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Abstract

We extend the theory of Kazantzis-Kravaris/Luenberger (KKL) observers. These
observers consist in immersing the system into a linear stable filter of the output
with sufficiently large dimension and appropriate structure. After discussing the
uniqueness of such an immersion, we provide two main results about its existence.
The first one extends a known existence result by generalizing the structure of
the target linear filter and reducing its dimension. While this approach relies on a
generic choice of a sufficiently large number of distinct eigenvalues in the filter, we
then propose a second existence result in the novel symmetric case where instead,
the target filter is a cascade of a sufficiently large number of one-dimensional filters
sharing the same eigenvalue. Finally, we propose a new cascaded procedure for the
design of KKL observers. This method can be used in two ways: either to pre-filter
a noisy output before using it in the observer, or to simplify the construction of the
observer when the system can be written as the cascade of a nonlinear system and
a linear one.
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1 Introduction

The synthesis of observers is a standard problem in control and automation.
Over the last four decades, many methods have been developed allowing the
design of these estimation algorithms. The interested reader can refer to [6]
which is a survey on the various methods allowing to design such algorithms
for nonlinear dynamical systems. Among these listed methods, the Kazantzis-
Kravaris/Luenberger (KKL) approach or Nonlinear Luenberger approach ini-
tially developped in [36,22,23,4] is one of the most powerful one from a theoreti-
cal point of view. Indeed, the so-called backward-distinguishability assumption
guaranteeing its existence is very weak and does not require any particular
normal form.

When D. Luenberger published his first results concerning the design of ob-
servers for linear systems in [25], his idea was to look for a linear change of
coordinates T transforming the linear plant dynamics

ẋ = Fx , y = Hx ,

with state x in Rn, output y in R, and F and H matrices in Rn×n and R1×n

respectively, into a form

ż = Az +By (1)

with z in Rn and A Hurwitz, for which a trivial observer is simply made
of a copy of its dynamics. Indeed, since Tx verifies (1), the estimation error
e = z − Tx for any solution z of (1) evolves along the contracting dynamics
ė = Ae, so that any solution z converges to Tx. It follows that an estimate
x̂ of x can be obtained from z by inverting the transformation T . Luenberger
proved that when the pair (F,H) is observable, this is always possible for
any Hurwitz matrix A in Rn×n with no common eigenvalues with F , and any
vector B in Rn such that the pair (A,B) is controllable. This is based on the
fact that the Sylvester equation

TF = AT +BH (2)

ensuring that Tx follows (1) admits in this case a solution that is unique and
invertible.

Some researchers have then tried to reproduce Luenberger’s methodology on
nonlinear systems in the form

ẋ = f(x) , y = h(x) , (3)

where f : Rn → Rn and h : Rn → R are two sufficiently smooth func-
tions. Following [36,22,23,4], a nonlinear Luenberger observer or Kazantzis-
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Kravaris/Luenberger (KKL) observer is a dynamical system of the form

ż = Az + By , x̂ = T inv(z) , (4)

with state z in Rm (or Cm), a Hurwitz matrix A in Rm×m (or Cm×m), a vector
B in Rm such that the pair (A,B) is controllable and T inv : Rm → Rn a
continuous map.

Given X an open and bounded subset of Rn containing the system trajectories
of interest, following [36,22,23,4], the goal is to design the mapping T inv as
a uniformly continuous left inverse 1 of a C1 mapping 2 T : cl(X ) → Rm

satisfying
∂T

∂x
(x)f(x) = AT (x) +Bh(x) , ∀x ∈ X . (5)

In other words, we look for a solution T to (5) for a pair (A,B) to be chosen
with A Hurwitz, and, if possible, design T inv uniformly continuous verifying

T inv(T (x)) = x , ∀x ∈ X . (6)

Indeed, (5) is a direct extension of the Sylvester equation (2) and says that
along trajectories t 7→ x(t) of system (3) remaining in X , T (x) is solution to
(1) with y = h(x). Then, any other solution z to (1) with y = h(x) converges
to T (x), so that T inv(z) asymptotically provides an estimate of x thanks to
(6) by (uniform) continuity of T inv. Hence the observer given by (4) converges
asymptotically. This is summed up in the following theorem which is a direct
rephrasing of [4, Theorem 2.2] in the case where X is bounded. A proof of this
theorem can be found in [11, Appendix A] .

Theorem 1.1 ([4, Theorem 2.2]) Assume there exist m in N, A in Rm×m

Hurwitz, B in Rm and an injective function T : cl(X ) → Rm satisfying (5).
Then, there exists a continuous function T inv : Rm → Rn verifying (6), and
for any such map, we have that for any solution x : [0,+∞)→ X to (3) and
any solution to (4) with input y = h(x), the output x̂ is defined on [0,+∞)
and limt→+∞ |x̂(t)− x(t)| = 0.

From there, different questions can be raised:

(1) For which choice of m, A and B does an injective solution T to (5) exist?
(2) Is this solution unique?
(3) How to construct such a solution?

1 In practice, T inv(z) = argminx∈cl(X ) |z− T (x)| can be employed even though it is
not continuous.
2 As shown in [4], we do not need T to be C1 as long as the Lie derivative of T
along f exists.
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(4) How does the choice of the pair (A,B) impact the observer performance
and how to optimize this choice ?

The existence question (1) was first considered in [36], [22] and [24] in the
analytic context and around an equilibrium point. Then, the localness was
dropped following another perspective in [23] where a global existence result
was proposed based on a strong observability assumption which unfortunately
did not provide an indication on the necessary dimension of the pair (A,B).
This problem was solved in [4] by proving the existence of the injective map
T under a weak backward-distinguishability condition, for A complex diagonal
of dimension n + 1, with a generic choice of n + 1 distinct complex eigen-
values. Those results have then been extended to non autonomous systems
[5], discrete-time autonomous systems [12], and to the problem of functional
observer design when the full state is not observable and only a function of
the state needs to be estimated [38].

In terms of design, an explicit expression of the map T can sometimes be found
in particular contexts such as parameter identification [2], state/parameter es-
timation for electrical machines [20,8]. Otherwise, when an expression for T ,
or its left-inverse T inv is not available, approximation approaches have been
proposed as in [26]. More recently, numerical methods based on neural net-
works are being developed to learn a model of the maps T and T inv based on
the generation of a data pairs (x, z) approximating (x, T (x)) through back-
ward and forward integration of the dynamics [35,14,13,32]. Insight about how
those methods work is given in Example 1.2. Note that while the difficulty in
knowing the transformation T is a peculiarity of the KKL observer, its left-
inversion on the other hand is a problem appearing in most observer designs,
as soon as the observer is designed in other coordinates [6].

Once a method to compute the map T and, more importantly T ∗, is available,
the question of the link between the choice of (A,B) and the performance
of the observer comes naturally. In particular, the impact of the choice of
(A,B) on the robustness to noise has been observed to be significant in some
applications (see e.g., [7] in the time-varying context). It is then tempting,
and sometimes crucial, to optimize this choice as done in [7] in a particular
application, and proposed in [14] in a general setting (see also [21]). But the
quantification of performance and the formulation of the optimization problem
is not trivial in the nonlinear context and is a novel active field of research.
In order to allow a maximum of flexibility, efficiency and validity of the opti-
mization process, it is helpful to clarify theoretically

(i) the dimension and the class of admissible pairs (A,B) allowing the exis-
tence of an injective map T ,

(ii) whether any map Ta obtained numerically has any chance to be this
injective map T , which is related to uniqueness of solutions.
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Hence, it is worth investigating theoretically questions (1) and (2) above. In
particular, as noticed in [7,14], the result of [4] considering diagonal complex
matrices A with n+1 generic complex (independent) eigenvalues is restrictive:
we should be able to pick generic real pairs (A,B) with both complex and real
eigenvalues, maybe of multiple multiplicity and sufficiently large dimension.
It is thus the goal of this paper to provide existence results in such wider
contexts.

Example 1.2 In order to get a better grip on the theoretical contributions
given all along the paper, we give an illustrative observation problem example.
Consider a Wilson-Cowan model [40] of the form

ẋ = −x+ S(Wx) , y = Cx (7)

where the state x ∈ Rn quantifies the neural activity of each neuron group, W ∈
Rn×n describes the interconnections, S : Rn → Rn is a nonlinear activation
function to be chosen of the form

S(x1, . . . , xn) = (s1(x1), . . . , sn(xn))

with si : R → R, and C ∈ Rp×n indicates which neural activity is measured.
In this case, it is not clear how to obtain an explicit analytical expression of
a map T solving (5), let alone its left-inverse T ∗. Instead, we follow [35] and
proceed as follows:

• Pick m ∈ N, larger than n, a pair (A,B) ∈ Rm×m×Rm and a grid of initial
conditions x0 ∈ Rn.

• Simulate forward the interconnection of (3) and (1) from each x0, with z
initialized arbitrarily, typically at zero, and for a time tc ten times larger
than 1/|Re(λm(A))|, where λm(A) is the eigenvalue with largest real part.

• Remove the first part of the simulation where t ∈ [0, tc], and keep a certain
amount of data pairs (x(t), z(t)) at times larger than tc. Because tc is large
compared to the eigenvalues of A, we know that z(t) ≈ T (x(t)), with T
solution to (5).

• Fit numerical models Ta and T ∗a such that z(t) ≈ Ta(x(t)) and x(t) ≈
T ∗a (z(t)).

We are then ready to implement the KKL observer (4) with T ∗ replaced by
the learned model T ∗a . Results of a simulation on (7) with n = 4, W =(

2 2 0 0
−2 2 2 0
0 −2 2 2
0 0 −2 2

)
, y = x1, si(x) = tanh(x), are shown on Figures A.1 and A.2

in appendix. In terms of observer parameters, we picked dim z = n + 1 = 5,
A a block diagonal matrix with eigenvalues equal to those of a Bessel filter of
dimension 5 and cut-off frequency ωc = 0.4, and B = (1, 1, 1, 1)>. In terms of
data, we took 100 random initial conditions in the foward-invariant compact
set X = [−2, 2]4 and 200 random points in each generated trajectory. For the
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learning of Ta and T ∗a , we used a neural network with 5 hidden layers of 50
neurons, SiLU activation function, learning rate 5× 10−4, weight decay 10−8,
and scheduler with factor 0.1, patience 3 and threshold 10−4.

Note that observability of the system is here guaranteed since the knowledge of
y and its 3 first successive derivatives determines the state uniquely. However,
the choice of A does not follow the recommendations of [4]. Indeed, the con-
straint of a real matrix forces to pick conjugate eigenvalues, so that A contains
only 3 independent degrees of freedom in C, instead of n+1 = 5 recommended
in [4]. In other words, the real matrices of dimension 5 could very well be
in the zero-measure set for which the injectivity of T is not guaranteed. To
follow [4], one should pick n+ 1 eigenvalues in C, with thus a real implemen-
tation of dimension 2n + 2. In this paper, we will show that actually, there
is always a generic choice of a real pairs (A,B) of dimension 2n + 1 guar-
anteeing the existence of an injective map T . Of course, as illustrated in this
example, smaller dimensions may be used but the theory provides at least an
upper-bound. We will also show that other structures with eigenvalues with
multiplicity are admissible.

Finally, one may wonder whether the learned map Ta has any chance to be
close to the injective map T provided by the theorem, a question linked to
uniqueness of the solution to (5), also treated in this paper.

Organization and contributions of the paper. As justified above, we give fur-
ther and more precise answers to the questions (1) and (2) of existence and
uniqueness, while we leave aside the implementation-related questions (3) and
(4), since they essentially require improvement of the numerical methods de-
veloped in [35,14,13,32], as well as a better understanding of the link between
the pair (A,B) and the observer performance, which are both interesting prob-
lems in their own right and out of the scope of this paper. More precisely, we
start by discussing uniqueness in Section 2 with sufficient conditions described
in Theorem 2.1. Then, two novel existence results are provided in Section 3:

• one refining [4] with almost any choice of controllable pair (A,B) having A
real diagonalizable of dimension 2n+ 1 (see Theorem 3.4),
• the second in the analytic context for a different structure of the pair (A,B)

with only one eigenvalue of sufficiently large multiplicity (see Theorem 4.2).

Then, in Section 4, we introduce a cascaded procedure which facilitates the
synthesis of such an observer for certain cascaded nonlinear systems and which
allows the use of a filtered version of y in the observer (see Theorem 4.2).

Notations. A map ρ : R+ → R+ is of class-K if it is continuous, increasing and
such that ρ(0) = 0. For a differential equation ẋ = f(x) with f : Rn → Rn

locally Lipschitz, we denote by X(x, t) the value at time t of the solution
initialized at x ∈ Rn at time 0, and by (σ−O(x), σ+

O(x)) the maximal domain
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of existence of t 7→ X(x, t) in an open set O. When O = Rn, we just denote
(σ−(x), σ+(x)). Given a subset X ⊆ Rn and a positive real number δ, X + δ
is the open set defined as

X + δ = {x ∈ Rn | ∃xX ∈ X , |x− xX | < δ} . (8)

The real and imaginary parts of a complex number are denoted by Re and Im
respectively, and

Rρ = {λ ∈ R : λ < −ρ} , Cρ = {λ ∈ C : Re(λ) < −ρ} . (9)

We say that a map g : R × Rn → R is in C∞(R;C1(Rn;R)) if λ 7→ g(λ, x) is

C∞ for all x ∈ Rn and x 7→ ∂kg
∂λk

(λ, x) is C1 for all λ ∈ R and all k ∈ N.

2 Remarks on the uniqueness of the map T

Typical KKL theorems as in [4] or in the next section, provide the existence
of an injective solution T to the partial differential equation (PDE) (5). How-
ever, we might find other solutions of this PDE (via exact computations or a
numerical approach [35,13]) and it is legitimate to wonder how much any such
maps differ.

Theorem 2.1 Let O be a subset of Rn that is backward invariant 3 by f and
consider A a Hurwitz matrix in Rm×m and B a vector in Rm. Let Ta : O 7→ Rm

and Tb : O 7→ Rm be two C1 solutions of

∂T

∂x
(x)f(x) = AT (x) +Bh(x) , ∀x ∈ O.

If either

(i) Ta and Tb are bounded on O,
(ii) or there exist positive constants κf , ρf , κa, qa, ρa, κb, qb and ρb such that

for all x ∈ O,

|f(x)| 6 κf |x|+ ρf , |Ta(x)| 6 κa|x|qa + ρa, |Tb(x)| 6 κb|x|qb + ρb

with κfqa < |Re(λm(A))| and κfqb < |Re(λm(A))|, where λm(A) is the
eigenvalue of A having the largest real part,

(iii) or there exist positive constants κa, ρa, κb and ρb such that for all x ∈ O,∣∣∣∣∣∂Ta∂x
(x)f(x)

∣∣∣∣∣ 6 κa|Ta(x)|+ ρa and

∣∣∣∣∣∂Tb∂x
(x)f(x)

∣∣∣∣∣ 6 κb|Tb(x)|+ ρb

3 That is, for all x ∈ O, σ−(x) = −∞ and X(x, t) ∈ O for all t 6 0.
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with κa < |Re(λm(A))| and κb < |Re(λm(A))|,

then Ta(x) = Tb(x) for all x in O. In particular, if O is compact, then (i) is
satisfied and Ta(x) = Tb(x) for all x in O.

Proof : See Appendix C. 2

If multiple solutions to the PDE (5) exist, the injectivity of one solution may
not imply the injectivity of all solutions. In the following we give sufficient
conditions for a particular bounded injective solution denoted T to exist. If
another solution Ta is found by other means on a backward invariant set of the
system and if this map Ta is bounded on that set, then it is actually unique
and coincides with the theoretical injective solution. Otherwise, injectivity of
Ta is not ensured a priori, and must be checked on each individual example.

Example 2.2 For illustration purpose only, we consider the trivial one-dimensional
example

ẋ = −ax , y = x

with a > 0. This example falls into the original linear Luenberger context
[25] where an injective solution to PDE (5) is known to exist with dimension
m = 1. Taking A = −λ and B = 1 with λ > 0 and λ 6= a, the map T 0

λ defined
by T 0

λ (x) = 1
λ−ax verifies the PDE

∂Tλ
∂x

(x)f(x) = −λTλ(x) + h(x)

everywhere. Clearly, T 0
λ is injective. However, for any real number α,

Tλ(x) = α sign(x)|x|λa +
1

λ− ax

is also a C1 solution to the PDE everywhere and clearly Tλ can be non injective
for some values of α. Note that in this example, there is no backward-invariant
set apart from {0}, where the maps Tλ indeed agree.

Actually, given x in X such that X(x, t) belongs to the bounded set X for
all t > 0, the ω-limit set of x ω(x) = ∩t>0 cl(∪s>t{X(x, s)} is a non-empty
compact backward and forward invariant set. Hence, with the former propo-
sition, T and Ta coincide on this set. In other words, Ta coincides on the set
ω(x) with an injective map. Besides, because T and Ta are both solutions to
the PDE, the state z of the KKL observer converges both towards Ta(X(x, t))
and T (X(x, t)), which tend to each other. However, this does not mean that
X(x, t) can be uniquely determined asymptotically from the knowledge of Ta,
since there could be other x′ ∈ X such that T (x∗) = Ta(x

∗) = Ta(x
′) for

x∗ ∈ ω(x) and x′ /∈ ω(x) (this is possible since Ta is only injective on ω(x)).
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Example 2.3 Consider the case of the Wilson-Cowan model (see Example 1.2)
with bounded activation function, i.e., assume that there exists a positive con-
stant S̄ such that |si(x)| 6 S̄ for all x ∈ R and all i ∈ {1, . . . , n}. Then, for
each x ∈ Rn, the corresponding trajectory t 7→ X(x, t) is such that

X(x, t) = e−tx+
∫ t

0
e−(t−s)S(WX(x, s))ds

Hence |X(x, t)| 6 |x| + S̄ for all t > 0. Thus, according to Theorem 2.1,
solutions of (5) are unique on ω(x). When n = 2 and S and W are chosen such
that 0 is an unstable equilibrium of (7), the system has a unique asymptotically
stable limit cycle with basin of attraction Rn \ {0}. Then, the compact set
containing 0 and having this limit cycle as boundary is backward invariant.
Then, by Theorem 2.1, solutions of (5) are unique on this set.

Note however that because the observer is supposed to estimate trajectories
remaining in X for all positive times, the map f may be modified outside of
X as long as the observability properties given below are preserved. It is thus
usually possible to replace f by modified dynamics ẋ = χ(x)f(x), which admit
a backward invariant compact set (by making f vanish outside of a larger
open set containing cl(X ) and ensuring observability, for instance as in (D.12)
below). Once this regularization has been done, any solution Ta to the PDE
found on that set is unique and thus injective on X if the required observability
properties are preserved. For instance, in a numerical KKL design [35,13],
where Ta is learned on a compact set, a trick to ensure injectivity is to apply
the learning procedure to the modified f on the whole backward invariant
set. This has the additional advantage to make the solutions well-defined and
bounded in backward-time, which is crucial in the learning procedure.

3 Remarks on the existence of an injective map T

3.1 Existence result based on A diagonalizable with 2n+ 1 eigenvalues

As shown in [4], one of the main interests of the KKL observer is that its
existence is guaranteed under a very weak observability assumption. Indeed,
assume that for any x ∈ X , the past output path t 7→ h(X(x, t)) of (3) re-
stricted to the time in which the trajectory remains in a certain set determines
x uniquely. Then, from [4], it is sufficient to choose m = 2n+ 2 and A the real
representation of a diagonal Hurwitz complex matrix in Cn+1 to get the exis-
tence of an injective map T solving (5). The specific observability condition
made is the following.

Definition 3.1 ((O, δd)-backward distinguishability) For a given open set
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O of Rn containing cl(X ) and a given positive real number δd, system (3) is
(O, δd)-backward distinguishable if for each pair of distinct points xa and xb
in O, there exists a negative time t in

(
max

{
σ−O+δd

(xa), σ
−
O+δd

(xb)
}
, 0
]

such

that h(X(xa, t)) 6= h(X(xb, t)).

This distinguishability assumption says that the present state x can be distin-
guished from other states in O by looking at the past output path restricted
to the time in which the solution remains in O + δd.

Example 3.2 Let us investigate under which condition the Wilson-Cowan
model (7) is backward distinguishable. Assume that S is either globally Lips-
chitz or locally Lipschitz and bounded, so that according to the Picard–Lindelöf
theorem, all maximal solutions are global (i.e. σ−(x) = −∞ and σ+(x) = +∞
for all x ∈ Rn). Make the following observability hypotheses:

(i) The pair (C,W ) is observable and its observability matrix

 C
CW

...
CWk−1

 is

lower triangular;
(ii) For all k ∈ {1, . . . , n− 1}, the map sk is injective.

All these assumptions are satisfied in the case considered in Example 1.2 where

n = 4, si = tanh, W =

(
2 2 0 0
−2 2 2 0
0 −2 2 2
0 0 −2 2

)
and C =

(
1 0 0 0

)
. Under these as-

sumptions, let us show that the system is (Rn, δd)-backward distinguishable for
any δd > 0. Let xa, xb ∈ Rn. Set ya,b(t) = CX(xa,b, t) and assume that ya(t) =
yb(t) for all t 6 0. Let us show by induction that CW k(X(xa, t)−X(xb, t)) = 0
for all k ∈ {0, n − 1} and all t 6 0. Indeed, since the pair (C,W ) is observ-
able, applying this at t = 0 yields xa = xb and thus backward-distinguishability.
First, ya(t) = yb(t) yields C(X(xa, t) − X(xb, t)) = 0. Assume that for some
k ∈ {0, n−1}, CW j(X(xa, t)−X(xb, t)) = 0 for all j ∈ {0, . . . , k}. Taking the
derivative with respect to t yields CW j(S(WX(xa, t)) − S(WX(xb, t))) = 0.
Due to the invertibility and lower triangular structure of the observability ma-
trix of (C,W ), we get that sj(Wj(X(xa, t))) − sj(Wj(X(xb, t))) = 0 for all
j ∈ {0, . . . , k}, where Wj denotes the j-th line of W . Since sj is injective,
this yields Wj(X(xa, t)−X(xb, t)) = 0. Hence, due to the triangular structure
of the observability matrix of (C,W ), CW k+1 being a linear combination of
Wj’s for j 6 k, we have that CW k+1(X(xa, t) − X(xb, t)) = 0 for all t 6 0,
which ends the induction. Note that the previous reasoning exploits the succes-
sive derivatives of ya,b at time zero, and thus it still holds if ya(t) = yb(t) for
t ∈ [−ε, 0] only, with ε arbitrarily small. It follows that for any open set O con-
taining cl(X ) and for any δd > 0, the Wilson-Cowan model is (O, δd)-backward
distinguishable.

One of the results obtained in [4] can be reformulated as follows.
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Theorem 3.3 ([4]) Assume that system (3) is (O, δd)-backward distinguish-
able for some open bounded set O containing cl(X ) and some δd > 0. Then
there exist a positive real number ρ and a zero Lebesgue measure subset I of
(Cρ)

n+1 with Cρ defined in (9) such that for each (λ1, . . . , λn+1) in (Cρ)
n+1\I,

there exists an injective map T : O → Cn+1 verifying (5) with

A = diag (λ1 . . . , λn+1) , B =
[
1 . . . 1

]>
. (10)

In [4], this result was not stated in this way. However, it is a direct consequence
of the fact that we restrict our analysis to a bounded set X and that the output
is one-dimensional. If the ouput is multi-dimensional then the same result
holds but with the filter (1) applied to each output and thus T concatenating
the solutions to (5) for each output.

Note that this observer can be realized in R2n+2 by picking

Areal = diag


Re(λi) − Im(λi)

Im(λi) Re(λi)


 , Breal =


breal

...

breal

 , breal =

1

0

 . (11)

However, we see that the existence result imposes strong constraints on the
matrices A and B. This is different from the result of Luenberger for linear
systems for which no assumptions besides controllability and a spectrum dif-
ferent from F is required. The result we obtain in this paper is the following
one.

Theorem 3.4 Assume that system (3) is (O, δd)-backward distinguishable for
some open bounded set O containing cl(X ) and some δd > 0. Then, there exist
a positive real number ρ and a zero Lebesgue measure subset J of R(2n+1)×(2n+1)×
R2n+1 such that for any pair (A,B) in (R(2n+1)×(2n+1)×R2n+1)\J with A+ρI
Hurwitz, there exists an injective map T : O → R2n+1 verifying (5).

Proof : See Appendix D. 2

Remark 3.5 Theorem 3.4 generalizes Theorem 3.3, in several directions :

(1) The observer matrices do not need to be with complex eigenvalues.
(2) The dimension of the observer is 2n+1, whereas the observer in Theorem

3.3 is of real dimension 2n + 2. This allows to recover some well known
fact in observability theory that it is generically sufficient to extract 2n+1
pieces of information from the output path to observe a state of dimension
n (see for instance [1,39,18,16,37]).
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(3) The matrices A and B do not need to have a particular structure unlike
in (11). In particular, we show that they may be almost any controllable
pair (A,B) with A diagonalizable. This “almost any” pair actually comes
from an “almost any” choice of distinct pC complex conjugate eigenvalues
and pR real eigenvalues in A such that 2pC+pR > 2n+1. Indeed, we show
that for any such pC and pR, the set of eigenvalues in CpC

ρ ×RpR
ρ which do

not provide injectivity of T for (A,B) defined in (10) is of zero-Lebesgue
measure in CpC

ρ ×RpR
ρ . This generalizes Theorem 3.3 where pC is fixed to

n + 1 and pR = 0. Then, in the case where 2pC + pR = 2n + 1, we show
that the set of matrices in R(2n+1)×(2n+1) having eigenvalues in the union
of those zero-measure sets is of zero-measure in R(2n+1)×(2n+1). We refer
the reader to the proof for more details on this genericity result.

Remark 3.6 Following what has been done in [5], this result can be extended
to time-varying systems in the form

ẋ = f(x, t) , y = h(x, t) (12)

with f : Rn × R → Rn and h : Rn × R → R. In that case, combining the
arguments of [5] with the proof of Theorem 3.4, one obtains that the dimension
of the observer needs to be 2n+2. Note that this was already the real dimension
of the observer in [5], but Theorem 3.4 shows that no structural constraints
on A and B need to be imposed.

Example 3.7 It has been shown in Example 3.2 that the Wilson-Cowan model
(7) satisfies the backward-distinguishability condition for any open set O and
any δd > 0 under observability assumptions on (C,W ) and S. Therefore,
Theorem 3.4 can be applied to (7) under these same hypotheses. Hence, Theo-
rem 3.4 shows that a generic choice of real matrices (A,B) of dimension 2n+1
guarantees the existence of an injective map T satisfying (5). Actually, it was
shown in Example 1.2 that a smaller dimension may be used in this particular
case.

In the following subsection, another existence result is given for some par-
ticular structures of matrices A and B which are not covered by Theorem
3.4.
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3.2 Existence result for A triangular with single eigenvalue

In this section, inspired by [9], we consider the case in which the pair (A,B)
in Rm×m × Rm is in the form

Aλ,m =



λ 0 · · · · · · 0

1 λ
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 1 λ

 , Bm =



1

0
...
...

0

 (13)

for some negative real number λ. This corresponds to a chain of filters, suc-
cessively filtering m times the output with the same eigenvalue λ. In other
words, instead of parallelizing the filters with different eigenvalues, this choice
rather exploits the depth of the filter.

This case is not covered by Theorem 3.4 because its proof relies on diagonal-
izable matrices A with a generic choice of distinct eigenvalues. Instead, the
choice of (13) is parameterized by a single real parameter λ, which is typi-
cally in the zero-measure set of Theorem 3.4. It thus requires another type of
analysis which leads to the following result in the analytic context.

Theorem 3.8 Assume that system (3) is (O, δd)-backward distinguishable for
some open backward invariant set O containing cl(X ) and some δd > 0. Let
Θ be a non-empty open subset of R<0. Assume there exists a C∞ map T0 :
Θ × O 7→ R, such that for each λ in Θ, x 7→ T0(λ, x) is an analytic bounded
function on O which satisfies

∂T0

∂x
(λ, x)f(x) = λT0(λ, x) + h(x) . (14)

Assume moreover that h is bounded on O. Then, for each λ in Θ, for any
compact subset C ⊂ O, there exists m? ∈ N such that for all m > m?, the
(unique) solution Tλ,m of (5) with (A,B) = (Aλ,m, Bm) ∈ Rm×m × Rm given
in (13) is injective on C.

Proof : See Appendix E. 2

Remark 3.9 In Theorem 3.8, the existence of an analytic solution x 7→
T0(λ, x) of (14) is assumed for λ ∈ Θ. In the proof, it is shown that T0

actually coincides with the map S, defined by (E.1). By the Lebesgue domi-
nated convergence theorem, if x 7→ h ◦X(x, s) ∈ C∞(O,R) for all s 6 0 and
if for each multi-index α there exist a continuous map Mα : O → R+ and an
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integrable map ϕα : R− → R+ such that

exp(−λs)
∣∣∣∣∣∂α(h ◦X)

∂xα
(x, s)

∣∣∣∣∣ 6 ϕα(s)Mα(x), ∀s ∈ R−, ∀x ∈ O, (15)

then S(λ, ·) ∈ C∞(O,R) and its partial derivatives are given by

∂αS

∂xα
(λ, x) =

∫ 0

−∞
exp(−λs)∂

α(h ◦X)

∂xα
(x, s)ds. (16)

Moreover, ∣∣∣∣∣∂αS∂xα
(λ, x)

∣∣∣∣∣ 6Mα(x)
∫ 0

−∞
ϕα(s)ds. (17)

Hence, if for all compact sets C ⊂ O there exists a positive constant γ such
that Mα(x)

∫ 0
−∞ ϕα(s)ds 6 γ|α|+1α! for all x ∈ C and and all multi-indices α,

then S(λ, ·) is analytic.

Remark 3.10 Note that Theorem 3.8 does not readily extends to time varying
systems in the form (12). This is mainly due to the fact that the t component
is not bounded and the dimension m (if it exists) may depend on time.

Example 3.11 Consider an harmonic oscillator with unknown frequency in-
vestigated in [34] and modelled as

ẋ1 = x2 , ẋ2 = −x3x1 , ẋ3 = 0 , y = x1 . (18)

In that case, for any ρ > 0 and $ > 0, the bounded set

O =

{
x ∈ R3,

1

ρ
< x3x

2
1 + x2

2 < ρ,
1

$
< x3 < $

}
(19)

is backward invariant along the dynamics. Besides, the map defined on R<0×O
by

T0(λ, x) =
−λx1 − x2

λ2 + x3

(20)

solves the PDE (14). According to Theorem 3.8, we know that for any λ < 0
and for any compact subset C of O, there exists an integer m such that the
(unique) solution to (5) with (A,B) = (Aλ,m, Bm) ∈ Rm×m×Rm given in (13)
is injective on C.

As shown in the proof of Theorem 3.8, Tλ,m is built by successively differenti-
ating T0 with respect to λ as defined in (E.2) until obtaining an injective map.
On this example, it is shown in the long version of this paper [11, Appendix
E] that we can pick m = 4 and that the associated map Tλ,4 defined by

Tλ,4(x) =

(
T0(λ, x),

∂T0

∂λ
(λ, x),

∂2T0

∂λ2
(λ, x),

∂3T0

∂λ3
(λ, x)

)
(21)
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is actually injective on (R2 \ {(0, 0})×R>0 and a KKL observer can be designed
with (A,B) = (Aλ,m, Bm) ∈ Rm×m × Rm given in (13) for m = 4.

Remark 3.12 In practice, T0 satisfying (25) is usually computed numeri-
cally by means of neural networks approaches (see Example 1.2), hence is not
necessarily analytic with respect to x. Actually, even if the neural network is
analytic, the learned map is only an approximation of the real map T0, which
thus may not be analytic.

Example 3.13 It has been shown in Example 3.2 that the Wilson-Cowan
model (7) is (Rn, δd)-backward-distinguishable. Besides, when S is bounded,
σ−(x) = −∞ for all x ∈ Rn so that Rn is backward-invariant. However, h is
not bounded on Rn and T0 cannot be checked to be analytic as explained in the
previous remark. Nevertheless, numerical simulations show that the result of
Theorem 3.8 holds with λ = −2 and m = 5, see [11] . Note that, since (7) is
actually (O, δd)-backward-distinguishable for any open set O, we could pick O
bounded containing cl(X ) and modify f outside of O + δd in order to make a
compact set backward-invariant, as explained in the end of Section 2. h would
then be bounded on O, but it is still not straightforward to check that T0 is
analytic.

4 A cascaded design procedure for T

Consider now a dynamical system in the cascade form

ẋ = f(x) , ξ̇ = Fξ +Gh(x) (22)

with (x, ξ) ∈ Rn ×Rnξ and output yξ = Hξ and with (F,G,H) in the normal
controllability form

F =



0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1

−a0 −a1 · · · · · · −anξ−1


, G =



0
...
...

0

γ


(23)

H =
(

1 0 · · · · · · 0

)
(24)

with γ 6= 0 and (a0, . . . , anξ−1) in Rnξ .

Assuming we know a KKL observer for ẋ = f(x) from the output y = h(x),
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we would like to deduce an observer for (x, ξ) from the output yξ. This covers
two cases of practical interest:

• y = h(x) is not available but is used as an intermediary step in the design
of an observer for (x, ξ) from the real output yξ;
• y = h(x) is available, but noisy, and we want to use a filtered version yξ of
y in the KKL observer.

Due to the controllability form of (F,G,H), if the system ẋ = f(x) with
output y = h(x) is backward-distinguishable, then, the extended system (22)
with state (x, ξ) is also backward-distinguishable. Indeed, intuitively speaking,
the past values of yξ determine ξ and y uniquely and therefore also x. We
could thus use Theorem 3.4 to show the existence of a KKL observer for this
extended system. However, the goal of this section is rather to provide an
explicit design method when a solution T0 to the PDE (5) is available for
the initial system (f, h) with A = λ and B = 1 for each λ. More precisely,
we exhibit a solution if the following assumption holds for some open set O
containing cl(X ).

Assumption 4.1 There exist a mapping T0 in C∞(R;C1(Rn;R)) and an
open subset Θ0 ⊂ R<0 such that for all (λ, x) in Θ0 ×O,

∂T0

∂x
(λ, x)f(x) = λT0(λ, x) + h(x) , (25)

and for all (λ, xa, xb) in Θ0 × O2 verifying xa 6= xb, there exists k > nξ in N
such that

∂kT0

∂λk
(λ, xa)−

∂kT0

∂λk
(λ, xb) 6= 0 . (26)

Note that if a solution T0 to (25) is analytic with respect to λ, then Assumption
4.1 holds as long as for any (xa, xb) ∈ O2 verifying xa 6= xb, T0(·, xa)−T0(·, xb)
is not a polynomial of degree strictly less than nξ. Under the assumption of
backward-distinguishability of Theorem 3.4, it is shown in its proof (see Sec-
tion D.2.2) that such an analytic map T0 always exists in the form (D.14).
Indeed, T0(·, xa)−T0(·, xb) takes the form of a Laplace transform of some non
zero causal signal, hence cannot be a polynomial. For example, the Wilson-
Cowan model considered in Example 3.2 is backward distinguishable under
some observability assumptions on (C,W ) and S, hence satisfies Assump-
tion 4.1 under the same conditions.

The following theorem shows that this assumption is sufficient to give an
explicit expression of an injective mapping T , allowing to obtain an observer
for the entire system with state (x, ξ).

Theorem 4.2 Suppose that Assumption 4.1 holds. Let Θext
0 = Θ0\σ(F ). Then

there exists a zero Lebesgue measure subset J ⊂ (Θext
0 )2(n+nξ)+1 such that, for

16



each λ1, . . . , λ2(n+nξ)+1 in (Θext
0 )2(n+nξ)+1\J , the map T : O×Rnξ → R2(n+nξ)+1

defined by

T (x, ξ) = (T ext
0 (λ1, x, ξ), . . . , T

ext
0 (λ2(n+nξ)+1, x, ξ)),

T ext
0 (λ, x, ξ) = H(λI − F )−1(GT0(λ, x)− ξ)

is injective and verifies

∂T

∂(x, ξ)
(x, ξ)

 f(x)

Fξ +Gh(x)

 = AT (x, ξ) +BHξ , (27)

with

A = diag
(
λ1, . . . , λ2(n+nξ)+1

)
, B =

[
1 . . . 1

]>
. (28)

Proof : See Appendix F. 2

Remark 4.3 Theorem 4.2 could be extended to time varying systems. How-
ever, the filter needs to remain autonomous. More precisely, instead of system
(22), we could consider

ẋ = f(x, t) , ξ̇ = Fξ +Gh(x, t) (29)

with (x, ξ, t) ∈ Rn×Rnξ×R and same output as before. In that case, the result
holds by increasing by 1 the dimension of the observer.

Example 4.4 Consider again an harmonic oscillator with unknown frequency
given in (18), but this time with a simple filter in the form

ξ̇ = −aξ + y (30)

with a > 0. Note that the function T0 given in (20) is solution of (25), is
analytic and sastisfies Assumption 4.1. With the former theorem, we know
that for almost all 9 negative real numbers λi (different from −a) the system

(x̂, ξ̂) = T inv(z1, . . . , z9) , żi = λizi + ξ ,

where T inv is any continuous function which satisfies

T inv(T ext
0 (λ1, x, ξ), . . . , T

ext
0 (λ9, x, ξ)) = (x, ξ)

where T ext
0 (λ, x, ξ) = 1

λ+a

[
−λx1−xb
λ2+x3

− ξ
]
, is an observer.

In fact, on this example, 9 different eigenvalues are not required to get injectiv-
ity of the mapping (x, ξ) 7→ (T ext

0 (λ1, x, ξ), . . . , T
ext
0 (λ9, x, ξ)). Indeed, we have
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for all (xa, xb) in O defined in (19) and all λ

T0(λ, xa)− T0(λ, xb) =
1

(λ2 + xa,3)(λ2 + xb,3)

[
1 λ λ2 λ3

]
v(xa, xb)

with

v(xa, xb) =



xa,3xb,2 − xb,3xa,2
xa,3xb,1 − xb,3xa,1

xb,2 − xa,2
xb,1 − xa,1


It yields for all λi 6= −a, i = 1, . . . , 5, for all (xa, ξa, xb, ξb) in (O × R)2,

T (xa, ξa)− T (xb, ξb) =


T ext

0 (λ1, xa, ξa)− T ext
0 (λ1, xb, ξb)

...

T ext
0 (λ5, xa, ξa)− T ext

0 (λ5, xb, ξb)


= D(λ1, . . . , λ5)V(λ1, . . . , λ5)

v(xa, xb) + w(xa, xb)(ξb − ξa)
ξb − ξa

 .

where V is the Vandermonde matrix

V(λ1, . . . , λ5) =


1 λ1 λ

2
1 λ

3
1 λ

4
1

...

1 λ5 λ
2
5 λ

3
5 λ

4
5

 ,

which is invertible as soon as the λi’s are all different and

D(λ1, . . . , λ5) = diag

{
1

(λi + a)(λ2
i + xa,3)(λ2

i + xb,3)

}
.

is also invertible and well defined for (xa, ξa, xb, ξb) in (O × R)2. Note that
injectivity of the mapping T is obtained since from the former expression
T (xa, ξa) − T (xb, ξb) = 0 implies that ξb = ξa and v(xa, xb) = 0. Moreover,
for (xa, xb) in O2, v(xa, xb) = 0 implies xa = xb.

Example 4.5 Consider the Wilson-Cowan model (7) and assume either 1)
the available measurement is actually an averaged neural activity ξ modeled by
filtering y; or 2) the measurement of y is available but very noisy and we would
like to filter y before using it in the observer. In both scenarios, the model takes
the form (22) and we assume for instance dim ξ = 1 and a0 = γ = 1. We
proceed as follows: first, we compute an approximate solution Ta to (5) for the
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nominal dynamics (7) with diagonal pair (A,B) given in (28) with eigenval-
ues (−2,−3,−4,−5,−6,−7) following the process of Example 1.2; second, we
compute T ext

a solution to the extended PDE (27) according to the explicit for-
mula given by Theorem 4.2; then, we generate data points (x, ξ) by simulating
(22) on [0, 30] from 100 initial conditions in [−1, 1]5; computing z = T ext

a (x, ξ)
finally provides a data set of pairs (x, ξ, z), from which a numerical left-inverse
T ext∗
a of T ext

a can be learned. Theorem 4.2 thus avoids the learning step of T ext
a

by directly exploiting Ta learned in smaller dimension. Results of simulations
are provided in Figure A.3,A.4 in the scenario 2) where the measurement ym
of y is noisy to illustrate the filtering capabilities of the KKL observer. Note
that the colored white noise ν is obtained from a first order filter of a uniform
white noise of amplitude 5 with eigenvalue 100.

5 Conclusion

In this paper, we pursue the theoretical study on the nonlinear version of the
observers initially introduced by Luenberger in his seminal paper of 1964 [25].
In a first part, we refine some existing results obtained previously by relaxing
constraints on the structure of the observer and showing that genericity is
achieved with an algorithm of (real) dimension 2n + 1 and not of dimension
2n + 2 as initially indicated in [4]. Also, three other results have been estab-
lished allowing to improve methods to design these observers. The first one, is
related to the uniqueness of the immersion on which is based the design. This
allows to certify injectivity (and consequently observer convergence) if one
succeeds in finding the immersion. A second result shows that it is possible to
restrict ourselves to mono-parametric dynamics while preserving the hope of
the convergence of the observer. Finally, we give a method to design filtered
versions of these observers which may improve the behavior of the estimate in
presence of measurement noise.

We believe that these theoretical results will allow an improvement of the
learning techniques for the synthesis of KKL observers which are found in
many current studies (see for instance [35,14,13,21,32,31]). In particular, ex-
istence results for larger classes of pairs (A,B) without constraints on their
structure paves the way towards the optimization of this pair for better per-
formance. For that, further research is needed to understand how to quantify
the impact of the pair (A,B) on the considered performance.

Finally, although this paper is about state estimation, it is important to note
that they will have a direct implication in the field of output regulation. In-
deed, these results fit perfectly into the synthesis of the regulators introduced
in [27].
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The following tabular summarizes the results obtained so far for the existence
of a KKL observer in the form (4).

Observers Assumptions Dimension Structure

“Generic” KKL
Theorem 3.4

Backward
distinguishability 2n+ 1 Almost all pair (A,B)

“Deep” KKL Theorem
3.8

Backward
distinguishability and
invariance, analyticity

of T
Unknown (large

enough) A =

λ
1 λ

.
.
.

.
.
.

1 λ

, B = (1 0 · · · 0)>

“Generic diagonal”
KKL [4, Theorem 3]

Backward
distinguishability 2n+ 2

A = diag

(
Reλi − Imλi
Imλi Reλi

)
16i6n+1

,

B = ((1, 0) · · · (1, 0))> for almost all
(λi)’s in Cn+1

“High-gain” KKL [4,
Theorem 4]

Strong differential
observability

Order of differential
observability

For any (A0, B), A = kA0 for k large
enough
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A Results of numerical simulations

In this section, we provide some numerical results concerning Examples 1.2
and 4.5.
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Fig. A.1. Convergence of z to Ta(x), with x solution to (3), z solution to (1) with
input y = h(x) and Ta an approximate solution of (5) that has been learned nu-
merically following the method of [35]. See Example 1.2 for details.
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Fig. A.2. Convergence of x̂ = T ∗a (z) to x, with x solution to (3) and z solution to
(1) with input y = h(x) and a left-inverse T ∗a of Ta has been learned numerically
following the method of [35]. See Example 1.2 for details.
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Fig. A.3. Convergence of z to T ext
a (x, ξ), with (x, ξ) solution to (22), but where ξ̇

is fed with ym = h(x) + ν instead of y = h(x) (see Figure A.4), ν a colored white
noise, z solution to (1) with input yξ and T ext

a an approximate solution of (27). See
Example 4.5 for details.

B Proof of Theorem 1.1

Since T is injective on the compact set cl(X ), there exists a continuous map
T inv : Rm → Rn such that (6) holds (see [28] for instance). According to (5)
holding on X , and because A is Hurwitz,

lim
t→+∞

|Z(z, x, t)− T (X(x, t))| = 0.

Consider δ > 0. Since X(x, t) ∈ X for all t > 0, there exists t̄ > 0 such that
for all t > t̄, Z(z, x, t) ∈ T (X ) + δ. Besides, T inv is continuous on the compact
set cl(T (X ) + δ), so there exists a class-K map ρ such that

|T inv(za)− T inv(zb)| 6 ρ(|za − zb|) ∀(za, zb) ∈ cl(T (X ) + δ)× cl(T (X ) + δ) .
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Fig. A.4. Convergence of (x̂, ξ̂) = T ext∗
a (z) to (x, ξ), with (x, ξ) solution to (22), but

where ξ̇ is fed with ym = h(x) + ν instead of y = h(x), ν a colored white noise,
z solution to (1) with input yξ and an approximate left-inverse T ext∗

a of T ext
a . See

Example 4.5 for details.

Applying this inequality with za = T (X(x, t)) and zb = Z(z, x, t) for t > t̄
then gives the result using (6).

C Proof of Theorem 2.1

Since O is backward invariant, we have for all x in O and all t 6 0,

d

dt
Ta(X(x, t)) = ATa(X(x, t)) +Bh(X(x, t)) ,

and,
d

dt
Tb(X(x, t)) = ATb(X(x, t)) +Bh(X(x, t)) ,

which implies

Ta(X(x, t))− Tb(X(x, t)) = exp(At)[Ta(x)− Tb(x)] , ∀t 6 0 ,∀x ∈ O .

Hence,

Ta(x)− Tb(x) = exp(−At)[Ta(X(x, t))− Tb(X(x, t))] , ∀t 6 0 ,∀x ∈ O .

Now make t go to −∞.

In case (i), we get that exp(−At)[Ta(X(x, t)) − Tb(X(x, t))] tends towards 0
by boundedness of Ta and Tb since A is Hurwitz.

In case (ii), we get that |X(x, t)| 6M exp(−κf t) for all t 6 0 for some M > 0,
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hence

|Ta(X(x, t))−Tb(X(x, t))| 6 κaM
qa exp(−qaκf t)+ρa+κbM qb exp(−qbκf t)+ρb .

Since κfqa < |Reλm(A)| and κfqb < |Reλm(A)|, exp(−At)[Ta(X(x, t)) −
Tb(X(x, t))] tends towards 0.

In case (iii), we get by Grönwall’s inequality that

|Ta(X(x, t))| 6 (|Ta(x)|+ρa|t|) exp(−κat) and |Tb(X(x, t))| 6 (|Tb(x)|+ρb|t|) exp(−κbt).

Hence

|Ta(X(x, t))− Tb(X(x, t))| 6 (|Ta(x)|+ ρa|t|) exp(−κat)
+ (|Tb(x)|+ ρb|t|) exp(−κbt).

Since κa < |Reλm(A)| and κb < |Reλm(A)|, exp(−At)[Ta(X(x, t))−Tb(X(x, t))]
tends towards 0.

Thus, in any case, Ta(x) = Tb(x) for all x in O.

D Proof of Theorem 3.4

D.1 A proof based on diagonalization

The proof relies on two main ideas:

• almost any matrix A of dimension 2n+1 is diagonalizable, with a spectrum
decomposed into 2` complex conjugate eigenvalues and 2(n − `) + 1 real
eigenvalues for some ` ∈ {0, . . . , n};
• a generic choice of ` complex eigenvalues and 2(n− `) + 1 real eigenvalues

for ` describing {0, . . . , n} yields a generic choice of matrix A of dimension
2n+ 1.

The construction of the zero-measure set J allowing to prove Theorem 3.4 is
thus based on the following preliminary result which investigates the existence
of an injective solution to (5) in the case where A is a diagonal Hurwitz matrix
with ` complex eigenvalues with real part smaller than −ρ and 2(n − `) + 1
real eigenvalues smaller than −ρ. In that case, to define the observer state
space, for ` in {0, . . . , n}, we introduce

Ω` = C` × R2(n−`)+1 . (D.1)
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Also, given a positive real number ρ and ` in {0, . . . , n}, we consider the set
Ω`,ρ defined as (see (9))

Ω`,ρ = C`
ρ × R2(n−`)+1

ρ . (D.2)

The following result can be stated.

Proposition D.1 Assume that system (3) is (O, δd)-backward distinguishable
for some open bounded set O containing cl(X ) and some δd > 0. Then there
exist a positive real number ρ such that for each ` in {0, . . . , n}, there exists
a zero Lebesgue measure subset I` of Ω`,ρ such that for each (λ1, . . . , λ2n−`+1)
in Ω`,ρ \ I`, there exists an injective C1 function Tdiag : O 7→ Ω` verifying (5)
with

Adiag = diag (λ1 . . . , λ2n−`+1) , Bdiag =
[
1 . . . 1

]>
. (D.3)

Note that the first ` components of the map Tdiag provided by Proposition
D.1 are complex valued. Considering the real and imaginary parts of these
components, we obtain a map Treal : O → R2n+1 which is an injective C1

solution to (5) with

Areal = diag(Λ1, . . . ,Λ`, λ`+1, . . . , λ2n−`+1) , Breal =


B1

...

B2n−`+1

 (D.4)

where Λi and Bi take the form

Λi =

Re(λi) − Im(λi)

Im(λi) Re(λi)

 , Bi =


1

0

 for i ∈ {1, . . . , `}

1 for i ∈ {`+ 1, . . . , 2n− `+ 1} .

The proof of Proposition D.1 is postponed to Section D.2. In the meantime, we
prove Theorem 3.4 by translating the generic choice of eigenvalues in Propo-
sition D.1 into a generic choice of the pair (A,B) of dimension 2n+ 1.

Lemma D.2 For ` in {1, . . . , n}, let I` be a zero measure subset of Ω`. The
set of matrices in R(2n+1)×(2n+1) with characteristic polynomial

∏̀
j=1

(s2 − 2 Re(λj)s+ |λj|2)×
2n−`+1∏
j=2`+1

(s− λj)

for some (λ1, . . . , λ2n−`+1) ∈ I` is of zero-measure in R(2n+1)×(2n+1).
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Proof : Let R2n+1[s]monic be the set of monic real polynomials with indeter-
minate s and degree 2n + 1 (i.e., real polynomials of degree 2n + 1 in which
the nonzero coefficient of highest degree is equal to 1). Consider φ : Ω`,ρ →
R2n+1[s]monic such that

φ(λ1, . . . , λ2n−`+1) =
∏̀
j=1

(s2 − 2 Re(λj)s+ |λj|2)×
2n−`+1∏
j=2`+1

(s− λj).

The map φ associates to a list of ` complex roots and 2(n− `) + 1 real roots,
the monic polynomial of degree 2n+1 with real coefficients having those roots.
By identifying R2n+1[s]monic with a list of 2n+ 1 coefficients in R2n+1, φ is C1

from R2n+1 to R2n+1. From which, we concludes that φ(I`) is a zero measure
subset of R2n+1[s]monic assimilated to R2n+1 (see for instance [17, Theorem 3
in §3]). Consider now Φ : R(2n+1)×(2n+1) → R2n+1[s]monic defined as

Φ(A) = det(A− sI2n+1)

This map is C∞ (still identifying R2n+1[s]monic with R2n+1) Let us show that
it is a submersion almost everywhere. All the coefficients of det(A − sI2n+1)
are polynomials of the coefficients of A. It follows that ∂Φ

∂A
(A) is a rectangular

matrix of dimension (2n+ 1)× (2n+ 1)2 whose coefficients are polynomials of
the coefficients of A. The set of matrices A such that rank∂Φ

∂A
(A) < 2n + 1 is

characterized by the determinant of each minor being zero, which is thus an
algebraic set of zero-measure. Hence Φ is a submersion. With 4 [33, Theorem
1], we therefore conclude that the set S` defined as

S` = {A,Φ(A) ∈ φ(I`)} (D.5)

is a zero Lebesgue measure subset of R(2n+1)×(2n+1). 2

Let ρ be a positive real number, and for each ` in {0, . . . , n}, let I` be a zero
measure subset of Ω`,ρ as given by Proposition D.1 and consider the sets

JNC = {(A,B) ∈ R(2n+1)×(2n+1) × R2n+1, (A,B) is not controllable} , (D.6)

JND = {(A,B) ∈ R(2n+1)×(2n+1) × R2n+1, A is not diagonalizable in C} ,
(D.7)

J` = {(A,B) ∈ R(2n+1)×(2n+1) × R2n+1, A ∈ S`} . (D.8)

4 Let Φ : U ⊂ Rk → Rk′ of class Ck−k
′+1, where k′ 6 k. Then, the pre-image

of any zero-measure set is of zero-measure if and only if Φ is a submersion almost
everywhere, i.e.,

rank
∂Φ

∂x
(x) = k′ for almost all x ∈ U
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It is well-known that JNC and JND are of zero-measure. Applying Lemma
D.2, we conclude that the set J = JNC ∪JND ∪ (

⋃n
`=0 J`) is of zero Lebesgue

measure in R(2n+1)×(2n+1) × R2n+1.

Consider now (A,B) in R(2n+1)×(2n+1) × R2n+1 \ J , such that A + ρI2n+1 is
Hurwitz. We wish to transform (A,B) into (Areal, Breal) defined in (D.4) in
order to apply Proposition D.1. The spectrum of A can be decomposed into
2` complex conjugate eigenvalues and 2(n − `) + 1 real eigenvalues for some
` in {0, . . . , n}. By definition of J , A is diagonalizable in C, so there exist
(λ1, . . . , λ2n−`+1) in Ω`,ρ and an invertible matrix P in R(2n+1)×(2n+1) such that

Areal = P−1AP

with Areal defined in (D.4). Let

B̃ = P−1B =


B̃1

...

B̃2n−`+1


with

B̃i =


b̃i,1
b̃i,2

 ∈ R2 for i ∈ {1, . . . , `}

b̃i ∈ R for i ∈ {`+ 1, . . . , 2n− `+ 1} .
and

M = diag(M1, . . . ,M2n−`+1)

with

Mi =


b̃i,1 −b̃i,2
b̃i,2 b̃i,1

 for i ∈ {1, . . . , `}

b̃i for i ∈ {`+ 1, . . . , 2n− `+ 1}
so that MAreal = ArealM and MBreal = B̃.

Since A /∈ J`, the vector (λ1, . . . , λ2n−`+1) with (D.5) is not in I`. Hence,
according to Proposition D.1, there exists an injective C1 function Treal : O 7→
R2n+1 such that, for all x in X ,

∂Treal

∂x
f(x) = ArealTreal(x) +Brealh(x) . (D.9)

with Breal as in (D.4).

Finally, let T : O 7→ R2n+1 be the mapping T (x) = PMTreal(x). Since the
pair (A,B) is controllable, and P invertible, the pair (Areal, B̃) is also control-
lable. Hence, this yields that for all i, B̃i 6= 0. Consequently, the matrix M is
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invertible. Thus T is injective on O. Besides, for all x in X ,

∂T

∂x
(x)f(x) = PMArealTreal(x) + PMBrealh(x) ,

= PArealP
−1PMTreal(x) + PB̃h(x) ,

= AT (x) +Bh(x) .

D.2 Proof of Proposition D.1

D.2.1 Some variations on Coron’s lemma

The proof of Proposition D.1 is based on the following lemma.

Lemma D.3 Let Υ be an open subset of R2n, and Θi, gi, pi be such that for
all i ∈ {1, . . . ,m},

• either Θi is an open subset of R, gi : Θi ×Υ→ R is in C∞(R;C1(R2n;R))
and pi = 1 ;

• or Θi is an open subset of C, gi : Θi × Υ → C is holomorphic with respect
to λ and C1 with respect to x, and pi = 2.

Then, if
∑
i pi > 2n+ 1, and if for all i ∈ {1, . . . ,m}, for all (λ, x) ∈ Θi ×Υ,

there exists ki ∈ N such that

∂kigi
∂λki

(λ, x) 6= 0 (D.10)

then the following set has zero Lebesgue measure in
∏m
i=1 Θi:

I =
⋃
x∈Υ

{
(λi)i∈{1,...,m} ∈

m∏
i=1

Θi : gi(λi, x) = 0 ∀i ∈ {1, . . . ,m}
}
.

(D.11)

This lemma is an extension of [16, Lemma 3.2] as well as the version given in
[4, Lemma 3.2]:

• In those previous versions, the functions gi were the same for each i but this
does not make any significant difference in the proof.
• In [16, Lemma 3.2], the functions gi are in C∞(R × R2n;R) instead of
C∞(R;C1(R2n;R)) here. This loss of regularity is not a problem. Instead of
the Malgrange theorem of [19], we employ the one obtained in [29].
• In [4, Lemma 3.2], the functions gi are holomorphic with respect to λ and
C1 with respect to x.

Apart from these modifications, the proof follows readily and is based on the
fact that I is contained in the countable union of image sets through C1
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functions taking values in a real submanifold of dimension 2n of
∏
i Θi (which

is a real manifold of dimension
∑
i pi > 2n + 1). Hence the result is obtained

from a variation of Sard theorem. The proof is provided in the long version of
this paper, see [11, Appendix G] .

Now following [4], the idea to prove Proposition D.1 is first to exhibit a C1

solution to (5) with (Adiag, Bdiag) as in (D.3). This solution is parameterized
by the (λi)

′s. With the distinguishability assumption and the use of Lemma
D.3, it is then shown that generically this function is injective on O.

D.2.2 Construction of Tdiag

Let δb > δd be any positive real number where δd is given by backward-

distinguishability. Let ρ = maxx∈O+δb

∣∣∣∂f̆
∂x

(x)
∣∣∣ where f̆ = χf and where χ :

Rn → R is a C∞ function such that

χ(x) =

 0 , x /∈ O + δb

1 , x ∈ O + δd .
(D.12)

Fix ` in {1, . . . , n}. For each (λ1, . . . , λ2n−`+1) in Ω`,ρ, we can define the map-
ping Tdiag : O 7→ Ω`,ρ defined as

Tdiag(x) = (T0(λ1, x), . . . , T0(λ2n−`+1, x)) (D.13)

with T0 : Cρ ×O → R defined as

T0(λ, x) =
∫ 0

−∞
exp(−λs)h(X̆(x, s))ds (D.14)

where X̆ : Rn × R→ Rn is the flow of the modified system

ẋ = f̆(x) = χ(x)f(x) . (D.15)

To prove Proposition D.1, we need to show that Tdiag is solution to the PDE
(5) and also that it has enough regularity to apply Lemma D.3 to obtain
injectivity. First recall the following fact.

Proposition D.4 ([3, Proposition 3.3]) The function Tdiag is C1 and sat-
isfies (5) with (Adiag, Bdiag) given in (D.3).

Moreover,

• The map T0(·, x) is holomorphic on Cρ for each x ∈ O.
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• The restriction of T0(·, x) to Rρ is C∞ (actually, analytic) for each x ∈ O.

Moreover, for all k ∈ N, ∂kT0
∂λk

(λ, ·) can be shown to be C1 for any λ ∈ Rρ by
following readily the proof of [3, Proposition 3.3].

To prove Proposition D.1, it now remains to show injectivity by applying
Lemma D.3.

D.2.3 Injectivity of Tdiag

Let Υ = {(xa, xb) ∈ O2, xa 6= xb}. Let also Θi = Cρ for i ∈ {1, . . . , `} and
Θi = Rρ for i ∈ {`+ 1, . . . , 2n− `+ 1}. Let gi : Θi ×Υ 7→ C for i ∈ {1, . . . , `}
and gi : Θi ×Υ 7→ R for i ∈ {`+ 1, . . . , 2n− `+ 1} be defined by

gi(λ, xa, xb) = T0(λ, xa)− T0(λ, xb) , (D.16)

=
∫ 0

−∞
exp(−(λ+ ρ)s)∆(xa, xb, s)ds , (D.17)

for all (xa, xb) ∈ Υ and all λ ∈ Θi, where

∆(xa, xb, s) = exp(ρs)
[
h(X̆(xa, s))− h(X̆(xb, s))

]
.

By backward-distinguishability, for all (xa, xb) in Υ there exists a negative

time t in
(
max

{
σ−O+δd

(xa), σ
−
O+δd

(xb)
}
, 0
]

such that h(X(xa, t)) 6= h(X(xb, t)).

Moreover, by definition of χ in (D.15), X(x, s) = X̆(x, s) for all x ∈ O and
all s ∈ (σ−O+δd

(x), 0]. It yields that for all (xa, xb) in Υ, there exists s < 0 such
that ∆(xa, xb, s) 6= 0.

From there, two cases may be distinguished.

• For i ∈ {1, . . . , `}, for each (xa, xb) ∈ Υ, gi(·, xa, xb) is holomorphic (since
T0(·, x) is holomorphic for each x ∈ O) and consequently, there exists ki
such that (D.10) is satisfied.
• For i ∈ {` + 1, . . . , 2n − ` + 1}, similarly to the proof of the injectivity of

the Laplace transform, for all λ ∈ Rρ, with u = exp(s), yields

gi(λ, xa, xb) =
∫ 1

0
u−(λ+ρ)−1∆̄(u)du

where ∆̄ is a continuous function defined by ∆̄(u) = ∆(xa, xb, ln(u)) for
u > 0 and ∆̄(0) = 0. We deduce that gi(·, xa, xb) is not identically zero on
Rρ. Indeed, otherwise, picking λ = −(j + ρ+ 1) for each j ∈ N, we get

∫ 1

0
uj∆̄(u)du = 0 . (D.18)
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By Stone-Weierstrass theorem, for each ε > 0, there exists a polynomial Pε
such that

|∆̄(u)− Pε(u)| 6 ε , ∀u ∈ [0, 1].

Moreover, since Pε is a polynomial, (D.18) yields
∫ 1

0 ∆̄(u)Pε(u)du = 0.
Hence, ∫ 1

0
∆̄(u)2du =

∫ 1

0
∆̄(u)(∆̄(u)− Pε(u))du 6 max

u∈[0,1]
|∆̄(u)|ε .

The former inequality being true for all ε, it yields that ∆̄ is identically zero
on [0, 1], which is a contradiction since ∆ is not identically zero. Therefore,
gi(·, xa, xb) is not identically zero on Rρ. Since moreover gi is analytic, it
yields that there exists ki such that (D.10) is satisfied.

We can finally apply Lemma D.3, to obtain the set I` given in (D.11). By
definition of gi and of I`, we conclude that the map Tdiag defined in (D.13) is
injective on O for any (λ1, . . . , λ2n−`+1) in Ω`,ρ \ I`. This concludes the proof.

E Proof of Theorem 3.8

First of all, the set O being backward invariant for the flow and the mapping
h being bounded in O, this implies that the function

S(λ, x) =
∫ 0

−∞
exp(−λs)h(X(x, s))ds (E.1)

is well defined on R<0×O and such that for all λ < 0, S(λ, ·) is bounded and
solution to (14) on O. Moreover, for all x ∈ O, S(·, x) is analytic on R<0. With
Theorem 2.1, it implies that T0 = S on Θ × O and therefore, for all λ ∈ Θ,
S(λ, ·) is analytic on O. For m in N, let

Tλ,m(x) = (T0(λ, x), . . . , Tm−1(λ, x)) (E.2a)

where

Ti(λ, x) =
∂iT0

∂λi
(λ, x) , i = {0, . . . ,m− 1} . (E.2b)

Since T0 is C∞, for all (λ, x) ∈ Θ×O,

∂T1

∂x
(λ, x)f(x) =

∂2T0

∂λ∂x
(λ, x)f(x) =

∂

∂λ
(λT0(λ, x)+h(x)) = λT1(λ, x)+T0(λ, x)

and iteratively for all i

∂Ti
∂x

(λ, x)f(x) = λTi(λ, x) + Ti−1(λ, x) ,
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and consequently, Tλ,m is the (unique) bounded solution of (5) with (A,B) =
(Aλ,m, Bm) ∈ Rm×m × Rm given in (13).

Let g : R<0 ×O ×O be given by

g(λ, xa, xb) = S(λ, xa)− S(λ, xb) . (E.3)

Let λ ∈ Θ and C ⊂ O. Let Dλ,` be the sequence of open sets defined as

Dλ,` =

{
(xa, xb) ∈ O2, xa 6= xb,

∂kg

∂λk
(λ, xa, xb) = 0, k = 0, . . . , `

}
.

We will show that there exists m such that Dλ,m ∩ (C × C) = ∅ which implies
that Tλ,m is injective in C. Note that we have Dλ,`+1 ⊂ Dλ,`. The map g(λ, ·, ·)
being analytic since S = T0 on Θ × O, (Dλ,`)`∈N is a decreasing sequence of
analytic subsets of O2 ⊂ R2m. The ring of analytic functions being Notherian
[30, Corollary 1, p.99], (Dλ,`)`∈N is a stationary sequence in all compact subsets,
i.e. there exists m? in N such that, for all m > m?,

Dλ,m+` ∩ (C × C) = Dλ,m ∩ (C × C) , ∀` ∈ N .

Assume Dλ,m ∩ (C × C) non-empty and take (xa, xb) ∈ Dλ,m ∩ (C × C). We

have ∂kg
∂λk

(λ, xa, xb) = 0 for all k. Since, moreover g(·, xa, xb) is analytic, this
implies that g(λ, xa, xb) = 0 for all λ < 0. On another hand, with (E.1) and
by injectivity of the Laplace transform 5 , this implies that s 7→ h(X(xa, s))−
h(X(xb, s)) = 0 for s in (−∞, 0] and xa 6= xb. This is a contradiction with the
observability assumption. This implies that Dλ,m ∩ (C × C) = ∅.

F Proof of Theorem 4.2

First, that for all (λ, x, ξ) in Θext
0 ×O × Rnξ

∂T ext
0

∂x
(λ, x, ξ)f(x) +

∂T ext
0

∂ξ
(λ, x, ξ)(Fξ +Gh(x))

= H(λI − F )−1G
∂T0

∂x
(λ, x)f(x)−H(λI − F )−1(Fξ +Gh(x))

= λ
(
T ext

0 (λ, x, ξ) +H(λI − F )−1ξ
)
−H(λI − F )−1Fξ

= λT ext
0 (λ, x, ξ) +Hξ.

(F.1)

5 This fact is recalled and proved in Section D.2.3 by using Stone-Weierstrass the-
orem.
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We next show injectivity of the mapping T built from T ext
0 by picking 2(n +

nξ) + 1 distinct λ. For that, our aim is to apply Lemma D.3. To do so, let
(λ, xa, xb, ξa, ξb) in Θ0 × O2 × R2nξ verifying (xa, ξa) 6= (xb, ξb). We have for

each λ /∈ σ(F ) H(λI −F )−1G = γ
dnξ (λ)

, dnξ(λ) = λnξ +
∑nξ−1
j=0 ajλ

j . Moreover,

H(λI − F )−1 =
(
pnξ−1(λ)

dnξ (λ)
· · · · · · p1(λ)

dnξ (λ)
1

dnξ (λ)

)
where pj are polynomials of

degree j and dnξ a polynomial of degree nξ. Let us denote (forgetting the
dependency in the variables (xa, ξa, xb, ξb))

g(λ) = T ext
0 (λ, xa, ξa)− T ext

0 (λ, xb, ξb) , g0(λ) = T0(λ, xa)− T0(λ, xb) ,

and ξ̃ = (ξ̃a, . . . , ξ̃nξ) = ξa − ξb. Note that

g(λ) =

∑nξ−1
j=0 ξ̃jpj(λ) + γg0(λ)

dnξ(λ)
. (F.2)

This gives 6

g(1)(λ) =
d(1)
nξ

(λ)

dnξ(λ)
g(λ) +

∑nξ−1
j=1 ξ̃jp

(1)
j (λ) + γg

(1)
0 (λ)

dnξ(λ)
.

which more generally gives for all ` ∈ N and some integers (cir`)

g(`)(λ) =
`−1∑
r=0

∑̀
i=1

cir`
d(i)
nξ

(λ)

dnξ(λ)
g(r)(λ) +

∑nξ−1
j=` ξ̃jp

(`)
j (λ) + γg

(`)
0 (λ)

dnξ(λ)
. (F.3)

The former expression gives for ` > nξ:

g(`)(λ) =
`−1∑
r=0

∑̀
i=1

cir`
d(i)
nξ

(λ)

dnξ(λ)
g(r)(λ) +

γ

dnξ(λ)
g

(`)
0 (λ) (F.4)

If xa 6= xb, with Assumption 4.1, there exists k in N such that

∀i ∈ {0, . . . , k − 1}, ∂
nξ+ig0

∂λnξ+i
(λ) = 0 and

∂nξ+kg0

∂λnξ+k
(λ) 6= 0 . (F.5)

Combining (F.4) and (F.5), there exists k in N such that

∂kT ext
0

∂λk
(λ, xa, ξa)−

∂kT ext
0

∂λk
(λ, xb, ξb) 6= 0 . (F.6)

Indeed, otherwise, (F.4) implies that g
(`)
0 (λ) = 0 for all ` > nξ which contra-

dicts (F.5).

6 With the notation g(`)(λ) = ∂`g
∂λ`

(λ).
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Otherwise, xa = xb and ξa 6= ξb. We thus have g
(`)
0 (λ) = 0 for all `, ξ̃ 6= 0 and

(by (F.3))

g(`)(λ) =
`−1∑
r=0

∑̀
i=1

cir`
d(i)
nξ

(λ)

dnξ(λ)
g(r)(λ) +

∑nξ−1
j=` ξ̃jp

(`)
j (λ)

dnξ(λ)
.

Again, this implies (F.6) for some k ∈ N. Indeed, otherwise,
∑nξ−1
j=` ξ̃jp

(`)
j (λ) =

0 for all ` which implies that ξ̃ = 0 (since each pj is of degree j), which
contradicts ξa 6= ξb.

To conclude, this implies that for all (λ, xa, xb, ξa, ξb) in Θ1×O2×R2nξ verifying
(xa, ξa) 6= (xb, ξb), there exists k in N such that (F.6) holds. Applying Lemma
D.3 with Υ = (O×Rnξ)2, Θi = Θext

0 and gi(λ, xa, ξa, xb, ξb) = T ext
0 (λ, xa, ξa)−

T ext
0 (λ, xb, ξb) for i ∈ {1, . . . , 2(n+ nξ) + 1}, we obtain the result.

G Proof of Lemma D.3

This part is a reproduction of the proof given in [4] with the small update
related to the use of real or complex valued functions. The differences are in
blue.

Let Θ̄ =
∏
i Θi. Assume that

∑
i pi > 2n + 1. The idea of the proof is to

show that the set I is contained in a countable union of sets which have zero
Lebesgue measure.

Given (ε,Λ, x) in R>0 × Θ̄×Υ, we denote by Sε,Λ,x the set :

Sε,Λ,x =
⋃

x∈Bε(x)

{Λ ∈ Bε(Λ) : g`(λ`, x) = 0 ∀` ∈ {1, . . . ,m}} . (G.1)

Assume for the time being that, for each pair (Λ, x) in Υ × Θ̄, we can find a
positive real number ε and a countable family of C1 functions σi : Bε(x)→ Θ̄,
such that we have :

Sε,Λ,x ⊂
⋃
i∈N

σi(Bε(x)) . (G.2)

The family (Bε(Λ)× Bε(x))(Λ,x)∈Θ̄×Υ is a covering of Θ̄ × Υ by open subsets.
From Lindelöf Theorem (see [10, Lemma 4.1] for instance), there exists a

countable family
{

(Λj, xj)
}
j∈N

such that we have :

Θ̄×Υ ⊂
⋃
j∈N
Bεj(Λj)× Bεj(xj) ,

where εj denotes the ε associated to the pair (Λj × xj). With (G.2), it follows
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that we have :
I ⊂

⋃
j∈N

⋃
i∈N

σi,j(Bεj(xj)) ,

where σi,j denotes the ith function σ associated with the pair (Λj, xj). The
set σi,j(Bεj(xj)) is the image, contained in Θ̄, a real manifold of dimension∑
i pi > 2n+ 1, by a C1 function of Bεj(xj), a real manifold of dimension 2n.

From a variation on Sard’s Theorem (see [17, Theorem 3 in §3] for instance),
this image σi,j(Bεj(xj)) has zero Lebesgue measure in Θ̄. So S, being a count-
able union of such zero Lebesgue measure subsets, has zero Lebesgue measure.

So all we have to do to establish Lemma D.3 is to prove the existence of ε
and the functions σi satisfying (G.2) for each pair (x,Λ)in Υ × Θ̄. For ε, we
consider two cases :

(1) Consider a pair (Λ, x) such that gj(λ`, x) is non zero. By continuity of gj,
we can find a positive real number ε such that g(λ`, x) is also non zero
for all Λ in Bε(λ) ⊂ Θi and all x in Bε(x). In this case, the set Sε,Λ,x is
empty.

(2) Consider a pair (Λ, x) such that g(λ`, x) is zero. From the assumption
(D.10), for each `, there exists an integer k` satisfying :

∂igj`
∂λi

(λ`, x) = 0 ∀i ∈ {0, . . . , k` − 1} ,
∂k`gj`
∂λk`

(λ`, x) 6= 0 .

For each ` in {1, . . . ,m}, two cases may be distinguished.
(a) If Θ` = C, following the Weierstrass Preparation Theorem (see [19,

Theorem IV.1.1] 7 for instance), we know the existence of a positive
real number ε`, a function q` : Bε`(λ`) × Bε`(x) → C, and k` C

1

functions a`j : R2n → C satisfying, for all (λ, x) in Bε`(λ`)× Bε`(x),

q`(λ, x) g`(λ, x) = (λ− λ`)k` +
k`−1∑
j=0

a`j(x)(λ− λ`)j . (G.3)

(b) If Θ` = R, following the Malgrange Preparation Theorem [29], we
know the existence of a positive real number ε`, a function q` :
Bε`(λ`) × Bε`(x) → R, and k` C

1 functions a`j : R2n → R satisfy-
ing, for all (λ, x) in Bε`(λ`)× Bε`(x),

q`(λ, x) g`(λ, x) = (λ− λ`)k` +
k`−1∑
j=0

a`j(x)(λ− λ`)j . (G.4)

7 In [19, Theorem IV.1.1], this theorem is stated with the assumption that g` is
holomorphic in both λ and x. However, as far as x is concerned, it can be seen in
the proof of this Theorem that we need only the implicit function theorem to apply.
So continuous differentiability in x for each λ is enough.
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We choose the real number ε, to be associated to (Λ, x) in the definition
of Sε,Λ,x, as :

ε = inf
`∈{1,...,m}

ε` .

In the following P` : Θ` × Bε(x)→ Θ` and a` : Bε(x)→ Θk` denote :

P`(λ, x) = (λ−λ`)k` +
k`−1∑
j=0

a`j(x)(λ−λ`)j , a`(x) = (a`0(x), . . . , a`k`−1(x)) .

With this definition of ε, we have the following implication, for Λ in Bε(Λ)
and x in Bε(x),

g(λ`, x) = 0 ∀` ∈ {1, . . . ,m} ⇒ (λ`, a
`(x)) ∈M ` ∀` ∈ {1, . . . ,m}

(G.5)
where M ` is the set :

M ` =

(λ, (b0, . . . , bk`−1)) ∈ Θ` ×Θk`
` : (λ− λ`)k` +

k`−1∑
j=0

bj(λ− λ`)j = 0


(G.6)

Our interest in this set follows from the following Lemma, which follows di-
rectly from [15, Equations (3.51)-(3.52)] (for Θ = R) and [4, Lemma 2] (for
Θ = C).

Lemma G.1 Let M be the set defined as :

M =

(λ, b0, . . . , bk−1) ∈ Θ×Θk : λk +
k−1∑
j=0

bjλ
j = 0

 .

where Θ = C or Θ = R. There exists a countable family {Mm}m∈N of regular
submanifolds of Θk and a countable family of C1 functions ρm : Mm → Θ such
that we have the inclusion :

M ⊂
⋃
m∈N

⋃
b∈Mm

{(ρm(b), b)} . (G.7)

So, for each ` in {1, . . . , n+1} we have a countable family {M `
m`
}m`∈N of regular

submanifolds of Ck` and a countable family of C1 functions ρ`m` : M `
m`
→ C

such that, for each x in Bε(x), if P`(λ`, x) is zero, then there exists an integer
m` such that we have :

a`(x) ∈ M `
m`

, λ` = ρ`m`(a
`(x)) . (G.8)

Hence, with (G.5), if :

g(λ`, x) = 0 ∀` ∈ {1, . . . ,m} ,
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then there exists an m-tuple µ = (m1, . . . ,mm) of integers satisfying :

a`(x) ∈ M `
m`

, λ` = ρ`m`(a
`(x)) ∀` ∈ {1, . . . ,m} .

So, by letting :

Sµε,Λ,x =
⋃

{x∈Bε(x) : a`(x)∈M`
m`
∀`∈{1,...,n+1}}

{
(ρ1
m1

(a1(x)), . . . , ρmmm(am(x))
}

(G.9)
we have established :

Sε,Λ,x ⊂
⋃

µ∈Nm
Sµε,Λ,x . (G.10)

Comparing (G.2) with (G.10) and using the definition (G.9), we see that a
candidate for the function σi is :

σi(x) =
(
ρ`m`

(
RM`

m`
(a`(x))

))
`∈{1,...,m}

where i happens to be the m-tuple µ and RM`
m`

: Θk`
` →M `

m`
is a “restriction”

to M `
m`

since we have to consider only those a`(x) which are in M `
m`

. Finding
such functions RM`

m`
such that σi is C1 may not be possible. But, following

[16, Lemma 3.3], we know the existence, for each `, of a countable family of
C1 functions R`

ν : Θk`
` →M `

m`
such that we get :

Sµε,Λ,x ⊂
⋃
ν∈N

{(
ρ`m`

(
R`
ν(a

`(Bε(x)))
))

`∈{1,...,n+1}

}
.

In other words the family of functions σi is actually given by the family :

σµ,ν =
(
ρ`m` ◦R

`
ν ◦ a`

)
`∈{1,...,n+1}

i.e. we have :

Sε,Λ,x ⊂
⋃

µ∈Nn+1

⋃
ν∈N

σµ,ν(Bε(x)) .

H Proof that Tλ,4 is injective

In this section we show that the mapping Tλ,4 defined in (21) is injective.
Indeed, consider xa and xb in (R2 \ {(0, 0})×R>0. Denote wa = λ2 + xa,3 and
wb = λ2 + xb,3. We have

T0(λ, xa) = T0(λ, xb) =: z1 ⇐⇒ λ(xb,1wa − xa,1wb) = xa,2wb − xb,2wa
∂T0
∂λ

(λ, xa) = ∂T0
∂λ

(λ, xb) =: z2 ⇐⇒ xb,1wa − xa,1wb = 2λz1(wb − wa)
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which thus gives T0(λ, xa) = T0(λ, xb)

∂T0
∂λ

(λ, xa) = ∂T0
∂λ

(λ, xb)
⇐⇒

xb,1wa − xa,1wb = 2λz1(wb − wa)
xa,2wb − xb,2wa = 2λ2z1(wb − wa)

Then, continuing differentiating,

∂2T0

∂λ2
(λ, xa) =

∂2T0

∂λ2
(λ, xb) ⇐⇒ 2

wa

[
−2λ

∂T0

∂λ
(λ, xa)− T (xa)

]

=
2

wb

[
−2λ

∂T0

∂λ
(λ, xb)− T (xb)

]

and

∂3T0

∂λ3
(λ, xa) =

∂3T0

∂λ3
(λ, xb)

⇐⇒ −4λ

wa

[
−2λ

∂T0

∂λ
(λ, xa)− T (xa)

]
+

2

wa

[
−3

∂T0

∂λ
(λ, xa)− 2λ

∂2T0

∂λ2
(λ, xa)

]

=
−4λ

wb

[
−2λ

∂T0

∂λ
(λ, xb)− T (xb)

]
+

2

wb

[
−3

∂T0

∂λ
(λ, xb)− 2λ

∂2T0

∂λ2
(λ, xb)

]

Assume therefore that Tλ,4(xa) = Tλ,4(xb), namely(
T0(λ, xa),

∂T0

∂λ
(λ, xa),

∂2T0

∂λ2
(λ, xa),

∂3T0

∂λ3
(xa)

)

=

(
T0(λ, xb),

∂T0

∂λ
(λ, xb),

∂2T0

∂λ2
(λ, xb),

∂3T0

∂λ3
(λ, xb)

)

which we denote (z1, z2, z3, z4). Then, we get two cases :

• either −2λz2− z1 6= 0 and we get wa = wb from the third equality, and then
xa = xb from the first two;
• or −2λz2 − z1 = 0 and thus z3 = 0, so that the fourth equality provides
z2

(
1
wa
− 1

wb

)
= 0. So either z2 6= 0 and we recover wa = wb and conclude as

above; or z2 = 0, but then also z1 = 0, and necessarily xa,1 = xa,2 = xb,1 =
xb,2 = 0, which is impossible.

We conclude that Tλ,4 is injective on (R2 \ {(0, 0})× R+.
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