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Context and Motivation

Forecasting applications in power systems (energy forecasting) are mostly data-driven:
□ Performance depends on data quality and availability.
□ Data-management issues [1] that appear in industrial applications: missing data,

outliers, distribution shift.
□ Some issues emerge only after the model is deployed.

Missing features (or feature deletion) in an operational setting:
□ Subset of features used for training is unavailable at test time.
□ Reasons: network latency, APIs, cyber-attacks, equipment failures...
□ Assessment on ENTSO-E’s Transparency platform: “for every data domain, fewer

than 40% of users reported that data were always there when needed” [2].
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Model training

Parameters w

Data set {xi, yi}ni=1

min
w

1

n

n∑
i=1

l (yi −w⊺xi)
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Model deployment

APIs

Smart meters

SCADA

w⊺x0 Forecast ŷ
Features x0
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Aim and contribution

Ad-hoc solutions:
□ Involve manual tuning and heuristics, increase modeling complexity.
□ Retrain without missing features outperforms “impute, then forecast” [3], but is

impractical.
Ideally, deployed models should be resilient and maintain consistent performance
without increasing complexity.

Design regression models that optimally resilient to feature deletion at test time

□ Principled approach to improve model resilience, only requires solving an LP.
□ Benchmarking energy forecasting under feature deletion.
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Proposed Robust Formulation

Standard linear regression problem:
□ Given n observations of target y ∈ R and features x ∈ Rp, estimate parameters

w ∈ Rp by minimizing loss function l:

min
w

1

n

n∑
i=1

l (yi −w⊺xi)

Modeling feature uncertainty:
□ Introduce α ∈ {0,1}p and model features as xi ⊙ (1−α), where αj = 1 if the

j-th feature is missing (same features are missing in all samples).
□ Some features cannot be deleted (e.g. calendar variables) and others are grouped

(e.g. polynomial, interactions) →use M ∈ Rm×p to model additional constraints.
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Proposed Robust Formulation

□ Discrete uncertainty set: U = {α
∣∣ α ∈ {0,1}p,1⊺α = Γ,Mα = 0}, where Γ

(integer) is the budget of robustness.
□ Feature-deletion robust regression (FDRR) minimizes the worst-case loss when Γ

features are missing:

min
w

max
α∈U

n∑
i=1

l
(
yi −w⊺(xi ⊙ (1−α))

)
Choosing a loss l:
▶ Quantile (pinball) loss and ℓ1-norm l(·) = | · |
▶ For example, FDRR with ℓ1 loss: min

w
max
α∈U

n∑
i=1

∣∣yi −w⊺(xi ⊙ (1−α))
∣∣
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Solution methodology

Exact solution:
□ U is finite →robust problem can be solved with vertex enumeration, but this leads

to an LP which grows combinatorially.
Conservative approximation:
□ Define polyhedral uncertainty set:

A = conv(U) = {α
∣∣ 0 ≤ α ≤ 1,1⊺α = Γ,Mα = 0}.

▶ LP relaxation of inner max
▶ Affinely Adjustable Reformulation of | · |
▶ Duality reformulation
▶ Tractable LP

Key takeaway: the problem is solvable.
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Case studies

Setting: Day-ahead horizon (12h-36h ahead), data arriving in batches, point forecasts

Data set Source Features

Prices FR, ENTSO-E Lags, calendar, net load, system margin

Load∗ (21 series) GEFCom 2012 Vanilla model [4] for multiple weather stations

Wind∗ (10 series) GEFCom 2014 Wind speed/dir. (10m, 100m),
Fourier terms for diurnal patterns

Solar† (3 series) GEFCom 2014 Numerical weather predictions

∗: features deleted in groups, †: one model per hour.
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Benchmarks

Construct a feature vector x, train the following models:
□ LS∗: a least squares regression with adequate performance.
□ LS∗ℓ1\ℓ2 : the same model as above with ℓ1 (lasso) and ℓ2 (ridge) regularization

penalty.
□ RF∗: a Random Forest model trained on the same set of features.
□ RETRAIN [3]: an ℓ1 regression model retrained for each combination of missing

features. A total of
∑p

k=1

(
p
k

)
additional models is required.

□ FDRRΓ: a robust ℓ1 regression with Γ indicating the robustness budget (a different
model is trained for each Γ).

∗ missing data is filled with mean imputation.
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Forecast accuracy versus # of missing features

Randomly deleting a number of
features from the test set:
□ FDRR improves resiliency

compared to LS, outperforms
regularized models with
imputation.

□ Performance of FDRR is
comparable to RETRAIN.

□ RETRAIN’s complexity: for
solar production, > 4000
models are trained per hour.
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Worst-case scenario and interpretation
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(b) Estimated coefficients.

□ FDRR hedges against the worst-case scenario of uniformly deleting the most
important feature from test set (left).

□ As Γ increases, the weights are more evenly distributed across features (right).
□ Intuitively, FDRR finds the most important features and mitigates their relative

impact on accuracy.
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Realistic setting

Varying the percentage of test observations with
missing features:
□ RETRAIN is the best overall, but the

difference with FDRR is negligible up to
10%.

□ Standard regularization is also beneficial.
□ Relative decrease of FDRR from 0% to 50%:

21% for prices, 19% for wind production,
20% for load, and 30% for solar.

□ Most resilient LS-type: 18% for prices (but
worse in absolute terms), 27% for wind,
96% for load, and 33% for solar.

% of obs. 0 1 5 10 25 50
Prices LS 7.25 7.27 7.39 7.52 7.91 8.57

LSℓ2 7.71 7.73 7.83 7.95 8.29 8.87
LSℓ1 7.33 7.36 7.47 7.6 7.99 8.64
RF 6.95 6.98 7.12 7.28 7.78 8.61
FDRR 6.79 6.82 6.93 7.07 7.5 8.21
RETRAIN 6.79 6.82 6.91 7.03 7.39 7.98

Load LS 5.22 6.94 13.98 22.03 47.1 88.78
LSℓ2 5.07 5.21 5.73 6.41 8.41 11.61
LSℓ1 5.09 5.2 5.58 6.08 7.54 9.98
RF 5.72 5.8 6.13 6.55 7.75 9.86
FDRR 5.18 5.19 5.28 5.38 5.68 6.21
RETRAIN 5.17 5.19 5.27 5.37 5.64 6.16

Wind LS 13.9 13.98 14.28 14.66 15.83 17.79
LSℓ2 13.9 13.98 14.28 14.65 15.83 17.78
LSℓ1 13.95 14.02 14.32 14.68 15.83 17.71
RF 13.57 13.65 13.98 14.38 15.62 17.77
FDRR 13.55 13.6 13.79 14.04 14.82 16.14
RETRAIN 13.55 13.59 13.78 14.02 14.79 16.07

Solar LS 6.47 6.54 6.8 7.11 8.06 9.58
LSℓ2 6.47 6.53 6.7 6.92 7.58 8.67
LSℓ1 6.51 6.57 6.73 6.94 7.59 8.66
RF 7.73 7.84 8.2 8.63 10.01 12.27
FDRR 6.54 6.58 6.74 6.95 7.56 8.52
RETRAIN 6.54 6.55 6.62 6.71 6.96 7.37
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Conclusions and Next Steps

Resilient energy forecasting to handle missing data at test time:
□ Consistent performance, lower degradation, hedging against the worst-case

scenario.
□ Requires only an LP, instead of training a large number of additional models

Broader perspective:
□ It is important to also consider model resiliency, besides accuracy.
□ Robust optimization offers tools to deal with feature uncertainty.

Next steps:
□ Accuracy-resilience trade-off in standard regularization methods (ridge, lasso)
□ Case studies: smart meter data, intra-day wind forecasting, etc.
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Thanks!
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