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We extend the theory of Kazantzis-Kravaris/Luenberger (KKL) observers. These observers consist in immersing the system into a linear stable filter of the output with sufficiently large dimension and appropriate structure. After discussing the uniqueness of such an immersion, we provide two main results about its existence. The first one extends a known existence result by generalizing the structure of the target linear filter and reducing its dimension. While this approach relies on a generic choice of a sufficiently large number of distinct eigenvalues in the filter, we then propose a second existence result in the novel symmetric case where instead, the target filter is a cascade of a sufficiently large number of one-dimensional filters sharing the same eigenvalue. Finally, we propose a new cascaded procedure for the design of KKL observers. This method can be used in two ways: either to pre-filter a noisy output before using it in the observer, or to simplify the construction of the observer when the system can be written as the cascade of a nonlinear system and a linear one.

Introduction

The synthesis of observers is a standard problem in control and automation. Over the last four decades, many methods have been developed allowing the design of these estimation algorithms. The interested reader can refer to [START_REF] Bernard | Observer design for continuous-time dynamical systems[END_REF] which is a survey on the various methods allowing to design such algorithms for nonlinear dynamical systems. Among these listed methods, the Kazantzis-Kravaris/Luenberger (KKL) approach or Nonlinear Luenberger approach initially developped in [START_REF] Shoshitaishvili | Singularities for projections of integral manifolds with applications to control and observation problems[END_REF][START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF][START_REF] Kreisselmeier | Nonlinear observers for autonomous Lipschitz continuous systems[END_REF][START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF] is one of the most powerful one from a theoretical point of view. Indeed, the so-called backward-distinguishability assumption guaranteeing its existence is very weak and does not require any particular normal form.

When D. Luenberger published his first results concerning the design of observers for linear systems in [START_REF] Luenberger | Observing the state of a linear system[END_REF], his idea was to look for a linear change of coordinates T transforming the linear plant dynamics ẋ = F x , y = Hx , with state x in R n , output y in R, and F and H matrices in R n×n and R 1×n respectively, into a form ż = Az + By

with z in R n and A Hurwitz, for which a trivial observer is simply made of a copy of its dynamics. Indeed, since T x verifies (1), the estimation error e = z -T x for any solution z of (1) evolves along the contracting dynamics ė = Ae, so that any solution z converges to T x. It follows that an estimate x of x can be obtained from z by inverting the transformation T . Luenberger proved that when the pair (F, H) is observable, this is always possible for any Hurwitz matrix A in R n×n with no common eigenvalues with F , and any vector B in R n such that the pair (A, B) is controllable. This is based on the fact that the Sylvester equation

T F = AT + BH (2) 
ensuring that T x follows (1) admits in this case a solution that is unique and invertible.

Some researchers have then tried to reproduce Luenberger's methodology on nonlinear systems in the form ẋ = f (x) , y = h(x) ,

where f : R n → R n and h : R n → R are two sufficiently smooth functions. Following [START_REF] Shoshitaishvili | Singularities for projections of integral manifolds with applications to control and observation problems[END_REF][START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF][START_REF] Kreisselmeier | Nonlinear observers for autonomous Lipschitz continuous systems[END_REF][START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], a nonlinear Luenberger observer or Kazantzis-Kravaris/Luenberger (KKL) observer is a dynamical system of the form ż = A z + By , x = T inv (z) ,

with state z in R m (or C m ), a Hurwitz matrix A in R m×m (or C m×m ), a vector B in R m such that the pair (A, B) is controllable and T inv : R m → R n a continuous map.

Given X an open and bounded subset of R n containing the system trajectories of interest, following [START_REF] Shoshitaishvili | Singularities for projections of integral manifolds with applications to control and observation problems[END_REF][START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF][START_REF] Kreisselmeier | Nonlinear observers for autonomous Lipschitz continuous systems[END_REF][START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], the goal is to design the mapping T inv as a uniformly continuous left inverse1 of a C 1 mapping2 T : cl(X ) → R m satisfying ∂T ∂x (x)f (x) = AT (x) + Bh(x) , ∀x ∈ X .

In other words, we look for a solution T to (5) for a pair (A, B) to be chosen with A Hurwitz, and, if possible, design T inv uniformly continuous verifying

T inv (T (x)) = x , ∀x ∈ X . (6) 
Indeed, ( 5) is a direct extension of the Sylvester equation ( 2) and says that along trajectories t → x(t) of system (3) remaining in X , T (x) is solution to [START_REF] Aeyels | Generic observability of differentiable systems[END_REF] with y = h(x). Then, any other solution z to (1) with y = h(x) converges to T (x), so that T inv (z) asymptotically provides an estimate of x thanks to ( 6) by (uniform) continuity of T inv . Hence the observer given by (4) converges asymptotically. This is summed up in the following theorem which is a direct rephrasing of [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF]Theorem 2.2] in the case where X is bounded. A proof of this theorem can be found in [11, Appendix A] .

Theorem 1.1 ([4, Theorem 2.2]) Assume there exist m in N, A in R m×m Hurwitz, B in R m and an injective function T : cl(X ) → R m satisfying (5).

Then, there exists a continuous function T inv : R m → R n verifying [START_REF] Bernard | Observer design for continuous-time dynamical systems[END_REF], and for any such map, we have that for any solution x : [0, +∞) → X to (3) and any solution to (4) with input y = h(x), the output x is defined on [0, +∞) and lim t→+∞ |x(t)x(t)| = 0.

From there, different questions can be raised:

(1) For which choice of m, A and B does an injective solution T to (5) exist?

(2) Is this solution unique?

(3) How to construct such a solution?

(4) How does the choice of the pair (A, B) impact the observer performance and how to optimize this choice ?

The existence question (1) was first considered in [START_REF] Shoshitaishvili | Singularities for projections of integral manifolds with applications to control and observation problems[END_REF], [START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF] and [START_REF] Krener | Nonlinear observer design in the siegel domain through coordinate changes[END_REF] in the analytic context and around an equilibrium point. Then, the localness was dropped following another perspective in [START_REF] Kreisselmeier | Nonlinear observers for autonomous Lipschitz continuous systems[END_REF] where a global existence result was proposed based on a strong observability assumption which unfortunately did not provide an indication on the necessary dimension of the pair (A, B). This problem was solved in [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF] by proving the existence of the injective map T under a weak backward-distinguishability condition, for A complex diagonal of dimension n + 1, with a generic choice of n + 1 distinct complex eigenvalues. Those results have then been extended to non autonomous systems [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF], discrete-time autonomous systems [START_REF] Brivadis | Luenberger observers for discrete-time nonlinear systems[END_REF], and to the problem of functional observer design when the full state is not observable and only a function of the state needs to be estimated [START_REF] Spirito | On the existence of KKL functional observers[END_REF].

In terms of design, an explicit expression of the map T can sometimes be found in particular contexts such as parameter identification [START_REF] Afri | State and parameter estimation: A nonlinear luenberger observer approach[END_REF], state/parameter estimation for electrical machines [START_REF] Henwood | A robust nonlinear Luenberger observer for the sensorless control of SM-PMSM : Rotor position and magnets flux estimation[END_REF][START_REF] Bernard | Estimation of position and resistance of a sensorless PMSM : a nonlinear luenberger approach for a non-observable system[END_REF]. Otherwise, when an expression for T , or its left-inverse T inv is not available, approximation approaches have been proposed as in [START_REF] Marconi | Uniform practical nonlinear output regulation[END_REF]. More recently, numerical methods based on neural networks are being developed to learn a model of the maps T and T inv based on the generation of a data pairs (x, z) approximating (x, T (x)) through backward and forward integration of the dynamics [START_REF] Ramos | Numerical design of luenberger observers for nonlinear systems[END_REF][START_REF] Buisson-Fenet | Towards gain tuning for numerical kkl observers[END_REF][START_REF] Buisson-Fenet | Learning to observe : neural network-based KKL observers[END_REF][START_REF] Peralez | Deep learning-based luenberger observer design for discrete-time nonlinear systems[END_REF]. Insight about how those methods work is given in Example 1.2. Note that while the difficulty in knowing the transformation T is a peculiarity of the KKL observer, its leftinversion on the other hand is a problem appearing in most observer designs, as soon as the observer is designed in other coordinates [START_REF] Bernard | Observer design for continuous-time dynamical systems[END_REF].

Once a method to compute the map T and, more importantly T * , is available, the question of the link between the choice of (A, B) and the performance of the observer comes naturally. In particular, the impact of the choice of (A, B) on the robustness to noise has been observed to be significant in some applications (see e.g., [START_REF] Bernard | Kkl observer design for sensorless induction motors[END_REF] in the time-varying context). It is then tempting, and sometimes crucial, to optimize this choice as done in [START_REF] Bernard | Kkl observer design for sensorless induction motors[END_REF] in a particular application, and proposed in [START_REF] Buisson-Fenet | Towards gain tuning for numerical kkl observers[END_REF] in a general setting (see also [START_REF] Janny | Deep kkl: Data-driven output prediction for non-linear systems[END_REF]). But the quantification of performance and the formulation of the optimization problem is not trivial in the nonlinear context and is a novel active field of research.

In order to allow a maximum of flexibility, efficiency and validity of the optimization process, it is helpful to clarify theoretically (i) the dimension and the class of admissible pairs (A, B) allowing the existence of an injective map T , (ii) whether any map T a obtained numerically has any chance to be this injective map T , which is related to uniqueness of solutions.

Hence, it is worth investigating theoretically questions (1) and ( 2) above. In particular, as noticed in [START_REF] Bernard | Kkl observer design for sensorless induction motors[END_REF][START_REF] Buisson-Fenet | Towards gain tuning for numerical kkl observers[END_REF], the result of [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF] considering diagonal complex matrices A with n+1 generic complex (independent) eigenvalues is restrictive: we should be able to pick generic real pairs (A, B) with both complex and real eigenvalues, maybe of multiple multiplicity and sufficiently large dimension.

It is thus the goal of this paper to provide existence results in such wider contexts.

Example 1.2 In order to get a better grip on the theoretical contributions given all along the paper, we give an illustrative observation problem example. Consider a Wilson-Cowan model [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF] of the form

ẋ = -x + S(W x) , y = Cx (7)
where the state x ∈ R n quantifies the neural activity of each neuron group, W ∈ R n×n describes the interconnections, S : R n → R n is a nonlinear activation function to be chosen of the form

S(x 1 , . . . , x n ) = (s 1 (x 1 ), . . . , s n (x n ))
with s i : R → R, and C ∈ R p×n indicates which neural activity is measured.

In this case, it is not clear how to obtain an explicit analytical expression of a map T solving (5), let alone its left-inverse T * . Instead, we follow [START_REF] Ramos | Numerical design of luenberger observers for nonlinear systems[END_REF] and proceed as follows:

• Pick m ∈ N, larger than n, a pair (A, B) ∈ R m×m × R m and a grid of initial conditions x 0 ∈ R n . • Simulate forward the interconnection of (3) and (1) from each x 0 , with z initialized arbitrarily, typically at zero, and for a time t c ten times larger than 1/| Re(λ m (A))|, where λ m (A) is the eigenvalue with largest real part. • Remove the first part of the simulation where t ∈ [0, t c ], and keep a certain amount of data pairs (x(t), z(t)) at times larger than t c . Because t c is large compared to the eigenvalues of A, we know that z(t) ≈ T (x(t)), with T solution to (5). • Fit numerical models T a and T * a such that z(t) ≈ T a (x(t)) and x(t) ≈ T * a (z(t)).

We are then ready to implement the KKL observer (4) with T * replaced by the learned model T * a . Results of a simulation on [START_REF] Bernard | Kkl observer design for sensorless induction motors[END_REF] Note that observability of the system is here guaranteed since the knowledge of y and its 3 first successive derivatives determines the state uniquely. However, the choice of A does not follow the recommendations of [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF]. Indeed, the constraint of a real matrix forces to pick conjugate eigenvalues, so that A contains only 3 independent degrees of freedom in C, instead of n + 1 = 5 recommended in [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF]. In other words, the real matrices of dimension 5 could very well be in the zero-measure set for which the injectivity of T is not guaranteed. To follow [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], one should pick n + 1 eigenvalues in C, with thus a real implementation of dimension 2n + 2. In this paper, we will show that actually, there is always a generic choice of a real pairs (A, B) of dimension 2n + 1 guaranteeing the existence of an injective map T . Of course, as illustrated in this example, smaller dimensions may be used but the theory provides at least an upper-bound. We will also show that other structures with eigenvalues with multiplicity are admissible.

with n = 4, W = 2 2 0 0 -2 2 2 0 0 -2 2 2 0 0 -2 2 , y = x 1 , s i (x) = tanh(x)
Finally, one may wonder whether the learned map T a has any chance to be close to the injective map T provided by the theorem, a question linked to uniqueness of the solution to [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF], also treated in this paper.

Organization and contributions of the paper. As justified above, we give further and more precise answers to the questions (1) and ( 2) of existence and uniqueness, while we leave aside the implementation-related questions (3) and (4), since they essentially require improvement of the numerical methods developed in [START_REF] Ramos | Numerical design of luenberger observers for nonlinear systems[END_REF][START_REF] Buisson-Fenet | Towards gain tuning for numerical kkl observers[END_REF][START_REF] Buisson-Fenet | Learning to observe : neural network-based KKL observers[END_REF][START_REF] Peralez | Deep learning-based luenberger observer design for discrete-time nonlinear systems[END_REF], as well as a better understanding of the link between the pair (A, B) and the observer performance, which are both interesting problems in their own right and out of the scope of this paper. More precisely, we start by discussing uniqueness in Section 2 with sufficient conditions described in Theorem 2.1. Then, two novel existence results are provided in Section 3:

• one refining [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF] with almost any choice of controllable pair (A, B) having A real diagonalizable of dimension 2n + 1 (see Theorem 3.4), • the second in the analytic context for a different structure of the pair (A, B)

with only one eigenvalue of sufficiently large multiplicity (see Theorem 4.2).

Then, in Section 4, we introduce a cascaded procedure which facilitates the synthesis of such an observer for certain cascaded nonlinear systems and which allows the use of a filtered version of y in the observer (see Theorem 4.2).

Notations. A map ρ : R + → R + is of class-K if it is continuous, increasing and such that ρ(0) = 0. For a differential equation ẋ = f (x) with f : R n → R n locally Lipschitz, we denote by X(x, t) the value at time t of the solution initialized at x ∈ R n at time 0, and by (σ - O (x), σ + O (x)) the maximal domain of existence of t → X(x, t) in an open set O. When O = R n , we just denote (σ -(x), σ + (x)). Given a subset X ⊆ R n and a positive real number δ, X + δ is the open set defined as

X + δ = {x ∈ R n | ∃x X ∈ X , |x -x X | < δ} . (8) 
The real and imaginary parts of a complex number are denoted by Re and Im respectively, and

R ρ = {λ ∈ R : λ < -ρ} , C ρ = {λ ∈ C : Re(λ) < -ρ} . (9) 
We say that a map g :

R × R n → R is in C ∞ (R; C 1 (R n ; R)) if λ → g(λ, x) is C ∞ for all x ∈ R n and x → ∂ k g ∂λ k (λ, x) is C 1 for all λ ∈ R and all k ∈ N.
2 Remarks on the uniqueness of the map T Typical KKL theorems as in [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF] or in the next section, provide the existence of an injective solution T to the partial differential equation (PDE) [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF]. However, we might find other solutions of this PDE (via exact computations or a numerical approach [START_REF] Ramos | Numerical design of luenberger observers for nonlinear systems[END_REF][START_REF] Buisson-Fenet | Learning to observe : neural network-based KKL observers[END_REF]) and it is legitimate to wonder how much any such maps differ. If either (i) T a and T b are bounded on O, (ii) or there exist positive constants κ f , ρ f , κ a , q a , ρ a , κ b , q b and ρ b such that for all x ∈ O,

|f (x)| κ f |x| + ρ f , |T a (x)| κ a |x| qa + ρ a , |T b (x)| κ b |x| q b + ρ b with κ f q a < | Re(λ m (A))| and κ f q b < | Re(λ m (A))|
, where λ m (A) is the eigenvalue of A having the largest real part, (iii) or there exist positive constants κ a , ρ a , κ b and ρ b such that for all x ∈ O,

∂T a ∂x (x)f (x) κ a |T a (x)| + ρ a and ∂T b ∂x (x)f (x) κ b |T b (x)| + ρ b with κ a < | Re(λ m (A))| and κ b < | Re(λ m (A))|, then T a (x) = T b (x) for all x in O. In particular, if O is compact, then (i) is satisfied and T a (x) = T b (x) for all x in O. Proof : See Appendix C. 2 
If multiple solutions to the PDE (5) exist, the injectivity of one solution may not imply the injectivity of all solutions. In the following we give sufficient conditions for a particular bounded injective solution denoted T to exist. If another solution T a is found by other means on a backward invariant set of the system and if this map T a is bounded on that set, then it is actually unique and coincides with the theoretical injective solution. Otherwise, injectivity of T a is not ensured a priori, and must be checked on each individual example.

Example 2.2 For illustration purpose only, we consider the trivial one-dimensional example ẋ = -ax , y = x with a > 0. This example falls into the original linear Luenberger context [START_REF] Luenberger | Observing the state of a linear system[END_REF] where an injective solution to PDE (5) is known to exist with dimension m = 1. Taking A = -λ and B = 1 with λ > 0 and λ = a, the map T 0 λ defined by

T 0 λ (x) = 1 λ-a x verifies the PDE ∂T λ ∂x (x)f (x) = -λT λ (x) + h(x)
everywhere. Clearly, T 0 λ is injective. However, for any real number α,

T λ (x) = α sign(x)|x| λ a + 1 λ -a x
is also a C 1 solution to the PDE everywhere and clearly T λ can be non injective for some values of α. Note that in this example, there is no backward-invariant set apart from {0}, where the maps T λ indeed agree.

Actually, given x in X such that X(x, t) belongs to the bounded set X for all t 0, the ω-limit set of x ω(x) = ∩ t 0 cl(∪ s t {X(x, s)} is a non-empty compact backward and forward invariant set. Hence, with the former proposition, T and T a coincide on this set. In other words, T a coincides on the set ω(x) with an injective map. Besides, because T and T a are both solutions to the PDE, the state z of the KKL observer converges both towards T a (X(x, t)) and T (X(x, t)), which tend to each other. However, this does not mean that X(x, t) can be uniquely determined asymptotically from the knowledge of T a , since there could be other x ∈ X such that T (x * ) = T a (x * ) = T a (x ) for x * ∈ ω(x) and x / ∈ ω(x) (this is possible since T a is only injective on ω(x)). e -(t-s) S(W X(x, s))ds

Hence |X(x, t)| |x| + S for all t 0. Thus, according to Theorem 2.1, solutions of (5) are unique on ω(x). When n = 2 and S and W are chosen such that 0 is an unstable equilibrium of (7), the system has a unique asymptotically stable limit cycle with basin of attraction R n \ {0}. Then, the compact set containing 0 and having this limit cycle as boundary is backward invariant. Then, by Theorem 2.1, solutions of (5) are unique on this set.

Note however that because the observer is supposed to estimate trajectories remaining in X for all positive times, the map f may be modified outside of X as long as the observability properties given below are preserved. It is thus usually possible to replace f by modified dynamics ẋ = χ(x)f (x), which admit a backward invariant compact set (by making f vanish outside of a larger open set containing cl(X ) and ensuring observability, for instance as in (D.12) below). Once this regularization has been done, any solution T a to the PDE found on that set is unique and thus injective on X if the required observability properties are preserved. For instance, in a numerical KKL design [START_REF] Ramos | Numerical design of luenberger observers for nonlinear systems[END_REF][START_REF] Buisson-Fenet | Learning to observe : neural network-based KKL observers[END_REF], where T a is learned on a compact set, a trick to ensure injectivity is to apply the learning procedure to the modified f on the whole backward invariant set. This has the additional advantage to make the solutions well-defined and bounded in backward-time, which is crucial in the learning procedure.

3 Remarks on the existence of an injective map T

Existence result based on A diagonalizable with 2n + 1 eigenvalues

As shown in [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], one of the main interests of the KKL observer is that its existence is guaranteed under a very weak observability assumption. Indeed, assume that for any x ∈ X , the past output path t → h(X(x, t)) of (3) restricted to the time in which the trajectory remains in a certain set determines x uniquely. Then, from [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], it is sufficient to choose m = 2n + 2 and A the real representation of a diagonal Hurwitz complex matrix in C n+1 to get the existence of an injective map T solving [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF]. The specific observability condition made is the following.

Definition 3.1 ((O, δ d )-backward distinguishability) For a given open set O of R n containing cl(X ) and a given positive real number δ d , system (3) is (O, δ d )-backward distinguishable if for each pair of distinct points x a and x b in O, there exists a negative time t in max σ - O+δ d (x a ), σ - O+δ d (x b ) , 0 such that h(X(x a , t)) = h(X(x b , t)).
This distinguishability assumption says that the present state x can be distinguished from other states in O by looking at the past output path restricted to the time in which the solution remains in O + δ d .

Example 3.2 Let us investigate under which condition the Wilson-Cowan model ( 7) is backward distinguishable. Assume that S is either globally Lipschitz or locally Lipschitz and bounded, so that according to the Picard-Lindelöf theorem, all maximal solutions are global (i.e. σ -(x) = -∞ and σ + (x) = +∞ for all x ∈ R n ). Make the following observability hypotheses:

(i) The pair (C, W ) is observable and its observability matrix

  C CW . . . CW k-1   is lower triangular; (ii) For all k ∈ {1, . . . , n -1}, the map s k is injective.
All these assumptions are satisfied in the case considered in Example 1.2 where

n = 4, s i = tanh, W = 2 2 0 0 -2 2 2 0 0 -2 2 2 0 0 -2 2
and C = 1 0 0 0 . Under these assumptions, let us show that the system is (R n , δ d )-backward distinguishable for any δ d > 0. Let x a , x b ∈ R n . Set y a,b (t) = CX(x a,b , t) and assume that y a (t) = y b (t) for all t 0. Let us show by induction that CW k (X(x a , t)-X(x b , t)) = 0 for all k ∈ {0, n -1} and all t 0. Indeed, since the pair (C, W ) is observable, applying this at t = 0 yields x a = x b and thus backward-distinguishability. First, y a (t) = y b (t) yields C(X(x a , t) -X(x b , t)) = 0. Assume that for some k ∈ {0, n -1}, CW j (X(x a , t) -X(x b , t)) = 0 for all j ∈ {0, . . . , k}. Taking the derivative with respect to t yields CW j (S(W X(x a , t)) -S(W X(x b , t))) = 0. Due to the invertibility and lower triangular structure of the observability matrix of (C, W ), we get that s j (W j (X(x a , t)))s j (W j (X(x b , t))) = 0 for all j ∈ {0, . . . , k}, where W j denotes the j-th line of W . Since s j is injective, this yields W j (X(x a , t) -X(x b , t)) = 0. Hence, due to the triangular structure of the observability matrix of (C, W ), CW k+1 being a linear combination of W j 's for j k, we have that CW k+1 (X(x a , t) -X(x b , t)) = 0 for all t 0, which ends the induction. Note that the previous reasoning exploits the successive derivatives of y a,b at time zero, and thus it still holds if y a (t) = y b (t) for t ∈ [-, 0] only, with arbitrarily small. It follows that for any open set O containing cl(X ) and for any

δ d > 0, the Wilson-Cowan model is (O, δ d )-backward distinguishable.
One of the results obtained in [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF] can be reformulated as follows.

Theorem 3.3 ([4]) Assume that system (3) is (O, δ d )-backward distinguish-
able for some open bounded set O containing cl(X ) and some δ d > 0. Then there exist a positive real number ρ and a zero Lebesgue measure subset I of (C ρ ) n+1 with C ρ defined in [START_REF] Bin | Approximate nonlinear regulation via identification-based adaptive internal models[END_REF] such that for each (λ 1 , . . . , λ n+1 ) in (C ρ ) n+1 \I, there exists an injective map T : O → C n+1 verifying (5) with

A = diag (λ 1 . . . , λ n+1 ) , B = 1 . . . 1 . (10) 
In [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], this result was not stated in this way. However, it is a direct consequence of the fact that we restrict our analysis to a bounded set X and that the output is one-dimensional. If the ouput is multi-dimensional then the same result holds but with the filter (1) applied to each output and thus T concatenating the solutions to (5) for each output.

Note that this observer can be realized in R 2n+2 by picking

A real = diag       Re(λ i ) -Im(λ i ) Im(λ i ) Re(λ i )       , B real =        b real . . . b real        , b real =    1 0    . (11) 
However, we see that the existence result imposes strong constraints on the matrices A and B. This is different from the result of Luenberger for linear systems for which no assumptions besides controllability and a spectrum different from F is required. The result we obtain in this paper is the following one.

Theorem 3.4 Assume that system (3) is (O, δ d )-backward distinguishable for some open bounded set O containing cl(X ) and some δ d > 0. Then, there exist a positive real number ρ and a zero Lebesgue measure subset J of R (2n+1)×(2n+1) × R 2n+1 such that for any pair (A, B) in (R (2n+1)×(2n+1) × R 2n+1 ) \ J with A + ρI Hurwitz, there exists an injective map T : O → R 2n+1 verifying (5).

Proof : See Appendix D. 2

Remark 3.5 Theorem 3.4 generalizes Theorem 3.3, in several directions :

(1) The observer matrices do not need to be with complex eigenvalues.

(2) The dimension of the observer is 2n+1, whereas the observer in Theorem 3.3 is of real dimension 2n + 2. This allows to recover some well known fact in observability theory that it is generically sufficient to extract 2n+1 pieces of information from the output path to observe a state of dimension n (see for instance [START_REF] Aeyels | Generic observability of differentiable systems[END_REF][START_REF] Takens | Detecting strange attractors in turbulence[END_REF][START_REF] Gauthier | Deterministic observation theory and applications[END_REF][START_REF] Coron | On the stabilization of controllable and observable systems by an output feedback law[END_REF][START_REF] Sontag | For differential equations with r parameters, 2r+ 1 experiments are enough for identification[END_REF]).

(3) The matrices A and B do not need to have a particular structure unlike in [START_REF] Brivadis | Further remarks on KKL observers[END_REF]. In particular, we show that they may be almost any controllable pair (A, B) with A diagonalizable. This "almost any" pair actually comes from an "almost any" choice of distinct p C complex conjugate eigenvalues and p R real eigenvalues in A such that 2p C +p R 2n+1. Indeed, we show that for any such p C and p R , the set of eigenvalues in

C p C ρ × R p R ρ which do not provide injectivity of T for (A, B) defined in (10) is of zero-Lebesgue measure in C p C ρ × R p R ρ .
This generalizes Theorem 3.3 where p C is fixed to n + 1 and p R = 0. Then, in the case where 2p C + p R = 2n + 1, we show that the set of matrices in R (2n+1)×(2n+1) having eigenvalues in the union of those zero-measure sets is of zero-measure in R (2n+1)×(2n+1) . We refer the reader to the proof for more details on this genericity result.

Remark 3.6

Following what has been done in [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF], this result can be extended to time-varying systems in the form

ẋ = f (x, t) , y = h(x, t) (12) 
with f : R n × R → R n and h : R n × R → R. In that case, combining the arguments of [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF] with the proof of Theorem 3.4, one obtains that the dimension of the observer needs to be 2n+2. Note that this was already the real dimension of the observer in [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF], but Theorem 3.4 shows that no structural constraints on A and B need to be imposed. 2 that a smaller dimension may be used in this particular case.

In the following subsection, another existence result is given for some particular structures of matrices A and B which are not covered by Theorem 3.4.

Existence result for A triangular with single eigenvalue

In this section, inspired by [START_REF] Bin | Approximate nonlinear regulation via identification-based adaptive internal models[END_REF], we consider the case in which the pair

(A, B) in R m×m × R m is in the form A λ,m =          λ 0 • • • • • • 0 1 λ . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 1 λ          , B m =          1 0 . . . . . . 0          (13) 
for some negative real number λ. This corresponds to a chain of filters, successively filtering m times the output with the same eigenvalue λ. In other words, instead of parallelizing the filters with different eigenvalues, this choice rather exploits the depth of the filter.

This case is not covered by Theorem 3.4 because its proof relies on diagonalizable matrices A with a generic choice of distinct eigenvalues. Instead, the choice of ( 13) is parameterized by a single real parameter λ, which is typically in the zero-measure set of Theorem 3.4. It thus requires another type of analysis which leads to the following result in the analytic context. 

∂T 0 ∂x (λ, x)f (x) = λT 0 (λ, x) + h(x) . (14) 
Assume moreover that h is bounded on O. Then, for each λ in Θ, for any compact subset C ⊂ O, there exists m ∈ N such that for all m m , the (unique) solution T λ,m of (5) with

(A, B) = (A λ,m , B m ) ∈ R m×m × R m given in (13) is injective on C. Proof : See Appendix E. 2 
Remark 3.9 In Theorem 3.8, the existence of an analytic solution x → T 0 (λ, x) of ( 14) is assumed for λ ∈ Θ. In the proof, it is shown that T 0 actually coincides with the map S, defined by (E.1). By the Lebesgue dominated convergence theorem, if x → h • X(x, s) ∈ C ∞ (O, R) for all s 0 and if for each multi-index α there exist a continuous map M α : O → R + and an integrable map

ϕ α : R -→ R + such that exp(-λs) ∂ α (h • X) ∂x α (x, s) ϕ α (s)M α (x), ∀s ∈ R -, ∀x ∈ O, (15) 
then S(λ, •) ∈ C ∞ (O, R) and its partial derivatives are given by

∂ α S ∂x α (λ, x) = 0 -∞ exp(-λs) ∂ α (h • X) ∂x α (x, s)ds. (16) 
Moreover,

∂ α S ∂x α (λ, x) M α (x) 0 -∞ ϕ α (s)ds. ( 17 
)
Hence, if for all compact sets C ⊂ O there exists a positive constant γ such that M α (x) 0 -∞ ϕ α (s)ds γ |α|+1 α! for all x ∈ C and and all multi-indices α, then S(λ, •) is analytic.

Remark 3.10 Note that Theorem 3.8 does not readily extends to time varying systems in the form [START_REF] Brivadis | Luenberger observers for discrete-time nonlinear systems[END_REF]. This is mainly due to the fact that the t component is not bounded and the dimension m (if it exists) may depend on time.

Example 3.11 Consider an harmonic oscillator with unknown frequency investigated in [START_REF] Praly | A new observer for an unknown harmonic oscillator[END_REF] and modelled as

ẋ1 = x 2 , ẋ2 = -x 3 x 1 , ẋ3 = 0 , y = x 1 . (18) 
In that case, for any ρ > 0 and > 0, the bounded set

O = x ∈ R 3 , 1 ρ < x 3 x 2 1 + x 2 2 < ρ, 1 < x 3 < (19) 
is backward invariant along the dynamics. Besides, the map defined on R <0 ×O by

T 0 (λ, x) = -λx 1 -x 2 λ 2 + x 3 (20) 
solves the PDE [START_REF] Buisson-Fenet | Towards gain tuning for numerical kkl observers[END_REF]. According to Theorem 3.8, we know that for any λ < 0 and for any compact subset C of O, there exists an integer m such that the (unique) solution to [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF] 

with (A, B) = (A λ,m , B m ) ∈ R m×m × R m given in (13) is injective on C.
As shown in the proof of Theorem 3.8, T λ,m is built by successively differentiating T 0 with respect to λ as defined in (E.2) until obtaining an injective map.

On this example, it is shown in the long version of this paper [11, Appendix E] that we can pick m = 4 and that the associated map T λ,4 defined by

T λ,4 (x) = T 0 (λ, x), ∂T 0 ∂λ (λ, x), ∂ 2 T 0 ∂λ 2 (λ, x), ∂ 3 T 0 ∂λ 3 (λ, x) (21) 
is actually injective on (R 2 \ {(0, 0})×R 0 and a KKL observer can be designed with

(A, B) = (A λ,m , B m ) ∈ R m×m × R m given in (13) for m = 4.
Remark 3.12 In practice, T 0 satisfying (25) is usually computed numerically by means of neural networks approaches (see Example 1.2), hence is not necessarily analytic with respect to x. Actually, even if the neural network is analytic, the learned map is only an approximation of the real map T 0 , which thus may not be analytic.

Example 3.13 It has been shown in Example 3.2 that the Wilson-Cowan model ( 7)

is (R n , δ d )-backward-distinguishable. Besides, when S is bounded, σ -(x) = -∞ for all x ∈ R n so that R n is backward-invariant.
However, h is not bounded on R n and T 0 cannot be checked to be analytic as explained in the previous remark. Nevertheless, numerical simulations show that the result of Theorem 3.8 holds with λ = -2 and m = 5, see [START_REF] Brivadis | Further remarks on KKL observers[END_REF] . Note that, since (7) is actually (O, δ d )-backward-distinguishable for any open set O, we could pick O bounded containing cl(X ) and modify f outside of O + δ d in order to make a compact set backward-invariant, as explained in the end of Section 2. h would then be bounded on O, but it is still not straightforward to check that T 0 is analytic.

A cascaded design procedure for T

Consider now a dynamical system in the cascade form

ẋ = f (x) , ξ = F ξ + Gh(x) (22) 
with (x, ξ) ∈ R n × R n ξ and output y ξ = Hξ and with (F, G, H) in the normal controllability form

F =               0 1 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • • • • 0 1 -a 0 -a 1 • • • • • • -a n ξ -1               , G =               0 . . . . . . 0 γ               (23) 
H = 1 0 • • • • • • 0 ( 24 
)
with γ = 0 and (a 0 , . . . , a n ξ -1 ) in R n ξ .

Assuming we know a KKL observer for ẋ = f (x) from the output y = h(x),

we would like to deduce an observer for (x, ξ) from the output y ξ . This covers two cases of practical interest:

• y = h(x) is not available but is used as an intermediary step in the design of an observer for (x, ξ) from the real output y ξ ; • y = h(x) is available, but noisy, and we want to use a filtered version y ξ of y in the KKL observer.

Due to the controllability form of (F, G, H), if the system ẋ = f (x) with output y = h(x) is backward-distinguishable, then, the extended system [START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF] with state (x, ξ) is also backward-distinguishable. Indeed, intuitively speaking, the past values of y ξ determine ξ and y uniquely and therefore also x. We could thus use Theorem 3.4 to show the existence of a KKL observer for this extended system. However, the goal of this section is rather to provide an explicit design method when a solution T 0 to the PDE ( 5) is available for the initial system (f, h) with A = λ and B = 1 for each λ. More precisely, we exhibit a solution if the following assumption holds for some open set O containing cl(X ).

Assumption 4.1 There exist a mapping

T 0 in C ∞ (R; C 1 (R n ; R)) and an open subset Θ 0 ⊂ R <0 such that for all (λ, x) in Θ 0 × O, ∂T 0 ∂x (λ, x)f (x) = λT 0 (λ, x) + h(x) , (25) 
and for all (λ,

x a , x b ) in Θ 0 × O 2 verifying x a = x b , there exists k n ξ in N such that ∂ k T 0 ∂λ k (λ, x a ) - ∂ k T 0 ∂λ k (λ, x b ) = 0 . ( 26 
)
Note that if a solution T 0 to ( 25) is analytic with respect to λ, then Assumption 4.1 holds as long as for any (

x a , x b ) ∈ O 2 verifying x a = x b , T 0 (•, x a ) -T 0 (•, x b )
is not a polynomial of degree strictly less than n ξ . Under the assumption of backward-distinguishability of Theorem 3.4, it is shown in its proof (see Section D.2.2) that such an analytic map T 0 always exists in the form (D.14). Indeed, T 0 (•, x a ) -T 0 (•, x b ) takes the form of a Laplace transform of some non zero causal signal, hence cannot be a polynomial. For example, the Wilson-Cowan model considered in Example 3.2 is backward distinguishable under some observability assumptions on (C, W ) and S, hence satisfies Assumption 4.1 under the same conditions.

The following theorem shows that this assumption is sufficient to give an explicit expression of an injective mapping T , allowing to obtain an observer for the entire system with state (x, ξ).

Theorem 4.2 Suppose that Assumption 4.1 holds. Let Θ ext 0 = Θ 0 \σ(F ). Then there exists a zero Lebesgue measure subset J ⊂ (Θ ext 0 ) 2(n+n ξ )+1 such that, for each λ 1 , . . . , λ 2(n+n ξ )+1 in (Θ ext 0 ) 2(n+n ξ )+1 \J , the map T : O×R n ξ → R 2(n+n ξ )+1 defined by

T (x, ξ) = (T ext 0 (λ 1 , x, ξ), . . . , T ext 0 (λ 2(n+n ξ )+1 , x, ξ)), T ext 0 (λ, x, ξ) = H(λI -F ) -1 (GT 0 (λ, x) -ξ)
is injective and verifies

∂T ∂(x, ξ) (x, ξ)    f (x) F ξ + Gh(x)    = AT (x, ξ) + BHξ , (27) 
with

A = diag λ 1 , . . . , λ 2(n+n ξ )+1 , B = 1 . . . 1 . ( 28 
)
Proof : See Appendix F. 2

Remark 4.3 Theorem 4.2 could be extended to time varying systems. However, the filter needs to remain autonomous. More precisely, instead of system [START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF], we could consider

ẋ = f (x, t) , ξ = F ξ + Gh(x, t) (29) 
with (x, ξ, t) ∈ R n × R n ξ × R and same output as before. In that case, the result holds by increasing by 1 the dimension of the observer.

Example 4.4 Consider again an harmonic oscillator with unknown frequency given in [START_REF] Gauthier | Deterministic observation theory and applications[END_REF], but this time with a simple filter in the form

ξ = -aξ + y (30) 
with a > 0. Note that the function T 0 given in (20) is solution of (25), is analytic and sastisfies Assumption 4.1. With the former theorem, we know that for almost all 9 negative real numbers λ i (different from -a) the system

(x, ξ) = T inv (z 1 , . . . , z 9 ) , żi = λ i z i + ξ ,
where T inv is any continuous function which satisfies

T inv (T ext 0 (λ 1 , x, ξ), . . . , T ext 0 (λ 9 , x, ξ)) = (x, ξ)
where

T ext 0 (λ, x, ξ) = 1 λ+a -λx 1 -x b λ 2 +x 3 -ξ , is an observer.
In fact, on this example, 9 different eigenvalues are not required to get injectivity of the mapping (x, ξ) → (T ext 0 (λ 1 , x, ξ), . . . , T ext 0 (λ 9 , x, ξ)). Indeed, we have for all (x a , x b ) in O defined in [START_REF] Golubitsky | Stable mappings and their singularities[END_REF] and all λ T 0 (λ, x a ) -T 0 (λ,

x b ) = 1 (λ 2 + x a,3 )(λ 2 + x b,3 ) 1 λ λ 2 λ 3 v(x a , x b ) with v(x a , x b ) =           x a,3 x b,2 -x b,3 x a,2
x a,3 x b,1x b,3 x a,1

x b,2x a,2

x b,1 -x a,1           It yields for all λ i = -a, i = 1, . . . , 5, for all (x a , ξ a , x b , ξ b ) in (O × R) 2 , T (x a , ξ a ) -T (x b , ξ b ) =        T ext 0 (λ 1 , x a , ξ a ) -T ext 0 (λ 1 , x b , ξ b ) . . . T ext 0 (λ 5 , x a , ξ a ) -T ext 0 (λ 5 , x b , ξ b )        = D(λ 1 , . . . , λ 5 )V(λ 1 , . . . , λ 5 )    v(x a , x b ) + w(x a , x b )(ξ b -ξ a ) ξ b -ξ a    .
where V is the Vandermonde matrix

V(λ 1 , . . . , λ 5 ) =        1 λ 1 λ 2 1 λ 3 1 λ 4 1 . . . 1 λ 5 λ 2 5 λ 3 5 λ 4 5       
, which is invertible as soon as the λ i 's are all different and

D(λ 1 , . . . , λ 5 ) = diag 1 (λ i + a)(λ 2 i + x a,3 )(λ 2 i + x b,3 )
. is also invertible and well defined for

(x a , ξ a , x b , ξ b ) in (O × R) 2 .
Note that injectivity of the mapping T is obtained since from the former expression

T (x a , ξ a ) -T (x b , ξ b ) = 0 implies that ξ b = ξ a and v(x a , x b ) = 0. Moreover, for (x a , x b ) in O 2 , v(x a , x b ) = 0 implies x a = x b .
Example 4.5 Consider the Wilson-Cowan model [START_REF] Bernard | Kkl observer design for sensorless induction motors[END_REF] and assume either 1) the available measurement is actually an averaged neural activity ξ modeled by filtering y; or 2) the measurement of y is available but very noisy and we would like to filter y before using it in the observer. In both scenarios, the model takes the form (22) and we assume for instance dim ξ = 1 and a 0 = γ = 1. We proceed as follows: first, we compute an approximate solution T a to (5) for the nominal dynamics [START_REF] Bernard | Kkl observer design for sensorless induction motors[END_REF] with diagonal pair (A, B) given in [START_REF] Mcshane | Extension of range of functions[END_REF] with eigenvalues (-2, -3, -4, -5, -6, -7) following the process of Example 1.2; second, we compute T ext a solution to the extended PDE [START_REF] Marconi | Output stabilization via nonlinear luenberger observers[END_REF] according to the explicit formula given by Theorem 4.2; then, we generate data points (x, ξ) by simulating [START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF] where the measurement y m of y is noisy to illustrate the filtering capabilities of the KKL observer. Note that the colored white noise ν is obtained from a first order filter of a uniform white noise of amplitude 5 with eigenvalue 100.

Conclusion

In this paper, we pursue the theoretical study on the nonlinear version of the observers initially introduced by Luenberger in his seminal paper of 1964 [START_REF] Luenberger | Observing the state of a linear system[END_REF]. In a first part, we refine some existing results obtained previously by relaxing constraints on the structure of the observer and showing that genericity is achieved with an algorithm of (real) dimension 2n + 1 and not of dimension 2n + 2 as initially indicated in [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF]. Also, three other results have been established allowing to improve methods to design these observers. The first one, is related to the uniqueness of the immersion on which is based the design. This allows to certify injectivity (and consequently observer convergence) if one succeeds in finding the immersion. A second result shows that it is possible to restrict ourselves to mono-parametric dynamics while preserving the hope of the convergence of the observer. Finally, we give a method to design filtered versions of these observers which may improve the behavior of the estimate in presence of measurement noise.

We believe that these theoretical results will allow an improvement of the learning techniques for the synthesis of KKL observers which are found in many current studies (see for instance [START_REF] Ramos | Numerical design of luenberger observers for nonlinear systems[END_REF][START_REF] Buisson-Fenet | Towards gain tuning for numerical kkl observers[END_REF][START_REF] Buisson-Fenet | Learning to observe : neural network-based KKL observers[END_REF][START_REF] Janny | Deep kkl: Data-driven output prediction for non-linear systems[END_REF][START_REF] Peralez | Deep learning-based luenberger observer design for discrete-time nonlinear systems[END_REF][START_REF] Niazi | Learning-based design of luenberger observers for autonomous nonlinear systems[END_REF]). In particular, existence results for larger classes of pairs (A, B) without constraints on their structure paves the way towards the optimization of this pair for better performance. For that, further research is needed to understand how to quantify the impact of the pair (A, B) on the considered performance.

Finally, although this paper is about state estimation, it is important to note that they will have a direct implication in the field of output regulation. Indeed, these results fit perfectly into the synthesis of the regulators introduced in [START_REF] Marconi | Output stabilization via nonlinear luenberger observers[END_REF].

The following tabular summarizes the results obtained so far for the existence of a KKL observer in the form (4). 

Observers

A =   λ 1 λ . . . . . . 1 λ   , B = (1 0 • • • 0) "Generic diagonal" KKL [4, Theorem 3] Backward distinguishability 2n + 2 A = diag Re λ i -Im λ i Im λ i Re λ i 1 i n+1 , B = ((1, 0) • • • (1, 0)) for almost all (λ i )'s in C n+1 "High-gain" KKL [4, Theorem 4]

Strong differential observability

Order of differential observability

For any (A 0 , B), A = kA 0 for k large enough

A Results of numerical simulations

In this section, we provide some numerical results concerning Examples 1.2 and 4.5. 

B Proof of Theorem 1.1

Since T is injective on the compact set cl(X ), there exists a continuous map T inv : R m → R n such that ( 6) holds (see [START_REF] Mcshane | Extension of range of functions[END_REF] for instance). According to [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF] holding on X , and because A is Hurwitz,

lim t→+∞ |Z(z, x, t) -T (X(x, t))| = 0.
Consider δ > 0. Since X(x, t) ∈ X for all t 0, there exists t 0 such that for all t > t, Z(z, x, t) ∈ T (X ) + δ. Besides, T inv is continuous on the compact set cl(T (X ) + δ), so there exists a class-K map ρ such that Applying this inequality with z a = T (X(x, t)) and z b = Z(z, x, t) for t > t then gives the result using [START_REF] Bernard | Observer design for continuous-time dynamical systems[END_REF].

|T inv (z a ) -T inv (z b )| ρ(|z a -z b |) ∀(z a , z b ) ∈ cl(T (X ) + δ) × cl(T (X ) + δ) .

C Proof of Theorem 2.1

Since O is backward invariant, we have for all x in O and all t 0, d dt T a (X(x, t)) = AT a (X(x, t)) + Bh(X(x, t)) , and,

d dt T b (X(x, t)) = AT b (X(x, t)) + Bh(X(x, t)) , which implies T a (X(x, t)) -T b (X(x, t)) = exp(At)[T a (x) -T b (x)] , ∀t 0 , ∀x ∈ O .
Hence,

T a (x) -T (x) = exp(-At)[T a (X(x, t)) -T b (X(x, t))] , ∀t 0 , ∀x ∈ O .
Now make t go to -∞.

In case (i), we get that exp(-At)[T a (X(x, t)) -T b (X(x, t))] tends towards 0 by boundedness of T a and T b since A is Hurwitz.

In case (ii), we get that |X(x, t)| M exp(-κ f t) for all t 0 for some M > 0, hence

|T a (X(x, t))-T b (X(x, t))| κ a M qa exp(-q a κ f t)+ρ a +κ b M q b exp(-q b κ f t)+ρ b . Since κ f q a < | Re λ m (A)| and κ f q b < | Re λ m (A)|, exp(-At)[T a (X(x, t)) - T b (X(x, t))
] tends towards 0.

In case (iii), we get by Grönwall's inequality that

|T a (X(x, t))| (|T a (x)|+ρ a |t|) exp(-κ a t) and |T b (X(x, t))| (|T b (x)|+ρ b |t|) exp(-κ b t). Hence |T a (X(x, t)) -T b (X(x, t))| (|T a (x)| + ρ a |t|) exp(-κ a t) + (|T b (x)| + ρ b |t|) exp(-κ b t). Since κ a < | Re λ m (A)| and κ b < | Re λ m (A)|, exp(-At)[T a (X(x, t))-T b (X(x, t))] tends towards 0.
Thus, in any case, T a (x) = T b (x) for all x in O.

D Proof of Theorem 3.4 D.1 A proof based on diagonalization

The proof relies on two main ideas:

• almost any matrix A of dimension 2n + 1 is diagonalizable, with a spectrum decomposed into 2 complex conjugate eigenvalues and 2(n -) + 1 real eigenvalues for some ∈ {0, . . . , n}; • a generic choice of complex eigenvalues and 2(n -) + 1 real eigenvalues for describing {0, . . . , n} yields a generic choice of matrix A of dimension 2n + 1.

The construction of the zero-measure set J allowing to prove Theorem 3.4 is thus based on the following preliminary result which investigates the existence of an injective solution to (5) in the case where A is a diagonal Hurwitz matrix with complex eigenvalues with real part smaller than -ρ and 2(n -) + 1 real eigenvalues smaller than -ρ. In that case, to define the observer state space, for in {0, . . . , n}, we introduce

Ω = C × R 2(n-)+1 . (D.1)
Also, given a positive real number ρ and in {0, . . . , n}, we consider the set Ω ,ρ defined as (see [START_REF] Bin | Approximate nonlinear regulation via identification-based adaptive internal models[END_REF])

Ω ,ρ = C ρ × R 2(n-)+1 ρ . (D.2)
The following result can be stated.

Proposition D.1 Assume that system (3) is (O, δ d )-backward distinguishable
for some open bounded set O containing cl(X ) and some δ d > 0. Then there exist a positive real number ρ such that for each in {0, . . . , n}, there exists a zero Lebesgue measure subset I of Ω ,ρ such that for each (λ 1 , . . . , λ 2n-+1 ) in Ω ,ρ \ I , there exists an injective C 1 function T diag : O → Ω verifying (5) with

A diag = diag (λ 1 . . . , λ 2n-+1 ) , B diag = 1 . . . 1 . (D.3)
Note that the first components of the map T diag provided by Proposition D.1 are complex valued. Considering the real and imaginary parts of these components, we obtain a map T real : O → R 2n+1 which is an injective C 1 solution to [START_REF] Bernard | Luenberger observers for nonautonomous nonlinear systems[END_REF] with

A real = diag(Λ 1 , . . . , Λ , λ +1 , . . . , λ 2n-+1 ) , B real =        B 1 . . . B 2n-+1        (D.4)
where Λ i and B i take the form

Λ i =    Re(λ i ) -Im(λ i ) Im(λ i ) Re(λ i )    , B i =            1 0   for i ∈ {1, . . . , } 1 for i ∈ { + 1, . . . , 2n -+ 1} .
The proof of Proposition D.1 is postponed to Section D.2. In the meantime, we prove Theorem 3.4 by translating the generic choice of eigenvalues in Proposition D.1 into a generic choice of the pair (A, B) of dimension 2n + 1.

Lemma D.2 For in {1, . . . , n}, let I be a zero measure subset of Ω . The set of matrices in R (2n+1)×(2n+1) with characteristic polynomial

j=1 (s 2 -2 Re(λ j )s + |λ j | 2 ) × 2n-+1 j=2 +1 (s -λ j )
for some (λ 1 , . . . , λ 2n-+1 ) ∈ I is of zero-measure in R (2n+1)×(2n+1) .

Proof : Let R 2n+1 [s] monic be the set of monic real polynomials with indeterminate s and degree 2n + 1 (i.e., real polynomials of degree 2n + 1 in which the nonzero coefficient of highest degree is equal to 1). Consider φ :

Ω ,ρ → R 2n+1 [s] monic such that φ(λ 1 , . . . , λ 2n-+1 ) = j=1 (s 2 -2 Re(λ j )s + |λ j | 2 ) × 2n-+1 j=2 +1 (s -λ j ).
The map φ associates to a list of complex roots and 2(n -) + 1 real roots, the monic polynomial of degree 2n+1 with real coefficients having those roots.

By identifying R 2n+1 [s] monic with a list of 2n + 1 coefficients in R 2n+1 , φ is C 1 from R 2n+1 to R 2n+1 . From which, we concludes that φ(I ) is a zero measure subset of R 2n+1 [s] monic assimilated to R 2n+1 (see for instance [17, Theorem 3 in §3]). Consider now Φ : R (2n+1)×(2n+1) → R 2n+1 [s] monic defined as Φ(A) = det(A -sI 2n+1 ) This map is C ∞ (still identifying R 2n+1 [s] monic with R 2n+1 )
Let us show that it is a submersion almost everywhere. All the coefficients of det(A -sI 2n+1 ) are polynomials of the coefficients of A. It follows that ∂Φ ∂A (A) is a rectangular matrix of dimension (2n + 1) × (2n + 1) 2 whose coefficients are polynomials of the coefficients of A. The set of matrices A such that rank ∂Φ ∂A (A) < 2n + 1 is characterized by the determinant of each minor being zero, which is thus an algebraic set of zero-measure. Hence Φ is a submersion. With 4 [33, Theorem 1], we therefore conclude that the set S defined as

S = {A, Φ(A) ∈ φ(I )} (D.5)
is a zero Lebesgue measure subset of R (2n+1)×(2n+1) . 2

Let ρ be a positive real number, and for each in {0, . . . , n}, let I be a zero measure subset of Ω ,ρ as given by Proposition D.1 and consider the sets

J N C = {(A, B) ∈ R (2n+1)×(2n+1) × R 2n+1 , (A, B) is not controllable} , (D.6) J N D = {(A, B) ∈ R (2n+1)×(2n+1) × R 2n+1 , A is not diagonalizable in C} , (D.7) J = {(A, B) ∈ R (2n+1)×(2n+1) × R 2n+1 , A ∈ S } . (D.8) 4 Let Φ : U ⊂ R k → R k of class C k-k +1 , where k k.
Then, the pre-image of any zero-measure set is of zero-measure if and only if Φ is a submersion almost everywhere, i.e., rank ∂Φ ∂x (x) = k for almost all x ∈ U It is well-known that J N C and J N D are of zero-measure. Applying Lemma D.2, we conclude that the set

J = J N C ∪ J N D ∪ ( n =0 J ) is of zero Lebesgue measure in R (2n+1)×(2n+1) × R 2n+1 .
Consider now (A, B) in R (2n+1)×(2n+1) × R 2n+1 \ J , such that A + ρI 2n+1 is Hurwitz. We wish to transform (A, B) into (A real , B real ) defined in (D.4) in order to apply Proposition D.1. The spectrum of A can be decomposed into 2 complex conjugate eigenvalues and 2(n -) + 1 real eigenvalues for some in {0, . . . , n}. By definition of J , A is diagonalizable in C, so there exist (λ 1 , . . . , λ 2n-+1 ) in Ω ,ρ and an invertible matrix P in R (2n+1)×(2n+1) such that

A real = P -1 AP with A real defined in (D.4). Let B = P -1 B =        B1 . . . B2n-+1        with Bi =            bi,1 bi,2   ∈ R 2 for i ∈ {1, . . . , } bi ∈ R for i ∈ { + 1, . . . , 2n -+ 1} . and M = diag(M 1 , . . . , M 2n-+1 )
with

M i =            bi,1 -bi,2 bi,2 bi,1   for i ∈ {1, . . . , } bi for i ∈ { + 1, . . . , 2n -+ 1} so that M A real = A real M and M B real = B.
Since A / ∈ J , the vector (λ 1 , . . . , λ 2n-+1 ) with (D.5) is not in I . Hence, according to Proposition D.1, there exists an injective

C 1 function T real : O → R 2n+1 such that, for all x in X , ∂T real ∂x f (x) = A real T real (x) + B real h(x) . (D.9)
with B real as in (D.4).

Finally, let T : O → R 2n+1 be the mapping T (x) = P M T real (x). Since the pair (A, B) is controllable, and P invertible, the pair (A real , B) is also controllable. Hence, this yields that for all i, Bi = 0. Consequently, the matrix M is invertible. Thus T is injective on O. Besides, for all x in X , ∂T ∂x (x)f (x) = P M A real T real (x) + P M B real h(x) ,

= P A real P -1 P M T real (x) + P Bh(x) , = AT (x) + Bh(x) .

D.2 Proof of Proposition D.1

D.2.1 Some variations on Coron's lemma

The proof of Proposition D.1 is based on the following lemma.

Lemma D.3 Let Υ be an open subset of R 2n , and Θ i , g i , p i be such that for all i ∈ {1, . . . , m},

• either Θ i is an open subset of R, g i : Θ i × Υ → R is in C ∞ (R; C 1 (R 2n ; R)) and p i = 1 ; • or Θ i is an open subset of C, g i : Θ i × Υ → C is holomorphic with respect
to λ and C 1 with respect to x, and p i = 2.

Then, if i p i 2n + 1, and if for all i ∈ {1, . . . , m}, for all (λ, x) ∈ Θ i × Υ, there exists k i ∈ N such that

∂ k i g i ∂λ k i (λ, x) = 0 (D.10)
then the following set has zero Lebesgue measure in m i=1 Θ i :

I = x∈Υ (λ i ) i∈{1,...,m} ∈ m i=1
Θ i : g i (λ i , x) = 0 ∀i ∈ {1, . . . , m} .

(D.11)

This lemma is an extension of [START_REF] Coron | On the stabilization of controllable and observable systems by an output feedback law[END_REF]Lemma 3.2] as well as the version given in [4, Lemma 3.2]:

• In those previous versions, the functions g i were the same for each i but this does not make any significant difference in the proof.

• In [16, Lemma 3.2], the functions g i are in C ∞ (R × R 2n ; R) instead of C ∞ (R; C 1 (R 2n ; R))
here. This loss of regularity is not a problem. Instead of the Malgrange theorem of [START_REF] Golubitsky | Stable mappings and their singularities[END_REF], we employ the one obtained in [START_REF] Michor | The division theorem on banach spaces[END_REF].

• In [4, Lemma 3.2], the functions g i are holomorphic with respect to λ and C 1 with respect to x.

Apart from these modifications, the proof follows readily and is based on the fact that I is contained in the countable union of image sets through C 1 functions taking values in a real submanifold of dimension 2n of i Θ i (which is a real manifold of dimension i p i 2n + 1). Hence the result is obtained from a variation of Sard theorem. The proof is provided in the long version of this paper, see [START_REF] Brivadis | Further remarks on KKL observers[END_REF]Appendix G] .

Now following [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], the idea to prove Proposition D.1 is first to exhibit a C 1 solution to ( 5 Moreover,

• The map T 0 (•, x) is holomorphic on C ρ for each x ∈ O.

• The restriction of T 0 (•, x) to R ρ is C ∞ (actually, analytic) for each x ∈ O.

Moreover, for all k ∈ N, ∂ k T 0 ∂λ k (λ, •) can be shown to be C 1 for any λ ∈ R ρ by following readily the proof of [START_REF] Andrieu | Convergence speed of nonlinear luenberger observers[END_REF]Proposition 3.3].

To prove Proposition D.1, it now remains to show injectivity by applying Lemma D.3.

D.2.3 Injectivity of T

diag Let Υ = {(x a , x b ) ∈ O 2 , x a = x b }. Let also Θ i = C ρ for i ∈ {1, . . . , } and Θ i = R ρ for i ∈ { + 1, . . . , 2n -+ 1}. Let g i : Θ i × Υ → C for i ∈ {1, . . . , } and g i : Θ i × Υ → R for i ∈ { + 1, . . . , 2n -+ 1} be defined by g i (λ, x a , x b ) = T 0 (λ, x a ) -T 0 (λ, x b ) , (D.16) = 0 -∞ exp(-(λ + ρ)s)∆(x a , x b , s)ds , (D.17)
for all (x a , x b ) ∈ Υ and all λ ∈ Θ i , where ∆(x a , x b , s) = exp(ρs) h( X(x a , s))h( X(x b , s)) .

By backward-distinguishability, for all (x a , x b ) in Υ there exists a negative time t in max σ - O+δ d (x a ), σ - O+δ d (x b ) , 0 such that h(X(x a , t)) = h(X(x b , t)). Moreover, by definition of χ in (D.15), X(x, s) = X(x, s) for all x ∈ O and all s ∈ (σ - O+δ d (x), 0]. It yields that for all (x a , x b ) in Υ, there exists s < 0 such that ∆(x a , x b , s) = 0.

From there, two cases may be distinguished.

• For i ∈ {1, . . . , }, for each (x a , x b ) ∈ Υ, g i (•, x a , x b ) is holomorphic (since T 0 (•, x) is holomorphic for each x ∈ O) and consequently, there exists k i such that (D.10) is satisfied. • For i ∈ { + 1, . . . , 2n -+ 1}, similarly to the proof of the injectivity of the Laplace transform, for all λ ∈ R ρ , with u = exp(s), yields

g i (λ, x a , x b ) = 1 0 u -(λ+ρ)-1 ∆(u)du
where ∆ is a continuous function defined by ∆(u) = ∆(x a , x b , ln(u)) for u > 0 and ∆(0) = 0. We deduce that g i (•, x a , x b ) is not identically zero on R ρ . Indeed, otherwise, picking λ = -(j + ρ + 1) for each j ∈ N, we get Moreover, since P is a polynomial, (D.18) yields 1 0 ∆(u)P (u)du = 0. Hence,

1 0 ∆(u) 2 du = 1 0 ∆(u)( ∆(u) -P (u))du max u∈[0,1] | ∆(u)| .
The former inequality being true for all , it yields that ∆ is identically zero on [0, 1], which is a contradiction since ∆ is not identically zero. Therefore, g i (•, x a , x b ) is not identically zero on R ρ . Since moreover g i is analytic, it yields that there exists k i such that (D.10) is satisfied.

We can finally apply Lemma D. where

T i (λ, x) = ∂ i T 0 ∂λ i (λ, x) , i = {0, . . . , m -1} . (E.2b) Since T 0 is C ∞ , for all (λ, x) ∈ Θ × O, ∂T 1 ∂x (λ, x)f (x) = ∂ 2 T 0 ∂λ∂x (λ, x)f (x) = ∂ ∂λ (λT 0 (λ, x)+h(x)) = λT 1 (λ, x)+T 0 (λ, x)
and iteratively for all i

∂T i ∂x (λ, x)f (x) = λT i (λ, x) + T i-1 (λ, x) ,
and consequently, T λ,m is the (unique) bounded solution of ( 5) with (A, B) = (A λ,m , B m ) ∈ R m×m × R m given in [START_REF] Buisson-Fenet | Learning to observe : neural network-based KKL observers[END_REF]. 

D λ, = (x a , x b ) ∈ O 2 , x a = x b , ∂ k g ∂λ k (λ, x a , x b ) = 0, k = 0, . . . , .
We 

D λ,m+ ∩ (C × C) = D λ,m ∩ (C × C) , ∀ ∈ N . Assume D λ,m ∩ (C × C) non-empty and take (x a , x b ) ∈ D λ,m ∩ (C × C). We have ∂ k g ∂λ k (λ, x a , x b ) = 0 for all k.
Since, moreover g(•, x a , x b ) is analytic, this implies that g(λ, x a , x b ) = 0 for all λ < 0. On another hand, with (E.1) and by injectivity of the Laplace transform 5 , this implies that s → h(X(x a , s))h(X(x b , s)) = 0 for s in (-∞, 0] and x a = x b . This is a contradiction with the observability assumption. This implies that D λ,m ∩ (C × C) = ∅.

F Proof of Theorem 4.2 First, that for all (λ, x, ξ) in Θ ext 0 × O × R n ξ ∂T ext 0 ∂x (λ, x, ξ)f (x) + ∂T ext 0 ∂ξ (λ, x, ξ)(F ξ + Gh(x)) = H(λI -F ) -1 G ∂T 0 ∂x (λ, x)f (x) -H(λI -F ) -1 (F ξ + Gh(x)) = λ T ext 0 (λ, x, ξ) + H(λI -F ) -1 ξ -H(λI -F ) -1 F ξ = λT ext 0 (λ, x, ξ) + Hξ. (F.1)
We next show injectivity of the mapping T built from T ext 0 by picking 2(n + n ξ ) + 1 distinct λ. For that, our aim is to apply Lemma D.3. To do so, let

(λ, x a , x b , ξ a , ξ b ) in Θ 0 × O 2 × R 2n ξ verifying (x a , ξ a ) = (x b , ξ b ). We have for each λ / ∈ σ(F ) H(λI -F ) -1 G = γ dn ξ (λ) , d n ξ (λ) = λ n ξ + n ξ -1 j=0 a j λ j . Moreover, H(λI -F ) -1 = p n ξ -1 (λ) dn ξ (λ) • • • • • • p 1 (λ) dn ξ (λ) 1 dn ξ (λ)
where p j are polynomials of degree j and d n ξ a polynomial of degree n ξ . Let us denote (forgetting the dependency in the variables (x a , ξ a , x b , ξ b ))

g(λ) = T ext 0 (λ, x a , ξ a ) -T ext 0 (λ, x b , ξ b ) , g 0 (λ) = T 0 (λ, x a ) -T 0 (λ, x b ) ,
and ξ = ( ξa , . . . , ξn ξ ) = ξ aξ b . Note that

g(λ) = n ξ -1 j=0 ξj p j (λ) + γg 0 (λ) d n ξ (λ) . (F.2) This gives 6 g (1) (λ) = d (1) n ξ (λ) d n ξ (λ) g(λ) + n ξ -1 j=1 ξj p (1) 
j (λ) + γg (1) 0 (λ) d n ξ (λ)
.

which more generally gives for all ∈ N and some integers (c ir )

g ( ) (λ) = -1 r=0 i=1 c ir d (i) n ξ (λ) d n ξ (λ) g (r) (λ) + n ξ -1 j= ξj p ( ) j (λ) + γg ( ) 0 (λ) d n ξ (λ) . (F.3)
The former expression gives for n ξ :

g ( ) (λ) = -1 r=0 i=1 c ir d (i) n ξ (λ) d n ξ (λ) g (r) (λ) + γ d n ξ (λ) g ( ) 0 (λ) (F.4)
If x a = x b , with Assumption 4.1, there exists k in N such that ∀i ∈ {0, . . . , k -1}, ∂ n ξ +i g 0 ∂λ n ξ +i (λ) = 0 and

∂ n ξ +k g 0 ∂λ n ξ +k (λ) = 0 . (F.5)
Combining (F.4) and (F.5), there exists k in N such that

∂ k T ext 0 ∂λ k (λ, x a , ξ a ) - ∂ k T ext 0 ∂λ k (λ, x b , ξ b ) = 0 . (F.6)
Indeed, otherwise, (F.4) implies that g ( ) 0 (λ) = 0 for all n ξ which contradicts (F.5).

Otherwise, x a = x b and ξ a = ξ b . We thus have g ( ) 0 (λ) = 0 for all , ξ = 0 and (by (F.3))

g ( ) (λ) = -1 r=0 i=1 c ir d (i) n ξ (λ) d n ξ (λ) g (r) (λ) + n ξ -1 j= ξj p ( ) j (λ) d n ξ (λ)
.

Again, this implies (F.6) for some k ∈ N. Indeed, otherwise,

n ξ -1 j= ξj p ( ) j ( 
λ) = 0 for all which implies that ξ = 0 (since each p j is of degree j), which contradicts ξ a = ξ b .

To conclude, this implies that for all (λ,

x a , x b , ξ a , ξ b ) in Θ 1 ×O 2 ×R 2n ξ verifying (x a , ξ a ) = (x b , ξ b ), there exists k in N such that (F.6) holds. Applying Lemma D.3 with Υ = (O × R n ξ ) 2 , Θ i = Θ ext 0 and g i (λ, x a , ξ a , x b , ξ b ) = T ext 0 (λ, x a , ξ a ) - T ext 0 (λ, x b , ξ b ) for i ∈ {1, . . . , 2(n + n ξ ) + 1}, we obtain the result. G Proof of Lemma D.3
This part is a reproduction of the proof given in [START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF] with the small update related to the use of real or complex valued functions. The differences are in blue.

Let Θ = i Θ i . Assume that i p i 2n + 1. The idea of the proof is to show that the set I is contained in a countable union of sets which have zero Lebesgue measure.

Given ( , Λ, x) in R >0 × Θ × Υ, we denote by S ,Λ,x the set :

S ,Λ,x = x∈B (x) {Λ ∈ B (Λ) : g (λ , x) = 0 ∀ ∈ {1, . . . , m}} . (G.1)
Assume for the time being that, for each pair (Λ, x) in Υ × Θ, we can find a positive real number and a countable family of C 1 functions σ i : B (x) → Θ, such that we have :

S ,Λ,x ⊂ i∈N σ i (B (x)) . (G.2)
The family (B (Λ) × B (x)) (Λ,x)∈ Θ×Υ is a covering of Θ × Υ by open subsets. From Lindelöf Theorem (see [START_REF] Boothby | An introduction to differentiable manifolds and Riemannian geometry[END_REF]Lemma 4.1] for instance), there exists a countable family (Λ j , x j )

j∈N such that we have :

Θ × Υ ⊂ j∈N B j (Λ j ) × B j (x j ) ,
where j denotes the associated to the pair (Λ j × x j ). With (G.2), it follows that we have :

I ⊂ j∈N i∈N σ i,j (B j (x j )) ,
where σ i,j denotes the ith function σ associated with the pair (Λ j , x j ). The set σ i,j (B j (x j )) is the image, contained in Θ, a real manifold of dimension i p i 2n + 1, by a C 1 function of B j (x j ), a real manifold of dimension 2n. From a variation on Sard's Theorem (see [START_REF] Rham | Differentiable Manifolds: Forms, Currents, Harmonic Forms[END_REF]Theorem 3 in §3] for instance), this image σ i,j (B j (x j )) has zero Lebesgue measure in Θ. So S, being a countable union of such zero Lebesgue measure subsets, has zero Lebesgue measure. So all we have to do to establish Lemma D.3 is to prove the existence of ε and the functions σ i satisfying (G.2) for each pair (x, Λ)in Υ × Θ. For ε, we consider two cases :

(1) Consider a pair (Λ, x) such that g j (λ , x) is non zero. By continuity of g j , we can find a positive real number such that g(λ , x) is also non zero for all Λ in B (λ) ⊂ Θ i and all x in B (x). In this case, the set S ,Λ,x is empty.

(2) Consider a pair (Λ, x) such that g(λ , x) is zero. From the assumption (D.10), for each , there exists an integer k satisfying :

∂ i g j ∂λ i (λ , x) = 0 ∀i ∈ {0, . . . , k -1} , ∂ k g j ∂λ k (λ , x) = 0 .
For each in {1, . . . , m}, two cases may be distinguished. Comparing (G.2) with (G.10) and using the definition (G.9), we see that a candidate for the function σ i is : .

σ i (x) = ρ m R M m (
In other words the family of functions σ i is actually given by the family :

σ µ,ν = ρ m • R ν • a ∈{1,...,n+1}
i.e. we have : S ,Λ,x ⊂ µ∈N n+1 ν∈N σ µ,ν (B (x)) .

H Proof that T λ,4 is injective

In this section we show that the mapping T λ,4 defined in ( 21) is injective. Indeed, consider x a and x b in (R 2 \ {(0, 0}) × R 0 . Denote w a = λ 2 + x a,3 and w b = λ 2 + x b,3 . We have which we denote (z 1 , z 2 , z 3 , z 4 ). Then, we get two cases :

• either -2λz 2z 1 = 0 and we get w a = w b from the third equality, and then x a = x b from the first two; • or -2λz 2z 1 = 0 and thus z 3 = 0, so that the fourth equality provides z 2 1 wa -1 w b = 0. So either z 2 = 0 and we recover w a = w b and conclude as above; or z 2 = 0, but then also z 1 = 0, and necessarily x a,1 = x a,2 = x b,1 = x b,2 = 0, which is impossible.

  , are shown on Figures A.1 and A.2 in appendix. In terms of observer parameters, we picked dim z = n + 1 = 5, A a block diagonal matrix with eigenvalues equal to those of a Bessel filter of dimension 5 and cut-off frequency ω c = 0.4, and B = (1, 1, 1, 1) . In terms of data, we took 100 random initial conditions in the foward-invariant compact set X = [-2, 2] 4 and 200 random points in each generated trajectory. For the learning of T a and T * a , we used a neural network with 5 hidden layers of 50 neurons, SiLU activation function, learning rate 5 × 10 -4 , weight decay 10 -8 , and scheduler with factor 0.1, patience 3 and threshold 10 -4 .

Theorem 2 . 1

 21 Let O be a subset of R n that is backward invariant 3 by f and consider A a Hurwitz matrix in R m×m and B a vector in R m . Let T a : O → R m and T b : O → R m be two C 1 solutions of ∂T ∂x (x)f (x) = AT (x) + Bh(x) , ∀x ∈ O.

Example 3 . 7

 37 It has been shown in Example 3.2 that the Wilson-Cowan model (7) satisfies the backward-distinguishability condition for any open set O and any δ d > 0 under observability assumptions on (C, W ) and S. Therefore, Theorem 3.4 can be applied to (7) under these same hypotheses. Hence, Theorem 3.4 shows that a generic choice of real matrices (A, B) of dimension 2n+1 guarantees the existence of an injective map T satisfying (5). Actually, it was shown in Example 1.

Theorem 3 . 8

 38 Assume that system (3) is (O, δ d )-backward distinguishable for some open backward invariant set O containing cl(X ) and some δ d > 0. Let Θ be a non-empty open subset of R <0 . Assume there exists a C ∞ map T 0 : Θ × O → R, such that for each λ in Θ, x → T 0 (λ, x) is an analytic bounded function on O which satisfies

  on [0, 30] from 100 initial conditions in [-1, 1] 5 ; computing z = T ext a (x, ξ) finally provides a data set of pairs (x, ξ, z), from which a numerical left-inverse T ext * a of T ext a can be learned. Theorem 4.2 thus avoids the learning step of T ext a by directly exploiting T a learned in smaller dimension. Results of simulations are provided in Figure A.3,A.4 in the scenario 2)

Fig. A. 1 .Fig. A. 2 .Fig. A. 3 .

 123 Fig. A.1. Convergence of z to T a (x), with x solution to (3), z solution to[START_REF] Aeyels | Generic observability of differentiable systems[END_REF] with input y = h(x) and T a an approximate solution of (5) that has been learned numerically following the method of[START_REF] Ramos | Numerical design of luenberger observers for nonlinear systems[END_REF]. See Example 1.2 for details.

Fig. A. 4 .

 4 Fig. A.4. Convergence of (x, ξ) = T ext * a (z) to (x, ξ), with (x, ξ) solution to (22), but where ξ is fed with y m = h(x) + ν instead of y = h(x), ν a colored white noise, z solution to (1) with input y ξ and an approximate left-inverse T ext * a of T ext a . See Example 4.5 for details.

  ) with (A diag , B diag ) as in(D.3). This solution is parameterized by the (λ i ) s. With the distinguishability assumption and the use of Lemma D.3, it is then shown that generically this function is injective on O.D.2.2 Construction of T diagLet δ b > δ d be any positive real number where δ d is given by backward-distinguishability. Let ρ = max x∈O+δ b ∂ f ∂x (x)where f = χf and where χ :R n → R is a C ∞ function such that χ(x) =      0 , x / ∈ O + δ b 1 , x ∈ O + δ d .(D.12)Fix in {1, . . . , n}. For each (λ 1 , . . . , λ 2n-+1 ) in Ω ,ρ , we can define the mapping T diag : O → Ω ,ρ defined asT diag (x) = (T 0 (λ 1 , x), . . . , T 0 (λ 2n-+1 , x)) (D.13) with T 0 : C ρ × O → R defined as T 0 (λ, x) = 0 -∞ exp(-λs)h( X(x, s))ds (D.14)where X : R n × R → R n is the flow of the modified systemẋ = f (x) = χ(x)f (x) . (D.15)To prove Proposition D.1, we need to show that T diag is solution to the PDE (5) and also that it has enough regularity to apply Lemma D.3 to obtain injectivity. First recall the following fact. Proposition D.4 ([3, Proposition 3.3]) The function T diag is C 1 and satisfies (5) with (A diag , B diag ) given in (D.3).

1 0u

 1 j ∆(u)du = 0 . (D.18) By Stone-Weierstrass theorem, for each > 0, there exists a polynomial P such that | ∆(u) -P (u)| , ∀u ∈ [0, 1].

3 , 8 First

 38 to obtain the set I given in (D.11). By definition of g i and of I , we conclude that the map T diag defined in (D.13) is injective on O for any (λ 1 , . . . , λ 2n-+1 ) in Ω ,ρ \ I . This concludes the proof. E Proof of Theorem 3.of all, the set O being backward invariant for the flow and the mapping h being bounded in O, this implies that the function S(λ, x) = 0 -∞ exp(-λs)h(X(x, s))ds (E.1) is well defined on R <0 × O and such that for all λ < 0, S(λ, •) is bounded and solution to (14) on O. Moreover, for all x ∈ O, S(•, x) is analytic on R <0 . With Theorem 2.1, it implies that T 0 = S on Θ × O and therefore, for all λ ∈ Θ, S(λ, •) is analytic on O. For m in N, let T λ,m (x) = (T 0 (λ, x), . . . , T m-1 (λ, x)) (E.2a)

  Let g : R <0 × O × O be given by g(λ, x a , x b ) = S(λ, x a ) -S(λ, x b ) . (E.3) Let λ ∈ Θ and C ⊂ O. Let D λ, be the sequence of open sets defined as

  (a) If Θ = C, following the Weierstrass Preparation Theorem (see[19, Theorem IV.1.1] 7 for instance), we know the existence of a positive real number , a function q : B (λ ) × B (x) → C, and k C 1 functions a j : R 2n → C satisfying, for all (λ, x) in B (λ ) × B (x),q (λ, x) g (λ, x) = (λλ ) k + k -1 j=0 a j (x)(λλ ) j . (G.3) (b) If Θ = R,following the Malgrange Preparation Theorem[START_REF] Michor | The division theorem on banach spaces[END_REF], we know the existence of a positive real number , a function q : B (λ ) × B (x) → R, and k C 1 functions a j : R 2n → R satisfying, for all (λ, x) in B (λ ) × B (x),q (λ, x) g (λ, x) = (λλ ) k + k -1 j=0 a j (x)(λλ ) j . (G.4)We choose the real number , to be associated to (Λ, x) in the definition of S ,Λ,x , as : = inf ∈{1,...,m} .In the following P : Θ × B (x) → Θ and a : B (x) → Θ k denote :P (λ, x) = (λ-λ ) k + k -1 j=0 a j (x)(λ-λ ) j , a (x) = (a 0 (x), . . . , a k -1 (x)) .With this definition of ε, we have the following implication, for Λ in B (Λ) and x in B (x),g(λ , x) = 0 ∀ ∈ {1, . . . , m} ⇒ (λ , a (x)) ∈ M ∀ ∈ {1, . . . , m} (G.5) where M is the set :M =    (λ, (b 0 , . . . , b k -1 )) ∈ Θ × Θ k : (λλ ) k + k -1 j=0 b j (λλ ) j = 0    (G.6) Our interest in this set follows from the following Lemma, which follows directly from [15, Equations (3.51)-(3.52)] (for Θ = R) and [4, Lemma 2] (for Θ = C). Lemma G.1 Let M be the set defined as : M =    (λ, b 0 , . . . , b k-1 ) ∈ Θ × Θ k : λ k + C or Θ = R. There exists a countable family {M m } m∈N of regular submanifolds of Θ k and a countable family of C 1 functions ρ m : M m → Θ such that we have the inclusion : M ⊂ m∈N b∈Mm {(ρ m (b), b)} . (G.7) So, for each in {1, . . . , n+1} we have a countable family {M m } m ∈N of regular submanifolds of C k and a countable family of C 1 functions ρ m : M m → C such that, for each x in B (x), if P (λ , x) is zero, then there exists an integer m such that we have : a (x) ∈ M m , λ = ρ m (a (x)) . (G.8) Hence, with (G.5), if : g(λ , x) = 0 ∀ ∈ {1, . . . , m} , then there exists an m-tuple µ = (m 1 , . . . , m m ) of integers satisfying : a (x) ∈ M m , λ = ρ m (a (x)) ∀ ∈ {1, . . . , m} .So, by letting : S µ ,Λ,x = {x∈B (x) : a (x)∈M m ∀ ∈{1,...,n+1}}(ρ 1 m 1 (a 1 (x)), . . . , ρ m mm (a m (x))

  a (x)) ∈{1,...,m} where i happens to be the m-tuple µ and R M m : Θ k → M m is a "restriction" to M m since we have to consider only those a (x) which are in M m . Finding such functions R M m such that σ i is C 1 may not be possible. But, following[START_REF] Coron | On the stabilization of controllable and observable systems by an output feedback law[END_REF] Lemma 3.3], we know the existence, for each , of a countable family ofC 1 functions R ν : Θ k → M m such that we get : S µ ,Λ,x ⊂ ν∈N ρ m R ν (a (B (x)))∈{1,...,n+1}

T 0 T 0

 00 (λ, x a ) = T 0 (λ, x b ) =: z 1 ⇐⇒ λ(x b,1 w ax a,1 w b ) = x a,2 w bx b,2 w a ∂T 0 ∂λ (λ, x a ) = ∂T 0 ∂λ (λ, x b ) =: z 2 ⇐⇒ x b,1 w ax a,1 w b = 2λz 1 (w bw a ) (λ, x a ) = T 0 (λ, x b ) ∂T 0 ∂λ (λ, x a ) = ∂T 0 ∂λ (λ, x b ) 1 w ax a,1 w b = 2λz 1 (w bw a ) x a,2 w bx b,2 w a = 2λ 2 z 1 (w bw a )Then, continuing differentiating,∂ 2 T 0 ∂λ 2 (λ, x a ) = ∂ 2 T 0 ∂λ 2 (λ, x b ) x b ) -T (x b )and∂ 3 T 0 ∂λ 3 (λ, x a ) = ∂ 3 T 0 ∂λ 3 (λ, x b ) ⇐⇒ -4λ w a -2λ ∂T 0 ∂λ (λ, x a ) -T (x a ) + 2 w a -3 ∂T 0 ∂λ (λ, x a ) -2λ ∂ 2 T 0 ∂λ 2 (λ, x a ) = -4λ w b -2λ ∂T 0 ∂λ (λ, x b ) -T (x b ) + 2 w b -3 ∂T 0 ∂λ (λ, x b ) -2λ ∂ 2 T 0 ∂λ 2 (λ, x b )Assume therefore that T λ,4 (x a ) = T λ,4 (x b ), namelyT 0 (λ, x a ), ∂T 0 ∂λ (λ, x a ), ∂ 2 T 0 ∂λ 2 (λ, x a ),∂ 3 T 0 ∂λ 3 (x a ) = T 0 (λ, x b ), ∂T 0 ∂λ (λ, x b ), ∂ 2 T 0 ∂λ 2 (λ, x b ), ∂ 3 T 0 ∂λ 3 (λ, x b )

  Example 2.3 Consider the case of the Wilson-Cowan model (see Example 1.2) with bounded activation function, i.e., assume that there exists a positive constant S such that |s i (x)| S for all x ∈ R and all i ∈ {1, . . . , n}. Then, for each x ∈ R n , the corresponding trajectory t → X(x, t) is such that

	X(x, t) = e -t x +	t
	0	

  will show that there exists m such that D λ,m ∩ (C × C) = ∅ which implies that T λ,m is injective in C. Note that we have D λ, +1 ⊂ D λ, . The map g(λ, •, •) being analytic since S = T 0 on Θ × O, (D λ, ) ∈N is a decreasing sequence of analytic subsets of O 2 ⊂ R 2m . The ring of analytic functions being Notherian [30, Corollary 1, p.99], (D λ, ) ∈N is a stationary sequence in all compact subsets, i.e. there exists m in N such that, for all m m ,

In practice, T inv (z) = argmin x∈cl(X ) |z -T (x)| can be employed even though it is not continuous.

As shown in[START_REF] Andrieu | On the existence of a kazantzis-kravaris/luenberger observer[END_REF], we do not need T to be C 1 as long as the Lie derivative of T along f exists.

That is, for all x ∈ O, σ -(x) = -∞ and X(x, t) ∈ O for all t 0.

This fact is recalled and proved in Section D.2.3 by using Stone-Weierstrass theorem.

With the notation g ( ) (λ) = ∂ g ∂λ (λ).

In[START_REF] Golubitsky | Stable mappings and their singularities[END_REF] Theorem IV.1.1], this theorem is stated with the assumption that g is holomorphic in both λ and x. However, as far as x is concerned, it can be seen in the proof of this Theorem that we need only the implicit function theorem to apply. So continuous differentiability in x for each λ is enough.
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