Predicting AIS reception using tropospheric propagation forecast and machine learning - Mines Paris
Communication Dans Un Congrès Année : 2022

Predicting AIS reception using tropospheric propagation forecast and machine learning

Résumé

The aim of this paper is to present a methodology for modelling and predicting the coverage of an Automatic Identification System (AIS) station based on tropospheric index forecast maps and modelling methods from machine learning. The aim of this work is to cartographically represent the areas in which the AIS signals emitted by ships will be received by a coastal station. This work contributes to the improvement of maritime situational awareness and to the detection of anomalies at sea [1], and in particular to the identification of AIS message falsifications [2] (ubiquity of a vessel by identity theft, falsification of GPS positions and deactivation of AIS).
Fichier principal
Vignette du fichier
ISAP2022Renaud.pdf (878.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03726782 , version 1 (18-07-2022)

Identifiants

  • HAL Id : hal-03726782 , version 1

Citer

Zackary Vanche, Ambroise Renaud, Aldo Napoli. Predicting AIS reception using tropospheric propagation forecast and machine learning. IEEE AP-S/URSI International Symposium on Antennas & Propagation (ISAP) 2022, Jul 2022, Denver, United States. ⟨hal-03726782⟩
217 Consultations
180 Téléchargements

Partager

More