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ABSTRACT: Big data, supported by AI technologies, is mainly viewed as a trigger for radical 

innovation. The automotive industry appears as a key example: the most critical innovative 

challenges (e.g., autonomous driving, connected cars) imply drawing more extensively on big 

data. But the degree of innovativeness of the industrial purpose of incumbents, who are already 

embedding such technologies in their end-products, is worth investigating. To answer this 

research question, we relied on a mixed-method approach and used knowledge search as a 

theoretical framework. First, we conducted a quantitative analysis on 46,145 patents from the 

top-19 automotive incumbents. By comparing AI and non-AI patents, we showed that 

incumbents mainly rely on knowledge exploitation for data-driven innovation leading to 

incremental innovations. But, surprisingly, such innovation path foster more technologically 

original inventions with AI, which is not the case for non-AI patents. Second, we conducted a 

qualitative study to better understand this phenomenon. We showed that big data and AI 

technologies are integrated in the industrialization phase of new vehicles development process, 

following creative problem-solving logics. We also retrieved technical and organizational 

challenges limiting data-driven innovation. Those findings are discussed regarding the 

knowledge search and the new product development literature in the context of automotive 

industry. 
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ARE BIG DATA A RADICAL INNOVATION TRIGGER OR A PROBLEM-

SOLVING PATCH? THE CASE OF AI IMPLEMENTATION BY 

AUTOMOTIVE INCUMBENTS 

 

 

1. INTRODUCTION 

Digital transformation has a considerable impact on multiple dimensions of companies’ 

innovation processes (see Appio et al., 2021 for a review). The rise of the data economy allows 

companies to collect, store and exploit more and more data points, which are exploited through 

advanced techniques, such as Artificial Intelligence (IA).  

The 180-years old automotive industry faces major changes along with this digital 

transformation (Bohnsack and Pinkse, 2017; Skeete, 2018; Wells et al., 2020). All of the critical 

innovation challenges in this industry—autonomous driving, connected cars, powertrain 

electrification, and shared mobility—imply more significant and broader data collections and 

advanced exploitation of those data (Hofmann et al., 2019; Mohr et al., 2016). It is worth 

noticing that new external actors with vast experience in the digital field are entering this 

industry, such as Tesla, Google, or Uber (Liu and Liu, 2018). In this paper, we propose to 

investigate how incumbents, both traditional car manufacturers and Original Equipment 

Manufacturers (OEMs), can face this competitive threat by developing innovative products that 

integrate big data and associated AI techniques.  

The automotive industry has based its longstanding success on an established New 

Product Development (NPD) process in which engineers tap in a stock of incrementally 

renewed expertise, and through the development of Innovative Features developed by 

Advanced Engineering Teams (Maniak et al., 2014). In order to pursue more explorative 

projects, automotive companies relied on dedicated ad hoc organizations following an 

ambidextrous approach (e.g., Lo and Fatien-Diochon, 2020; Lo and Theodoraki, 2021). But this 
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dual organization between knowledge exploitation on one side, and exploration on the other, 

may appear limited to foster innovation as big data and AI constitutes a new technology with 

the potential to affect all sort of vehicles new projects, Innovative Features and the NPD process 

itself. Hence, further investigations are needed to better understand how incumbents cope with 

such new technologies, and to what extent they rely on their traditional ambidextrous approach 

to do so. Hence, the question of how automotive industry incumbents innovate by 

integrating big data and AI technologies in their products, i.e., what is their industrial 

purpose when relying on such breakthrough technologies, is worth investigating.  

Our research question drew on the knowledge search perspective (e.g., Fleming, 2001). 

This literature notably built on the March (1991) dilemma to better understand how inventors 

or companies manage to either exploit their existing knowledge or explore new paths in 

combining knowledge leading to radical innovation (Arts and Fleming, 2018; Arts and 

Veugelers, 2015). Indeed, theoretical constructs and methodologies developed in this literature 

stream help to identify and analyse different knowledge search practices that automotive 

companies could rely on for their innovation process (Kneeland et al., 2020; Yayavaram and 

Chen, 2015). Those practices will imply different degree of explorativeness or exploitativeness 

in companies’ innovation processes, in relation to their expertise and mastered knowledge 

conceptualized as companies’ knowledge bases (e.g., Grant, 1996; Yayavaram and Ahuja, 

2008). 

To investigate how automotive incumbent companies capitalize on big data—exploited 

through AI technologies—to explore new innovative paths, we used a mixed-method approach. 

First, we relied on a quantitative analysis by reviewing 44,668 patent families filed by 19 

innovative companies in this sector (car manufacturers and OEMs). We clustered the retrieved 

inventions between AI-based, non-AI-based and electric propulsion and battery (i.e., called EV 

propulsion) and we compared each category according to their knowledge search modes related 
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to different degrees of explorativeness or exploitativeness (Plantec et al., 2021), and 

technological originality (Alstott et al., 2017a, 2017b; Plantec et al., 2021). Second, we 

conducted a qualitative analysis to gain more fine-grained data on the NPD process by 

conducting ten semi-structured interviews with inventors of AI-based patents retrieved in our 

quantitative analysis. By comparing AI and non-AI patents, we showed that incumbents mainly 

rely on knowledge exploitation for data-driven innovation leading to incremental innovations. 

But surprisingly, such innovation path foster more technologically original inventions with AI, 

which is not the case for non-AI patents. We demonstrate that big data and AI technologies are 

integrated in the industrialization phase of new vehicles development processes, following 

creative problem-solving logics. We also identified technical and organizational challenges 

limiting data-driven innovation. Those findings are discussed regarding the knowledge search 

and the new product development literature in the context of the automotive industry. 

   

2. LITTERATURE REVIEW AND HYPOTHESES DEVELOPMENT 

2.1. Big data and AI technologies for innovation in the automotive industry 

While big data definition is not consensual (Ekbia et al., 2015), Gandomi and Haider (2015) 

showed that the term is either employed to deal with the massive growth of transaction data, to 

describe the new technologies designated to address the challenge of managing a large amount 

of data, to deal with the storage and achievement requirements of data for compliance purposes, 

or as an explosion of new sources of data1. Kersting and Meyer (2018) and O ’Leary (2013) 

show that to derive higher value from big data, more advanced techniques such as those 

emerging from AI technologies are required.  

 
1 Adopting a more global perspective of big data, De Mauro et al. (2016) propose that it covers the three 

following aspects: (1) high Volume, Velocity, and Variety, to describe the characteristics of information; (2) 

specific Technology and Analytical Methods, to describe the requirements needed to make proper use of such 

information; and (3) the transformation of data into value encompassing changing information into insights that 

create economic value for companies and society. 
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AI can be defined as a discipline of computer sciences that study and design computer 

systems with some forms of “intelligence” such as learning new tasks and concepts or 

understanding languages or actions in a visual scene (Russell et al., 2010)2.  

In this study, we intend to understand better what types of new innovative products 

companies develop by drawing on big data (based on AI technologies), and in particular 

the role of such technologies in the development of innovation. Indeed, little is known about 

how companies integrate AI technologies in end-products (Smith and Beretta, 2021). A 

straightforward assumption is that, due to the radicalness of those technologies, it will 

necessarily conduct companies to intensively explore new knowledge to conduct to radical 

innovation (Agrawal et al., 2017; Iansiti and Lakhani, 2020). But, this question is worth 

investigating when considering the costs of big data implementation (Ceipek et al., 2021a, 

2021b; Côrte-Real et al., 2017), and in particular in the case of the automotive industry. 

When analyzing critical drivers of innovation in the automotive industry, it is worth 

noticing that big data appear crucial. One of the main challenges for the automotive companies 

for the next decades encompass intelligent connected cars, shared mobility, powertrain 

electrification, and autonomous driving: four trends that require extensive usage of data (e.g., 

Hofmann et al., 2019; Liu and Liu, 2018; Skouras et al., 2019). For example, electric vehicles 

need to be part of smart electric grids, so vehicle to grid communications with fifth-generation 

mobile wireless networks optimize the transmission and reception of data to improve the user 

experiences (Luckow et al., 2015; Skouras et al., 2019). Autonomous vehicles (AVs) are also 

playing a crucial role in the innovation path of this industry. In particular, the development of 

Advanced Driver Assistance Systems (ADAS) helps to pave the way for full autonomation 

(Level 5) by addressing the primary technological challenges of autonomous driving (Skeete, 

 
2 AI was first designated in the work of Alan Turing, “Computing Machinery and Intelligence” (Turing, 

1950). 
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2018). The added value would be tremendous by allowing passengers and drivers to work, use 

social media, or rest while driving (Mohr et al., 2016). 

To cope with those challenges, incumbents from the automotive industry predominantly 

invest in new digital technologies. Vehicles are now equipped with many sensors that acquire 

a large amount of data to push the industry towards the highest level of autonomous driving 

(Skeete, 2018). Indeed, incumbents critically need to cope with the data challenges to avoid the 

threat from the Internet auto companies such as Google, Tesla, Uber, and Baidu (Liu and Liu, 

2018). But beyond investing in AI technologies and acquiring a large amount of data, 

innovation in the automotive industry largely relies on New Product Development (NPD) 

processes with extremely short lead time, very stable routines, and stabilized design rules 

(Maniak et al., 2014). Then, it may be difficult for incumbents of this industry to integrate those 

technologies in end-product because they can have critical impact the whole architecture of the 

vehicle (Henderson and Clark, 1990). The difficulties of transferring the advances made by the 

exploratory teams into end-products, or even as invention per se, appear critical in the 

automotive industry, even in the case of the development of Innovative Features (Maniak et al., 

2014). It can be the case for big data and AI technologies, as it would require significant 

investments from incumbents, with no immediate pay-off and uncertain return on investment.  

 

2.2. Knowledge search practices for big data innovation in the automotive industry 

Innovation can be conceived as combining knowledge components existing in a 

landscape of potential opportunities, where innovators search (e.g., Fleming and Sorenson, 

2004). We consider that drawing the knowledge search literature can support the formulation 

of hypotheses regarding the mechanisms by which the integration of AI technologies by the 

automotive industry’s incumbents supports radical invention, defined here as “something 
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novel, that it has distinctive features missing in previously observed inventions” (Dahlin and 

Behrens, 2005, p. 724).  

 

2.2.1. AI technologies as a support for radical invention  

From a theoretical perspective, to support radical inventions, companies need to access 

new knowledge components (Henderson and Clark, 1990; Katila and Ahuja, 2002; O’Connor, 

2008) such as scientific knowledge (Fleming and Sorenson, 2004; Veugelers and Wang, 2019) 

or knowledge from different industries or other technological domains (Dahlin and Behrens, 

2005; Dosi, 1982; Katila and Ahuja, 2002; Nooteboom et al., 2007). Recent advances in how 

we can model inventor or companies’ knowledge bases as a network of knowledge components 

(e.g., Kneeland et al., 2020; Plantec et al., 2021; Yayavaram and Ahuja, 2008; Yayavaram and 

Chen, 2015) help to better understand this phenomenon by detailing what sort of combinations 

of knowledge can foster radical invention. Kneeland et al. (2020) proposed an integrative 

approach. By relying on a patent dataset, they developed a typology of three categories of 

knowledge search paths that can be drivers for radical inventions: long search paths (i.e.; 

atypical search on a known technology with multiple improvements), scientific reasoning (i.e., 

the using of generalized theory) and distant recombination (i.e., unusual fusion of technology 

domains).   

In the case of the automotive industry, following Kneeland et al. (2020) perspective, we 

could claim that many advances in sub-AI technologies field such as deep learning, 

environment analysis, and decision management might be combined with previous 

automotive technologies such as ADAS systems, creating distant recombination or 

fostering long search paths to explore uncharted territories. Moreover, as AI technologies 

are still close from fundamental research, it creates opportunities for new product development 

based on scientific reasoning. Many companies, including GAFAM, had to engage in 
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significant fundamental corporate science development to develop AI technologies, notably to 

exploit their owned data (Hartmann and Henkel, 2020). For example, in the automotive 

industry, Renault, Audi, Volkswagen, Ford, and General Motors have published 117 scientific 

papers on AI technologies since 20003.  

In the knowledge search perspective, such creation of novel distant combination of 

knowledge is the main driver of technological originality (e.g., Henderson and Clark, 1990; 

Schumpeter, 1934; Teece, 1996). For example, Verhoeven et al. (2016) showed that inventions 

which combine both recombination of knowledge with either novel technological knowledge 

or scientific knowledge, have a greater impact than any other patents. To measure impact, they 

relied on patent citations, a usual proxy for technological originality or value of inventions. 

Plantec et al. (2021) showed that in the case of the oil & industry, inventions that combine two 

knowledge components that were distant in a given company’s knowledge base, potentially 

also with new external knowledge, derived more technological originality than those who only 

drew on new-to-company knowledge or more exploitative approaches. Those conceptual 

elements support a similar logic in the case of AI integration in the automotive industry. Indeed, 

considering the complex architectural nature of the vehicles (Hargadon and Sutton, 1997), we 

posit that automotive companies can derive higher originality for inventions that integrated AI 

through greater knowledge exploration strategies. 

Finally, based on the knowledge search literature, we can derive the following 

hypotheses: 

H1. In the automotive industry, the implementation of AI-based technologies 

for NPD leads companies to access new knowledge extensively and create novel 

distant combinations of knowledge. 

H2. In the automotive industry, companies derive higher technological 

originality from NPD projects based on AI when they access new knowledge 

and/or create novel combinations of knowledge. 

 
3 Research on Lens.org on 25/11/2021 
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Nevertheless, while those hypotheses seem to reflect the dominant view of AI 

integration in any technological sector, specifics of the automotive industry sector or big data 

conduct to challenge this set of hypotheses. 

 

2.2.2. Challenge of the hypotheses 

First, Yayavaram and Ahuja (2008) showed that even when facing a similar 

technological environment, incumbents have different knowledge base structures due to 

imprinting effects of past coupling decisions. Then, facing a technological change such as the 

emergence of big data, some companies may face difficulties in integrating the new knowledge 

due to a lack of malleability of their knowledge base, conducting to different exploration or 

explorative paths. In other words, due to interdependencies related to the architecture of a given 

product, some companies may choose to progressively absorb external local to proceed to short 

local moves instead of reorganizing their knowledge clusters by creating distant and highly 

original combinations of knowledge.  

Second, the literature on big data, as well as the broader literature on digital innovations, 

demonstrate that integration of such technologies for radical innovation depends of companies 

resources, technologies, market readiness, and the willingness of the management teams to 

pursue such paths (e.g., Ceipek et al., 2021a, 2021b; Sun et al., 2020). Therefore, the costs of 

the development of big data and AI technologies can outweigh the benefits. For example, Cappa 

et al. (2021) showed that costs and risks associated with collecting, storing, and using big data 

could be detrimental to companies’ performances: to derive value from big data, companies 

need to ensure a high quantity of various big data points and possess sufficient skills to derive 

relevant information for customers (Geroge et al., 2014). In the case of the automotive sector, 

while vehicles are equipped with more and more sensors, it is possible that the variety of data 

does not mean they could be managed in creative ways to derive innovation. When studying 
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the electric vehicles market, Bohnsack and Pinkse (2017) showed that very few companies 

capitalize on data from other sources such as wind speed, height changes, weather conditions, 

or charging stations locations to develop new assistance tools.  

Finally, some specifics in the innovation process of the automotive industry may reduce 

the ambition of incumbents to develop highly radical paths through the integration of AI 

technologies. The innovation process in the automotive industry is based on very short 

development cycles that require standardization (Cusumano & Nobeoeka, 1998) and a template 

logic that reproduces the global architecture of a car (Leonard-Barton, 1992). Then, disruption 

which impacts the global product architecture may face implementation difficulties. For 

example, Bohnsack and Pinkse (2017) recognized that incumbents face problems in proposing 

innovative paths that would be radically different from those developed for cars with an internal 

combustion engine (ICE) due to the amount of needed re-engineering throughout the whole 

industrial process. Facing these lock-in situations, automotive companies have been very 

creative in organizing their innovation processes to favor an ambidextrous approach (O’Reilly 

and Tushman, 2004). They can be based on having Advanced Engineering Units (AEU), which 

are in charge of the upstream exploration of new features that can be applied to multiple models 

(Maniak et al., 2014). But despite such organizational designs, “carmakers have tried not to 

pollute the efficiency of their NPD process or vehicle engineering departments” (Maniak et al., 

2014, p. 122), despite that the development of new features requires continuous interactions 

with the development teams and a large body of knowledge is created in the development phase 

(Maniak et al., 2014). Therefore, in the case of radical technologies such as AI, the realization 

of a more explorative path might depend on the level of value management and coordination 

between the AEU and development teams (Gillier et al., 2015).  
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3. METHODOLOGY: A MIXED-METHOD APPROACH 

3.1. Quantitative approach: a patent-based analysis of knowledge search practices  

3.1.1. Clustering of patent data for automotive industry’s incumbents 

First, we collected patent data of automotive industry’s incumbents. To do so, we 

selected major incumbents involved in innovation activities in this industry, here all companies 

present in ranking Top 100 Innovative Companies from Clarivate4 in the automotive industry 

section, between 2012 and 2021 (e.g., Honda, Ford, GM, Renault or Toyota). Then, we 

collected patent data for those companies on the privately-owned DERWENT database. Some 

companies can have diverse activities beyond the automotive industry. Then, we selected 

patents classified throughout the International Patent Classification (WIPO, 2019b) in the B60 

class only, which covers inventions related to vehicles in the transporting category. To ensure 

that we would model incumbents’ knowledge base appropriately, we collected patents on a 

large time frame, between 1990 and 20205.  

Second, we identify automotive patents capitalizing on AI technologies. To do so, we 

used an externally validated query made available by the WIPO (2019a) to retrieve AI-related 

patents. The query, made by a team of AI and patent retrieval experts from diverse sectors, is 

comprising specialized classes codes, keywords, and combinations of specialized classes and 

keywords. Still drawing on technological classes, we used the class B60L to retrieve electric 

propulsion and battery inventions.  

 

3.1.2. From exploration to exploitation: defining knowledge search practices 

In order to define the degree of explorativeness or exploitativeness of each invention, 

we attempt to cluster those patents according to different knowledge search practices.  

 
4 https://clarivate.com/top-100-innovators/the-top-100/ 
5 We used patent families, instead of patent applications, as it constitutes a better descriptor of inventive 

activity (Martínez, 2011) 
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To do, company’s knowledge bases are modelled in accordance with the work of 

Yayavaram and Ahuja (2008) and Yayavaram and Chen (2015), capitalizing on network theory. 

For a given invention i, there is a graph 𝐺(𝑖) comprising the vertex 𝑉(𝑖) representing the 

knowledge components that have to be mobilized to design the invention, and the edges 𝐸(𝑖) 

representing the combinations of components (ie. the structure of knowledge). The knowledge 

base for a given year is then the combinations of graphs of all the past inventions of the 

company. In our case, each vertex represents technological classes, and inventions are based on 

patent families6.  

The components and the structure of each invention in year t (i.e., the graph) are then 

compared with the company’s knowledge base at time 𝑡 − 1, to classify inventions into 

different knowledge search strategies. As the distance between knowledge component in the 

knowledge base appear critical to understand design behaviors we rely on Plantec et al. (2021) 

classification of knowledge search strategies to take into account this element. Hence, four 

knowledge search strategies can be identified: refinement mode (very exploitative), clustering 

mode (exploitative), absorption mode (explorative), and recomposition mode (very 

explorative). A synthetic view of those four knowledge search modes is proposed in Table 1, 

including examples and formal graph properties. 

Finally, the procedure is applied to all the patent families in our dataset and we 

specifically analysis period 2005-2020. This period comprises 34,315 patents classified into the 

four knowledge search modes: 1,313 AI-based patent families, and 33,002 non-AI-based 

patents families for which 5,282 are patent families for electric batteries7.  

 
6 To take into account knowledge cycles, we also consider that a knowledge component (ie., a vertex) is 

discarded if there has not been any patent filled by the company in this specific class in the six previous years and 

new knowledge components are considered during a 3-year period (in accordance with Plantec et al., 2021). 
7 Due to co-patenting behaviors, it leads to 36,150 company - patent observations, including 1,379 AI-

based, 34,726 non-AI and 5,480 electrical battery patent families. 
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 Initialization Refinement mode Clustering mode Absorption mode Recomposition mode 

Invention NA 𝐼𝑡+1 = {1,… , 𝑛} 𝐼𝑡+1 = {1,… , 𝑛} 𝐼𝑡+1 = {[1, … ,𝑚], [𝑛,… , 𝑜]} 𝐼𝑡+1 = {1,… , 𝑛} 

Period t t+1 t+1 t+1 t+1 

Vertex 

properties 
NA 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) = 0 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) = 0 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) ≥ 1 𝑉(𝐺𝑡+1) − 𝑉(𝐺𝑡) ≥ 0 

Edge 

properties 
NA 𝐸(𝐺𝑡+1) − 𝐸(𝐺𝑡) = 0 𝐸(𝐺𝑡+1) − 𝐸(𝐺𝑡) ≥ 1 𝐸(𝐺𝑡+1) − 𝐸(𝐺𝑡) ≥ 1 (𝐺𝑡+1) − 𝐸(𝐺𝑡) ≥ 1 

Geodesic 

distance 

properties 

NA max(𝑑𝑡
𝑖−𝑗

) = 1, ∀𝑖, 𝑗 ∈ [1, 𝑛] 
𝑑𝑡
𝑖−𝑗

= 2, ∃𝑖, 𝑗 ∈ [1, 𝑛] 

max(𝑑𝑡
𝑘−𝑙) ≤ 2, ∀𝑘, 𝑙 ∈ [1, 𝑛] 

Case 1: 

𝑉(𝐼𝑡+1) ∩ 𝑉(𝐺𝑡) = ∅ 

Case 2: 

𝑑𝑡
𝑖−𝑗

{
= ∅, ∃𝑖, 𝑗 ∈ [1, …𝑚]

≤ 2, ∀𝑖, 𝑗 ∈ [𝑛, … , 𝑜]
 

𝑑𝑡
𝑖−𝑗

∈ [3;+∞[ 

∃𝑖, 𝑗 ∈ [1, 𝑛] 

Stylized 

example 

 

 

 

 

 

 

 

 

 

 

 

 

𝐼𝑡 = {𝐵, 𝐶, 𝐷} 

 

 

 

 

 

 

 

𝐼𝑡 = {𝐴, 𝐶} 

 

 

 

 

 

 

 

𝐼𝑡 = {𝐴, 𝐽} 

 

 

 

 

 

 

 

𝐼𝑡 = {𝐴, 𝐾, 𝐸} 

 

Table 1 - Knowledge search modes taxonomy
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3.1.3. Technological originality measure 

As the measure of the degree of explorativeness or exploitativeness is company-centric, 

one key element to evaluate the innovation performances is to measure the technological 

originality of each invention from a global technology landscape perspective. This measure 

helps to evaluate the performances of each knowledge search mode. 

Considering the whole technological landscape, some knowledge components are 

frequently combined by inventors, while others are rarely used together to design a given 

invention. Hence, Alstott et al. (2017a, 2017b) used 3.9 million patents to create a technology 

network. Then, based on multiple measures they proposed an indicator of technological 

proximity between any existing pairwise of IPC4, clustered between 0 and 1. As the technology 

network is stable over time (Alstott et al., 2017a), evaluating technological originality can then 

be based on measuring the distance between knowledge components used in a given invention. 

The most distant the knowledge components combined in a given invention are throughout the 

global technological landscape, the most technologically original the invention is (Plantec et 

al., 2021). Formally, for each pairwise of technological classes i and j, and considering Alstott 

Score as the proximity measured made by Alstott & al., our originality measure (ADOI) is then  

𝐴𝐷𝑂𝐼𝑖−𝑗 = 1 − 𝐴𝑙𝑠𝑡𝑜𝑡𝑡𝑆𝑐𝑜𝑟𝑒𝑖−𝑗. 

For this analysis, 21,561 patent families remain in the period 2005-2020, which is 

considered a sufficient threshold for our research.8   

 

3.2. Qualitative analysis: 

The quantitative analysis conducts us to look for more fined-grained insights regarding 

the NPD process related to AI-based inventions.  

 
8 One limitation of this indicator is that it can be computed on patent families classified in more than one 

technological class. Nevertheless, focusing only on multi-classes patent families is classic in the scientometric 

literature (e.g., Strumsky and Lobo, 2015; Verhoeven et al., 2016). 
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We capitalize on our qualitative analysis to select a relevant case for our qualitative 

research. One incumbent, Renault, was selected9. We extracted all patent family data from 2005 

to 2020 that Renault filled in Europe (due to field access constraints 10) and end it up with 29 

patent families. Informants were contacted by e-mail11. Interviews took the form of guided 

conversation (Yin, 2003) and followed a semi-structured interview protocol.  

10 interviews were performed with inventors based both in France and Spain covering 

22 patent families (i.e., 75% of the retrieved patents) and covering the entire time period12. 

Interview guides were designed to better understand the context of each project that led to 

specific AI-based patent families. We analysed the transcripts in an inductive way by following 

an open-coding strategy. Interviews’ details are presented in the Table 2. 

 

 Interview 
Expertise 

role 
Duration Location 

AI-based 

patents 

Application 

Year 
Theme of AI-based patents 

1 Expert 53 min France 2 2020 ADAS for parking assistance 

2 Expert 1h02 France 2 2019 
Lateral positioning of 

autonomous vehicle 

3 - 1h11 France 1 2014 
Autonomous vehicle speed 

adaptation 

4 - 31 min France 5  
2015, 2017, 

2018 

Lateral positioning of 

autonomous vehicle 

5 Expert 1h07 France 1 2012 
Human Machine Interface for 

Adaptative Cruse Control 

6 
Expert 

leader 
49 min Spain 4 2019, 2020 Autonomous driving during turn 

7 Expert 48 min France 1 2020 ADAS for braking system 

8 - 50 min France 3 2013, 2021 
ADAS for Adaptative Cruse 

Control (ACC) and tire pressure 

9 Expert 50 min France 1 2008 ADAS for safety speed 

10 - 1h00 France 2 2019 
ACC for manual gearbox, 

breaking system assistance 

Table 2 – Interview details 

 
9 In particular, two co-authors were involved in multiple previous longitudinal research partnerships on 

engineering capability since 2005, and one co-author is currently involved in another research-action project with 

Renault and is integrated in the incumbent team, which guaranteed a understanding of the context of this specific 

incumbent and field access. 
10 As Renault has an Alliance with Nissan, some AI-based patents were co-filed by both companies, with 

Renault affiliated inventors only based in Japan. 
11 As some inventors filed more than one patent families, we contacted in priority those with multiple 

patents to cover a maximum of the AI-based invention patent portfolios. E-mail answers have been also included 

in our analysis. 
12 See table 2 of interview details for application dates of patents 
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4. RESULTS FROM QUANTITATIVE ANALYSIS 

4.1. Descriptive statistics regarding AI-based patents 

As shown in Figure 1, there has been a significant increase of AI-patent families field 

by selected automotive incumbents during the 2005-2020 period, with a remarkable speed-up 

during the period 2013-2020. Nevertheless, those incumbents' share of AI-based patent remains 

limited: they filed 86.2 AI-based patent families per year between 2005 and 2020 on average, 

accounting only for 4% of all patent families filed each year13.  

 

Figure 1 – Evolution of AI-based and non-AI-based patent families since 2005. 

 

4.2. Knowledge search practices of automotive incumbents 

By relying on the procedure developed in the methodology section, we are able to 

classify each invention between four knowledge search practices. In Table 3 we present the 

number of patent families classified in each knowledge search mode.  

Throughout our analysis, we showed no significant variations between the knowledge 

search modes used by major incumbents from the automotive industry for AI-based invention 

or for non-AI-based inventions, including inventions for EV propulsion. Indeed, nine patent 

families out of ten are based on an exploitation strategy. In other word, no additional 

 
13 The details per company is available on Appendix 1. 
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knowledge component appears in the knowledge base through those inventions and no 

new distant combinations of knowledge are created. Although, the phenomenon is not 

astonishing for non-AI-based data as we posit that incumbents are known to extensively rely 

on their pre-existing knowledge by adoption knowledge-depth strategies (e.g., Katila and 

Ahuja, 2002), it is surprising for AI technologies. Indeed, it means that AI technologies that 

support the exploitation of big data are mainly used to improve pre-existing features' 

performances instead of opening more radical paths. Those elements conduct to reject 

Hypothesis 1: AI-based inventions do not lead automotive incumbent to access extensively to 

new knowledge and create novel distant combinations of expertise. 

As we observed similar innovation paths between the three patent categories, we can 

also posit that AI technologies are not integrated into the NPD process through an ad hoc 

procedure. We also highlight that there is still a difference in the exploitation mode of AI-based 

inventions. A more significant share of those patent families conducts to establishing AI-

supported knowledge clusters through project KS mode (19.1%) compared to non-AI-based 

patents (9.6%) and electric battery patents (11.9%). Big data exploited through AI technologies 

favor the densification of local knowledge more extensively. 

 

Knowledge search 

mode 

Expl. 

degree 

 AI-based  Non-AI-based  Electric battery  

 Nbr. 

patents 
Perc.  Nbr. 

patents 
Perc  Nbr. 

patents 
Perc.  

Refinement --  1,002 72.7%  28,782 82.9%  4,331 79.1%  

Project -  263 19.1%  3,342 9.6%  652 11.9%  

Total exploitation   1,265 91.7%  32,124 92.5%  4,983 91.0%  

Absorption +  95 6.9%  2,136 6.1%  392 7.1%  

Recomposition ++  19 1.4%  471 1.4%  102 1.9%  

Total exploration   114 8.3%  2,607 7.5%  494 9.0%  

TOTAL   1379 100%  34731 100%  5480 100%  

Table 3 – Knowledge search used for AI-based, Non-AI-based and electric battery patents by 

automotive incumbents (2005-2020) 
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4.3. Technological originality 

To test hypothesis 2, we measure incumbents' average technological originality level 

when they rely on different knowledge search modes. The mean ADOI score per knowledge 

search mode and category of the invention is presented through a graphical analysis in Figure 

2. AI-based inventions conduct to a higher score of technological originality than EV propulsion 

or non-AI patents on average, confirming the highly innovative characters of AI-based patents.  

We show that aligned with traditional assumptions, relying on more explorative 

strategies conducted to the highest level of technological originality for non-AI based 

inventions (0.58 vs. 0.41), including for electric batteries (0.57 vs 0.46). But the case of AI-

based inventions appears unique as explorative strategies conduct to a similar technological 

originality level than more exploitative strategies (0.76). Hence, we do not validate Hypothesis 

2: incumbents from the automotive industry derive at least a similar innovative value from 

their invention when they implement AI-based technologies in pre-existing features 

through exploitative strategies than when using (rarely) more explorative ones. 

 

Figure 2 – Repartition of ADOI scores per KS modes and type of patent families (2005-2020 

period, multi-IPC-classes patent families only) 

 

Finally, the quantitative analysis conduct to invalidation of Hypotheses 1 and 2. This is 

in line with the challenges raised regarding incumbents’ knowledge bases and imprinting 
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issues,) specifics from big data innovation, and automotive industry NPD process issues. Our 

quantitative analysis shows that AI-based inventions do not lead extensively to radical 

paths and instead is implemented through a traditional automotive NPD process. But such 

exploitative path still leads to valuable and original inventions, while non-AI and EV propulsion 

patents mainly conduct to valuable and original inventions through more explorative paths.  

 

5. QUALITATIVE ANALYSIS 

To better understand the findings of the quantitative study, we report in this section the 

results of the interviews, with qualitative data collected from Renault’s inventors of AI-based 

patents. Exemplary quotes illustrate our findings and are chosen based on their 

representativeness and clarity.  

 

5.1. A “problem-solving approach” usage of AI technologies during the final phase of 

new product development cycles 

5.1.1. Motivations for AI integration into inventions 

Based on the qualitative evidence collected, we were able to distinguish between three 

motivations for AI technologies integration in inventions. 

 First, we found qualitative evidence that AI technologies were integrated into inventions to 

improve passenger’s comfort after issues were raised following the testing phase. In those cases, 

the key objective was to solve the negative feedbacks reported from the testing phase of already 

industrialized vehicles as mentioned by one informant:  

[We undertook] an entire study on driving discomforts, the situations in which 

people were in a condition of discomfort, to identify what we could do to limit or 

avoid those discomforts in terms of technical solutions. (Interview #4) 

Hence, this case of AI integration is mainly related to issues that arise following the 

development of new innovative features regarding ADAS or more autonomous vehicles, as the 



20 

 

client asked to trust the system and live a comfortable driving experience. Here, inventors 

decided to capitalize on AI technologies to deal with negative feedback and offer clients a better 

driving experience.  

Second, AI technologies have also been used to solve minor sensors or mechanical issues. 

For example, as many ADAS systems were developed based on integrating new sensors, issues 

regarding their quality can affect the integrity of the designed feature. One informant proposed 

an illustrative example: 

In fact, those technologies are not super robust, and what we called a gosht 

could occur, which means that [the sensor] would tell you “I detected something 

[a barrier], behind or beyond the car during a very short time”. It will tell you there 

is a barrier at 50 centimetres of your car. But some time later, this barrier 

disappeared. So it is what we call a ghost. […] Because for us, visually, we do not 

see anything but the sensor sees it. (Interview #1) 

In those cases, AI technologies have been creatively used to revise issues that engineering 

teams faced related to sensors or mechanical elements limitations or integration in a new use 

case.  

Third, interestingly, for some AI-based inventions, the main motivation was to favor cost 

reductions strategies. For example, one objective can be to reduce (or even entirely delete) the 

number of sensors used for a given feature by relying on AI technologies, as described by one 

informant: 

I delete my sensor because I do not need something very accurate, and a model 

can do that. […] The first idea, which was an estimator based on an algorithm, we 

developed it. […] The goal was to delete the sensor. (Interview #7) 

One interesting element is that such inventions for which the primary motivation is 

cost-saving are not ultimately integrated into the vehicle but can only be used for 

negotiations with the OEMs, as illustrated by the following quote: 

Finally, we did not use [the patent] either. That is to say, it is not a patent that 

we exploit, because at the end, the strategic choice of the company, was to buy that 

[the sensor] in a tiers-one or tiers-two. But, anyway, it was useful to negotiate the 

price [of the sensor], of course. (Interview #8)  
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Finally, we found qualitative evidence that Renault used AI technologies to solve quality 

issues identified following a testing phase as passenger comfort issues, minor mechanical or 

sensors failures, or even to pursue cost-saving strategies.  

 

5.1.2. AI integration for problem-solving in industrialisation phase of NPD projects 

One common point between the different motivations for AI integration in inventions at 

Renault is that it systematically occurs at the end of the NPD process: AI is integrated in 

industrialization phase of the project instead of being a prerequisite or a specification made 

during the upstream design phase of research and advanced engineering. Then, as the project 

for a new vehicle is on the pipe for a long, inventors are committed to fix local technical 

problems raised during the last development phase. Many inventors explained that when they 

designed their inventions, it was related to vehicle projects for which the technical definition 

phase had already been completed: 

You should know that we were already industrializing the car, we do not have 

time to review the sensors for redesign purposes. We were with the sensors bound 

hand and foot. (Interview #1).  

Interestingly, those inventors have used radically new technology to solve the issues they 

were facing, but as the reported problems were locals, it led to design fixations limiting the 

possibilities for pursuing more radical paths (Agogué et al., 2014; Le Masson et al., 2010). This 

problem-solving logic of IA integration was reported by many inventors, corroborating the 

exploitative logic of working on fixing “well-known issues” (Interview #7). The following 

quote illustrates adequately this perspective: 

It is not necessarily a lack of honour for AI, but… AI tends to solve already 

existing problems, not problems that do not exist. […] The perfect autonomous 

vehicle is just a driver. So forcibly, it does not do more than a driver […]. AI only 

solved existing problems. (Interview #7) 
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Thus, inventions integrating AI technologies are not based on the demand or proposal of 

Research and Advanced Engineering teams responsible for designing new features (Maniak et 

al., 2014), which would have corroborated an ambidextrous approach.  

Finally, AI-based technologies are mainly used during the industrialization phase, as a patch 

to solve local problems. But it still conducts to valuable creative paths as inventors explore 

locally by using AI technologies to address the raised issues. However, to go a step forward, 

we need to understand better the factors that limit the development of more radical explorative 

paths when automotive incumbents rely on AI-based technologies, and the next challenges to 

benefit of AI integration. 

 

5.2. Next challenges to benefit of AI integration 

We found qualitative evidence that a more intensive usage of AI technologies for big 

data could be desirable to develop new innovations. But some technical and organization 

challenges need to be tackled, that we identified in our interviews. 

 

5.2.1. Technical factors: from raw to valuable data 

Informants largely agreed that due to the high number of sensors, automotive companies 

collect data more extensively, leading to big data sets. But interestingly, they also reported that 

more valuable datasets need to be gathered to favor more innovative approaches. The main 

issue raised concerned either (1) the lack of labelled data to perform AI-based analyses, and (2) 

the capacity to bundle different sources of data.  

Firstly, while Renault is involved in the process of gathering large amount of 

information through sensors and cameras during the testing process or in operation, it mainly 

constitutes raw data that are not appropriate for further AI-based analyses. As indicated by one 

autonomous vehicle expert: 
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Because for example, [my teams] always say that they have significant 

difficulties labeling the rolling testing. It means that they have hours and hours of 

rolling testing. And for example, here, if we create an algorithm for multi-turns, 

you need a person that watches the camera when the multi-turns occur, to note that 

in the database, and that is apparently something very time-consuming. (Interview 

#8) 

Secondly, another issue raised to provide more valuable datasets concerns the capacity 

to bundle different data sources. The main mechanisms for ADAS functions were based on a 

“one sensor for one action” logic (including possible safety loops). But the multiplication of 

sensors implies an increase of the data sources available for one decision to be taken by the 

algorithm. It constitutes an ad hoc technical challenge as reported by one informant:  

It means that you need to add sensors, radars, ultrasounds, etc., and we start to 

have many sensors. And it is there where for example, AI algorithms could already 

provide much help for the fusion of data part. [It could help to attempt] being 

capable of treating things that today, we are incapable of doing… Because 

fusionning data, already, is a big big challenge (Interview #8). 

These databases fusion issues appear critical and require both technical advances and 

the constitution of ad hoc expertise. For example, it requires higher calculation speed and 

companies need to constitute a team of data-fusion specialists, notably by hiring experts, an 

action recently started as reported by one informant: 

And then, me, when I hired… the last wave of hiring I participated in, it was 

people with competencies to develop algorithms to fusion data from the sensors 

(Interview #9) 

But despite those technical challenges to go from raw data to more valuable data that 

would empower AI-experts to better benefit from AI, organizational factors were also 

identified.  

 

5.2.2. Organizational factors: a lack of automotive company support for AI-based 

approached 

First, informants question the responsibility for data-driven innovation in the automotive 

industry value chain. While most of the data are collected through vehicles sensors, some 
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inventors claim that OEMs are those who need to foster AI-based innovation, or that car 

manufacturers should team up with OEMs. One reason claimed for such labor division is that 

usually when they partner, car manufacturers are not incentivized regarding patents or potential 

licensing fees as the OEMs mainly remain the final assignee. As raised by one informant:  

It is more the suppliers who are responsible for the development of the 

intelligent part of the sensor. They will be consumers of AI methods. We, only the 

data-fusion part. (Interview #9) 

But our quantitative findings show that it is not the case as OEMs filed only 14% of AI-

based patent families, and co-patenting are limited. 

Second, it is worth noticing that while informants have been retrieved through a careful 

identification of AI-patents based on a query developed by an international organization, the 

WIPO, a large part of them do not feel that they contribute to AI. The point was first raised in 

the e-mail exchanges with the informants prior to the interviews, but also during the interviews. 

As mentioned by one informant: 

I do not consider myself as someone active in the AI community […] We did not 

develop this patent with Gerard14 by telling each other “we do an AI patent”. 

(Interview #2) 

 Two phenomena can explain this feeling of not contributing to AI-based inventions. On 

the one hand, AI technologies are mainly used by inventors active in the ADAS landscape, and 

they mainly consider AI as an incremental innovation or a sort of “buzz word” in their field. 

The breakthrough technology of AI does not conduct to radical innovation as there is no major 

change of the object identity (Le Masson et al., 2016), i.e. the vehicle itself. As mentioned by 

one ADAS specialist: 

To tell you, I have some troubles telling the difference between AI and lots of 

other things […]. Today, we speak of AI to put some words on things that we also 

did before […], which we named differently […] but already existed. So honestly, 

from what I know, […] there is no major breakthrough, we can say it like that, 

which justify calling that AI. (Interview #4) 

 
14 Name has been changed for confidentiality 
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Hence, AI is not considered a new technology per se as it has been included as part of 

the ADAS expertise, and it can limit the commitment to rely on AI technologies to follow more 

disruptive paths. On the other hand, while the WIPO definition of AI includes all sorts of AI-

based technologies (fuzzy logic, search methods, logic programming, etc.), most informants 

consider that AI is only related to neural networks and therefore consider that they do not 

contribute to this field, as illustrated by the following quote: 

There is no neural network beyond the solution that has been proposed. And 

know that you say [that the patent related to AI], I am telling me that yes, in fact, 

we could… but no, we used old traditional methods for that patent. So it is quite 

surprising that it has been categorized as an AI-based patent, but I am telling myself 

that it is not that impossible in the end. (Interview #1) 

This feeling can conduct to a detrimental lack of expertise recognition and limit their 

capacity and legitimacy to propose more disruptive innovation that gather a diversity of such 

breakthrough technologies for car development 

Finally, while automotive incumbents face both technical and organizational factors to 

explore more radical paths with AI technologies, as retrieved in our qualitative investigations, 

AI and big data still appear in their infancy. As raised by one informant:  

There are around 3-4 years, we thought that in the coming years, we would have 

autonomous vehicles… today, it still is not the case, so we are still focusing on 

improving what is existing, taking into account new use cases, etc. So the real 

disruption from AI, I think […] it will come up soon, […] but here, we are more on 

new functions, for which we can say, that there is no much disruption (Interview 

#10)  

 

6. DISCUSSION 

6.1. Theoretical and empirical contributions 

First, we contribute to the knowledge search literature by showing that big data and the 

AI technologies that support the digital transformation of automotive incumbents change the 

way knowledge search practices are evaluated for innovation performances. In our case, 

incumbents intensively exploit their knowledge through AI and big data in creative and valuable 
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way, while minimizing their exploration effort. These findings echo Katila and Ahuja (2002), 

who showed that while “old” knowledge can hurt innovation through obsolete activities, it can 

also help as it appears highly reliable.  

Second, we contribute to the digital innovation literature by demonstrating that the NPD 

process that supports big data and AI-technologies implementation is divergent from the 

traditional approach with radical and generative technology implementation. As in many other 

industries, the automotive sector created successful innovation by relying on an ambidextrous 

system (Lo and Theodoraki, 2021; Maniak et al., 2014). Bun the case of big data and AI 

technologies, the approach appears different: big data or AI technologies integration into 

vehicles is not a prerequisite asked during the upstream phase by the Advanced Engineering 

Team. Instead, it is implemented at the end of the process to solve local and minor issues related 

to sensor accuracy or passenger comfort after testing phases. To our knowledge, this bottom-

up approach of integrating emergent technologies in the NPD process appears relatively new in 

the literature.   

Third, our study demonstrates that we are in the presence of an elusive AI and big data 

fad in the case of incumbents from the automotive industry. Indeed, data-driven innovation is 

presented as the only path to tackle the creative industry challenges of the connected car, 

autonomous driving, and shared mobility. But, today, big data and AI technologies are still in 

their infancy. While they favor the local creative approach, their utilization is almost restricted 

to strengthen the pre-existing ADAS during the industrialization phases of the NPD process.  

 

6.2. Limits and rooms for further research 

Despite the richness of the mixed-method approach, our investigations present some 

limitations and open room for further research in this area. 
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First, while our quantitative analysis is based on the top-19 innovative incumbents in the 

automotive industry and their usage of big data and AI technologies, we restrict our analysis to 

patent data only. Other data sources could be used to complement our research (incumbents’ 

internal data such as financial amount or team structures and profiles dedicated to data-driven 

innovation, roadmaps, and investment plans). Relying on other data sources could help to better 

understand data-based innovation for incumbents less involved in such activities or 2nd or 3rd 

order OEMs. Second, our qualitative analysis was based only on one case study while carefully 

selecting the incumbent. We then call for further qualitative studies on automotive incumbents' 

data-driven innovation and NPD processes. Third, Additional studies could also integrate the 

newcomers, notably originated from internet companies (Google, Uber).  

 Finally, this global investigation sheds light on new valuable knowledge search 

practices used by automotive incumbents to integrate big data and AI technologies in vehicles 

by relying on new NPD bottom-up approaches. The authors believed that future research should 

complement our effort by analyzing if this blurred frontier between exploration and exploitation 

that arise from the digital transformation can be identified in other historical industries (e.g., 

plane) and with other emergent technologies (e.g., hydrogen related technologies). 
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8. APPENDIX 

Company 
Type of 

company 

AI patent 

families 

Non-IA 

patent 

families 

EV 

propulsion 

patent 

families 

Share of 

IA patents 

families 

Share of IPC 

covered by AI 

patent families 

Porsche Manufacturer 407 5113 542 7.96% 26.67% 

Nissan Manufacturer 189 2003 673 9.44% 23.87% 

Toyota Manufacturer 150 5588 2146 2.68% 20.28% 

Valeo OEM 111 2857 117 3.89% 16.30% 

BMW Manufacturer 99 1727 270 5.73% 18.13% 

PSA Manufacturer 65 2055 101 3.16% 13.73% 

Renault Manufacturer 64 1781 275 3.59% 13.29% 

Honda Manufacturer 54 2443 431 2.21% 21.69% 

Daimler Manufacturer 47 1259 137 3.73% 13.85% 

Aisin Seiki OEM 43 2027 387 2.12% 19.69% 

Stellantis Manufacturer 42 1608 84 2.61% 8.81% 

BorgWarner OEM 38 656 57 5.79% 13.85% 

Mazda Manufacturer 30 557 42 5.39% 13.00% 

Ford Manufacturer 18 535 36 3.36% 10.53% 

Hyundai Manufacturer 8 203 60 3.94% 9.89% 

Brigestone OEM 6 2746 12 0.22% 6.58% 

General Motors Manufacturer 4 541 7 0.74% 8.41% 

Yazaki OEM 3 716 93 0.42% 7.53% 

Safran OEM 1 311 10 0.32% 4.39% 

Appendix 1 – AI, Non-AI and electric battery patent families filed 

 per company (2005 – 2020) 

 


