (33a), (34a),

V`p(x(t, 0), zp(t, 0)) < v`p

for any τ1 ≤ t ≤ t1(x), and with item (a’), there exists
a minimal time t∗ ∈ [τ1, t1(x)) ⊆ [τ1, τm] such that
Π(Tinv(zp(t

∗, 0))) ∈ Dδ1 . We distinguish two cases:
– If t∗ ∈ [τ1, τ2], then, either tp = τm or tp = t∗, and since
x(t∗, 0) ∈ Dδ0 by item (b’), x jumps at a time

t1(x) ≤ t∗ + ∆max ≤ τ2 + ∆max = τ3

by definition of ∆max. Therefore, if tp = τm, (32) holds
thanks to (33b) and (34b) since tp − t1(x) ≥ τm − τ3.



And if tp = t∗, (32) holds according to (33a) and (34a)
since τ1 ≤ tp ≤ t1(x).

– If on the other hand, t∗ ∈ (τ2, τm], then necessarily tp =
t∗ and again, (32) holds according to (33a) and (34a)
since τ1 ≤ tp ≤ t1(x).

• if t1(x) ≥ τm, then tp ≤ t1(x) and (32) holds according to
(33a) and (34a).

We conclude that in all cases, (32) holds and the result is
proved.

The parameters τi in Algorithm 1 can be chosen arbitrarily
as long as τm − τ2 > ∆max, namely, in sight of Assumption
3.1, as long as any solution entering Dδ0 before τ2 reaches D
and jumps before τm. But of course, the smaller τ1, τ2 − τ1
and τm − τ3, the larger `p must be taken according to (34).

Remark 5.5: Note that if Ĥ defined in (13) with state ξ =
(z, χ, τ, q) is chosen as local observer, the implementation of
its semiglobal version Ĥsg defined in (28) can be simplified by
using the states z and q of Ĥ in place of zp and qp, respectively,
with, for instance q ∈ {0, 1, 2, 3}, where q = 3 denotes the
“local observer mode”.

VI. EXAMPLE

A. Bouncing ball

The local observer (13) was illustrated in [5] on a bouncing
ball with state (x1, x2) ∈ R2 and data given by

f(x) = (x2,−g) , g(x) = −x , h(x) = x1

C = {(x1, x2) ∈ R2 : x1 ≥ 0} (35)

D = {(x1, x2) ∈ R2 : x1 = 0 , x2 ≤ 0}

In order to satisfy Assumption 3.1 and encode the absence
of Zeno behavior in the solutions of interest, the set D was
replaced in the observer by Dm := {(x1, x2) ∈ R2 : x1 =
0 , x2 ≤ −m} for m > 0. The semiglobal observer (28)
presented in this paper is implemented in https://github.

com/HybridSystemsLab/NonSyncHybridHighGainObserver.

B. Spiking neuron

We consider the parameterized nonlinear model of a spiking
neuron presented in [16] given by a hybrid system H as in (1)
with state (x1, x2) ∈ R2 and data given by

f(x) =
(
0.04x2

1 + 5x1 + 140− x2 + Iext , a(bx1 − x2)
)

g(x) = (c, x2 + d) , h(x) = x1

C = {(x1, x2) ∈ R2 : x1 ≤ vm} (36)

D = {(x1, x2) ∈ R2 : x1 = vm}

where x1 is the membrane potential, x2 is the recovery
variable, and Iext represents the (constant) synaptic current or
injected DC current. The value of the input Iext and the model
parameters a, b, c, and d, as well as the threshold voltage vm
characterize the neuron type and its firing pattern. We refer
the reader to [16] for units and more physical details. Here,
we consider Iext = 10, a = 0.02, b = 0.2, c = −55, d = 4,
and vm = 30, leading to an intrinsically bursting neuron. The
solutions are known to remain in a physical compact set X and
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Fig. 2: Solution to hybrid system (36) with initial condition
x(0, 0) = (−55,−6).

0 20 40 60 80

-40

-30

-20

-10

0

10

20

Fig. 3: Estimation error for system (36) with observer (2)
where F = F` defined in (7) with ` = 4 and K = (1, 1)>,
x(0, 0) = (−55,−6), x̂0 = (−20, 0), z(0, 0) = T (x̂0) and
delay in the jump detection of 0.5 units of time.

have a uniform dwell-time, thus verifying Assumption 2.1. A
solution is plotted on Figure 2.

The map

T (x) = (h(x), Lfh(x)) = (x1, 0.04x2
1+5x1+140−x2+Iext)

is a diffeomorphism on R2, so that the flow dynamics admit
a high-gain observer (7) as detailed in Example 2.4. Since the
jump times can be detected from the jumps of the output y =
x1, it is proposed in [7] to use an observer of the type (2), with
F = F` given by the high-gain observer, G defined in (9), and
jumps triggered at the same time as the those of the system.
However, because of the unstable quadratic term 0.04x2

1 in the
flow dynamics, slight delays in the jump detection deteriorate
very quickly the estimate around each jump, as illustrated on
Figure 3.

Instead, we would like to implement observer (13), which
does not rely on instantaneous jump detection and that au-
tomatically synchronizes its jumps with those of the system.
Because of the quadratic term in f , items (P1) and (P2) of
Assumption 3.1 hold for any choice of δ0 and δ1. However,
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Fig. 4: Estimation error for system (36) with observer (13)
with ` = 4 and K = (1, 1)> in F` defined in (7), δ0 = 5,
δ1 = 3, ∆ = 3, and initial conditions x(0, 0) = (−55,−6),
χ(0, 0) = (−20, 0), z(0, 0) = T (χ(0, 0)), q(0, 0) = 2.

some care should be taken in the choice of ∆ <
τ0
m

2 with
τ0
m given in (P3). Indeed, the flow dynamics exhibit finite-

time escape in open-loop, so ∆ should be smaller than the
minimal time needed for the flow dynamics to escape in finite-
time from (c, x2) in a “larger” compact set Xm in which the
observer trajectory should evolve. Unfortunately, these choices
depend on the magnitude of the initial error. Figure 4 shows
the results of a simulation with the same initial conditions
and same high-gain map F` as in Figure 3, but this time
with observer (13), which does not rely on the jump detection
and which automatically synchronizes its jumps with those
of the system. Compared to Figure 3, we observe that the
mismatch of jump times marked by vertical dashed lines and
the estimation error asymptotically converge to 0.

A major difference between both designs is that the for-
mer is global while the latter is only local. In particular,
as mentioned above, for too large initial estimation errors,
observer trajectories could explode in finite time during the
first open-loop phase (pick χ(0, 0) = (24, 0) in the previous
simulation to witness finite-time escape). It may also happen
that the observer “misses” a jump of the system and simply
catches up afterwards with the high-gain observer without
any guarantee from the analysis. In order to avoid this, or
do it in a “safe” way that ensures convergence, we run a
preliminary continuous-time high-gain observer and launch
observer (13) at a well-chosen time tp according to Algorithm
1 given in Section V, namely we implement the semiglobal
observer (28). Figures 5,6 illustrates2 the behavior of the
observer depending on the first jump time of the system and
shows that the algorithm choosing tp is effective to ensure
asymptotic convergence in each case. When the local observer
is launched at time τm and the system jumps before that time,
two transients occur: one at the initial time, and another after
the system jump (see Figures 5a-5b). In particular, a possible
system jump is successfully detected between τ1 and τ2 in

2Simulations available at https://github.com/
HybridSystemsLab/NonSyncHybridHighGainObserver

Figure 5b), leading to the warning state qw being turned on and
the switching time tp fixed at τm for safety. On the other hand,
in Figure 5c), a system jump is successfully anticipated after
τ2 and the local observer directly switched on, thus avoiding
another transient.

Finally, the robustness of this design was also tested in
presence of output noise in the three previous scenarios. Figure
7 reproduces the errors plotted on Figure 5 but in presence of
output noise and on a longer time horizon. As expected, the
noise is amplified through the high-gain observers and peaking
is observed around the jump times since the jumps of the
system and the observer no longer asymptotically synchronize.

VII. CONCLUSION

We have proposed a semiglobal hybrid observer for hybrid
dynamical systems whose jump times are unknown and whose
pair of flow/output maps is differentially observable. The
observer combines a preliminary continuous-time high-gain
observer and a local hybrid observer which relies on a high-
gain observer of the flow and jumps triggered based on the
observer state, in a way that “disconnects” the correction
term around the jump times. Compared to designs in [7], [8],
[24] where the observer jumps are synchronized with those
of the system, this novel observer avoids the problems of
delayed/noisy detection of the system jump times. Its robust-
ness to noise was also tested in simulations. Of course, this
design heavily relies on high-gain flow-based observers, with
the full state being differentially observable during flow. The
possibility of designing non-synchronized hybrid observers for
larger classes of systems, exploiting both flow and jumps,
remains to be investigated. Also, because the switching to the
local hybrid observer happens only once, it is not robust to
large pointwise disturbances. Actually, if such a disturbance
is detected, the observer should be reinitialized from the start.
More robust back and forth switching strategies could be
studied, with the repeated challenge of detecting when to
switch and of handling the unknown system jump times.

APPENDIX

A. Proof of Lemma 4.1
Consider first the case where φ(0, 0) ∈ C2, i.e., q(0, 0) = 2.

- By definition of Ĥ, φ(t, 0) ∈ C2 for all t ∈ I0. During that
time, since Π(Tinv(z(t, 0))) ∈ cl(C∪D)∩cl(Rnx \Dδ1) by
definition of Π and C2, |Π(Tinv(z(t, 0)))|D ≥ δ1. Therefore,
since V (x(t, 0), z(t, 0)) ≤ v` by assumption, x(t, 0) /∈ D
by item (a) and both x and φ flow simultaneously. Thus, z
evolves according to the continuous-time high-gain observer
F` with input y = h(x), which, due to x flowing in C \D,
is a continuous signal during this period. On the other hand,
the components χ, τ, q of the observer solution φ remain
constant with mode q = 2. This is the high-gain phase, and
defining φsub(t, 0) = φ(t, 0) for t ∈ I0, we have (19a) for
j = 0.

- If I0 = [0,+∞), then φ is t-complete and the proof is
concluded. Otherwise, since y is bounded due to the system
solution x being bounded, φ cannot explode in finite time
and according to the previous item, the input y does not
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(a) x(0, 0) = (−55,−6), x̂(0, 0) = (24, 0): the system jumps before
τ1 and the local observer is launched at time τm.
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(b) x(0, 0) = (−55,−4), x̂(0, 0) = (27, 0): the system jumps
between τ1 and τ2, the warning state is turned on around t = 6.42
when Π(x̂) ∈ Dδ1 and the local observer is launched at time τm.
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(c) x(0, 0) = (−55,−3.8), x̂(0, 0) = (27, 0): the system jumps
after τ2, and the local observer is launched right before around time
t = 9.61 as soon as Π(x̂) ∈ Dδ1 .

Fig. 5: Estimation errors for system (36) with observer (28)
designed for the local observer Ĥ given by (13) with ` = `p =
6 and K = (1, 1)> in F` = F`p defined in (7), δ0 = 5, δ1 = 3,
∆ = 3, τm = 25, τ1 = τm/4, τ2 = τm/3, and different initial
conditions with zp(0, 0) = T (x̂(0, 0)). The y-axis is chopped
on [−40, 20] for better overall view, but the error during the
first transient typically goes down to −130.
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(a) x(0, 0) = (−55,−6), x̂(0, 0) = (24, 0): the system jumps before
τ1 and the local observer is launched at time τm.
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(b) x(0, 0) = (−55,−4), x̂(0, 0) = (27, 0): the system jumps
between τ1 and τ2, the warning state is turned on around t = 6.42
when Π(x̂) ∈ Dδ1 and the local observer is launched at time τm.
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(c) x(0, 0) = (−55,−3.8), x̂(0, 0) = (27, 0): the system jumps
after τ2, and the local observer is launched right before around time
t = 9.61 as soon as Π(x̂) ∈ Dδ1 .

Fig. 6: Logic variables observer (28) designed for the local
observer Ĥ given by (13) with ` = `p = 6, K = (1, 1)>,
δ0 = 5, δ1 = 3, ∆ = 3, τm = 25, τ1 = τm/4, τ2 = τm/3,
and different initial conditions with zp(0, 0) = T (x̂(0, 0)).
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Fig. 7: Estimation errors for system (36) with observer (28) in
the three scenarios of Figure 5 with band-limited white noise
of power 0.1 and sample time 0.1.

jump on I0, so necessarily, by definition of C2, there exists
t1 such that φ(t1, 0) ∈ D2 and φ jumps. At this point,
|Π(Tinv(z(t1, 0)))|D = δ1, so χ+ = Π(Tinv(z(t1, 0))) ∈
Dδ1 \D and q+ = 1. Therefore, (z+, χ+, τ+, q+) ∈ C1 \D1

and φ(·, 1) necessarily flows. Besides, from item (c), χ+ ∈
X ′′m. The open-loop phase starts. In this phase, the behavior
of φ is independent from that of the input y, i.e., that of x.
Therefore, we concentrate on the behavior of φ, putting aside
the jumps of x possibly happening during that phase. Indeed,
such jumps may only trigger trivial jumps in φ according
to [6] and do not alter the values taken by φ. Thus, φ may
be analyzed as in an autonomous hybrid system during this
phase, which actually corresponds to φsub in the statement
of the lemma.

- While φ(·, 1) flows in C1, the states z, τ, q remain constant.
Since χ(t1, 1) ∈ Dδ0 ∩ X ′′m and χ flows with f , we know
by (P1) of Assumption 3.1 that χ remains in Dδ0 ∩ X ′m
and reaches D ∩X ′m in finite time. Besides, φ cannot jump
before χ has reached D according to the definition of D1.

- When χ reaches D ∩X ′m, we know by (P2) in Assumption
3.1 that φ can no longer flow. Since at this point φ(t2, 1) ∈
D1, φ jumps with χ+ = g(χ) and q+ = 0.

- From there, φ(t2, 2) ∈ C0 \ D0, with τ = 0 and χ ∈ g(D ∩
X ′m), so φ can only flow as long as τ ≤ ∆, namely during
∆ units of time. Since ∆ < τ0

m, χ can indeed flow with
f during that time and remains in Xm with Π(χ) /∈ Dδ0

according to (P3).
- Thus, when τ reaches ∆, we have Π(χ) /∈ Dδ0 , i.e.,
φ(t3, 2) ∈ D0 and since no flow is possible in C0 when
τ = ∆, φ jumps with z+ = T (Π(χ)), τ+ = 0 and q+ = 2.
Since χ ∈ Xm and Π(Xm) ⊂ Xm, Π(χ) ∈ Xm, and
from (8), Π(Tinv(z+)) = Π(Π(χ)) = Π(χ) /∈ Dδ0 so that
φ(t3, 3) ∈ C2. This is the end of the open-loop phase, the
high-gain phase starts again, and we are back to where the
argument started.

On the other hand, by assumption, if φ(0, 0) /∈ C2, q(0, 0) = 1
and χ(0, 0) ∈ Dδ1 ∩ X ′′m so that the same reasoning holds,
starting from the open-loop phase in the third item.

B. Proof of Lemma 4.2

For convenience, we denote v1 := V`(x(tj , j
′−1), z(tj , j−

1)), the value of V` before the transition to open-loop phase.
By definition of the observer data, φ(tj , j − 1) ∈ D2 with

|Π(Tinv(z(tj , j − 1)))|D = δ1 and from Assumption 2.1,
x(tj , j

′) ∈ X . Since v1 ≤ v`, it follows from items (a),
(b) and (c) that x(tj , j

′) ∈ (Dδ0 \ D) ∩ X and χ(tj , j) =
Π(Tinv(z(tj , j − 1))) ∈ Dδ1 ∩ X ′′m. In particular, tj is not a
jump time for x. Let us denote x1 := x(tj , j

′) and χ1 :=
χ(tj , j) the values of x and χ at the beginning of the open-
loop phase. From (P1), flow according to f will lead both x
and χ to D with a time mismatch ∆τ verifying

∆τ = |T(χ1)− T(x1)| ≤ aτ |χ1 − x1|
≤ aτ |Π(Tinv(z))− Tinv(T (x1))|
≤ aτap|Tinv(z)− Tinv(T (x1))|
≤ aτapainv|z − T (x1)|

≤ aτapainv

√
v1

c(`)
< ∆

with z denoting z(tj , j − 1) for brevity, ainv the Lipschitz
constant of Tinv, ap defined in (10), and aτ the Lipschitz
constant of T on X ′′m∩Dδ0 . This mode with q = 1 lasts until χ
reaches D, namely T(χ1) units of time. For all xD ∈ D∩X ′′m,

|T(χ1)− T(xD)| = |T(χ1)| ≤ aτ |χ1 − xD| ≤ aτδ1

so that the interval of time where q = 1 lasts at most aτδ1.
The following mode with q = 0 lasts ∆ units of time. But
since the time mismatch between observer and system jump
∆τ < ∆, the system state x jumps some time before the
observer switches back to q = 2.

We are now ready to study the evolution of W , namely
the estimation error x− χ during the open-loop phase where
q ∈ {0, 1}. For that, we decompose the analysis in three
consecutive periods:

1) both x and χ flow with f until one of them reaches D;
2) one jumps and then the other, with a jump time mismatch

∆τ ;
3) both x and χ flow with f until the observer switches back

to q = 2.

As long as neither x nor χ reaches D, both flow on the time
interval [tj , tj+1] with f locally Lipschitz in X ′m with q = 1,
so that

Ẇ = 2(χ− x)> (f(χ)− f(x)) ≤ 2|χ− x| |f(χ)− f(x)|
≤ λfW

where λf/2 is the Lipschitz constant of f on the compact
set Xm. This period lasts at most aτδ1, so χ − x grows by
at most a1 := e

1
2λfaτδ1 and denoting (χ′1, x

′
1) := (χ, x) :=

(χ(tj+1, j), x(tj+1, j
′)) the value of (χ, x) at the end of this

first period,

W (x′1, z, χ
′
1, 1) ≤ eλfaτδ1W (x1, z, χ1, 1) ≤ eλfaτδ1

a2
pa

2
inv

c(`)
v1



Then, the mismatch of jump times ∆τ makes W increase
to

|g(Ψf (x′1,∆τ ))−Ψf (g(χ′1),∆τ ) |2

or |Ψf (g(x′1),∆τ )− g(Ψf (χ′1,∆τ ))|2

depending which of x or χ jumps first. Since x′1 ∈ X and
Ψf (x′1,∆τ ) ∈ X by Assumption 2.1, and χ′1 ∈ X ′m according
to (P1), we have

|g(Ψf (x′1,∆τ ))−Ψf (g(χ′1),∆τ ) |
≤ |g(x′1)− g(χ′1)|+ |g(Ψf (x′1,∆τ ))− g(x′1)|

+ |Ψf (g(χ′1),∆τ )− g(χ′1)|
≤ ag|x′1 − χ′1|+ ag|Ψf (x′1,∆τ )− x′1|

+

∣∣∣∣∣
∫ ∆t

0

f(χ(s))ds

∣∣∣∣∣
≤ ag|x′1 − χ′1|+ ag

∣∣∣∣∣
∫ ∆t

0

f(x(s))ds

∣∣∣∣∣+ cf∆τ

≤ ag|x′1 − χ′1|+ agc
′
f∆τ + cf∆τ

≤ ag|x′1 − χ′1|+ (agc
′
f + cf )aτ |x1 − χ1|

where ag is the Lipschitz constant of g on X ′m, s 7→ x(s)
denotes the solution flowing with f from x′1, χ(s) the solution
flowing with f from g(χ′1), and cf , c′f are bounds of f around
g(D ∩ X ′m) and D ∩ X ′m respectively. We obtain in the same
way the same bound for |Ψf (g(x′1),∆τ ) − g(Ψf (χ′1,∆τ ))|.
Actually, during this mismatch period, assuming χ jumps first,
i.e. χ′1 ∈ D, we have similarly

|x|D ≤ |x− χ′1| ≤ |x′1 − χ′1|+ c′f∆τ

|χ|g(D) ≤ |χ− g(χ′1)| ≤ cf∆τ

|χ− g(x)| ≤ ag|x′1 − χ′1|+ agc
′
f∆τ + cf∆τ

which gives U(x, χ, q) ≤ a01|x1 − χ1| using |x′1 − χ′1| ≤
a1|x1 − χ1| and ∆τ ≤ aτ |x1 − χ1|.

Finally, in the last period, both x and χ have jumped once,
so necessarily q = 0, τ ∈ [0,∆], and both system and observer
flow according to f during at most ∆ units of time, until the
timer τ reaches ∆. When that happens φ reaches D0, at jump
time tj+3 and the solutions have thus reached x(tj+3, j

′ + 1)
and φ(tj+3, j + 2) respectively. During this period, |χ − x|
thus grows by at most e

1
2λf∆ which gives a0. More precisely,

denoting (χ2, x2) := (χ(tj+3, j + 2), x(tj+3, j
′ + 1)) at that

time, we thus have

|x2 − χ2|2

≤ eλf∆
(
ag|x′1 − χ′1|+ (agc

′
f + cf )aτ |x1 − χ1|

)2
≤ 1

2
eλf∆

(
a2
g|x′1 − χ′1|2 + (agc

′
f + cf )2a2

τ |x1 − χ1|2
)

≤ 1

2
eλf∆

(
a2
ge
λfaτδ1 + (agc

′
f + cf )2a2

τ

)a2
pa

2
inv

c(`)
v1

Then, the observer jumps back to mode q = 2 and z is reset
to z2 := z(tj+3, j + 3) = T (Π(χ2)) with χ2 ∈ Xm according

to (P3), and therefore

W (x2, z2, χ2, 2) = V`(x2, z2) ≤ c(`)|z2 − T (x2)|2

≤ c(`)|T (Π(χ2))− T (x2)|2

≤ c(`)a2
T |Π(χ2)− x2|2 ≤ c(`)a2

Ta
2
p|χ2 − x2|2

≤ 1

2

c(`)

c(`)
a2
Ta

4
pe
λf∆

(
a2
ge
λfaτδ1 + (agc

′
f + cf )2a2

τ

)
a2

invv1

≤ ac(`)
c(`)

v1

for a > 0 independent from `, with aT the Lipschitz constant
of T on Xm.

After that, φ flows with q = 2 and V` decreases exponen-
tially. Therefore, if additionally v1 < 1

a
c(`)
c(`)v`, namely (22)

holds, V` remains smaller than v` and x does not jump while
φ flows in C2 by item (a). It follows that φ flows either for all
times, or until reaching tj+4 where another transition to open-
loop phase occurs. Let us evaluate the minimal length of this
high-gain phase. z flows with the high-gain observer at least
till |Π(Tinv(z))|D = δ1, so by item (a), x flows according to
f during this period and when |Π(Tinv(z))|D = δ1, by item
(b), x ∈ Dδ0 . So x must have had time to flow with f from
g(D∩X ) to Dδ0 while staying in X where Π = Id, namely at
least τ0

m units of time have elapsed since the previous jump of
x according to (P3). The time between the previous jump of
x and the beginning of the high-gain phase with q = 2 being
at most ∆τ + ∆, it follows that the high-gain phase lasts at
least τ ′m > 0 verifying

τ ′m ≥ τ0
m −∆τ −∆ ≥ τ0

m − 2∆ > 0

since v1 was chosen to ensure ∆τ < ∆. Therefore, after a full
cycle, V` grows at most by ae−`λτ

′
m
c(`)
c(`) .
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