Path planning for a maritime surface ship based on Deep Reinforcement Learning and weather forecast - Mines Paris
Communication Dans Un Congrès Année : 2021

Path planning for a maritime surface ship based on Deep Reinforcement Learning and weather forecast

Résumé

Artificial Intelligence (AI) algorithms as decision support assist operators to choose appropriate decisions in naval missions. This article offers a decision support model to predict the path of a Maritime Surface Ship (MSS) in a dynamic environment by using Deep Reinforcement Learning (DRL). In this way, we suggest taking into account weather forecast and simplified static and mobile obstacles.
Fichier principal
Vignette du fichier
Oceans21Artusi.pdf (463.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03726769 , version 1 (18-07-2022)

Identifiants

  • HAL Id : hal-03726769 , version 1

Citer

Eva Artusi, Fabien Chaillan, Aldo Napoli. Path planning for a maritime surface ship based on Deep Reinforcement Learning and weather forecast. IEEE/MTS OCEANS 2021, Sep 2021, San Diego, CA, United States. ⟨hal-03726769⟩
212 Consultations
129 Téléchargements

Partager

More