
HAL Id: hal-03683555
https://minesparis-psl.hal.science/hal-03683555

Submitted on 31 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GOHOME: Graph-Oriented Heatmap Output for future
Motion Estimation

Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu,
Fabien Moutarde

To cite this version:
Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, Fabien Moutarde. GO-
HOME: Graph-Oriented Heatmap Output for future Motion Estimation. IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2022, Philadelphie, United States. �hal-03683555�

https://minesparis-psl.hal.science/hal-03683555
https://hal.archives-ouvertes.fr

GOHOME: Graph-Oriented Heatmap Output for future Motion
Estimation

Thomas Gilles1,2, Stefano Sabatini1, Dzmitry Tsishkou1, Bogdan Stanciulescu2, Fabien Moutarde2

Abstract— In this paper, we propose GOHOME, a method
leveraging graph representations of the High Definition Map
and sparse projections to generate a heatmap output represent-
ing the future position probability distribution for a given agent
in a traffic scene. This heatmap output yields an unconstrained
2D grid representation of agent future possible locations, allow-
ing inherent multimodality and a measure of the uncertainty
of the prediction. Our graph-oriented model avoids the high
computation burden of representing the surrounding context
as squared images and processing it with classical CNNs, but
focuses instead only on the most probable lanes where the agent
could end up in the immediate future. GOHOME reaches 2nd
on Argoverse Motion Forecasting Benchmark on the MissRate6
metric while achieving significant speed-up and memory burden
diminution compared to Argoverse 1st place method HOME.
We also highlight that heatmap output enables multimodal
ensembling and improve 1st place MissRate6 by more than
15% with our best ensemble on Argoverse. Finally, we evaluate
and reach state-of-the-art performance on the other trajectory
prediction datasets nuScenes and Interaction, demonstrating
the generalizability of our method.

I. INTRODUCTION
Trajectory prediction inherently faces many uncertainties.

These uncertainties can be split in two categories: aleatoric
and epistemic. Aleatoric uncertainty is the natural random-
ness of a process: it is the consequence of control noise
and will lead to variations in acceleration, curvature, etc
... It translates into a spread of the possible future position
and is often tackled by the use of Gaussian predictions in
motion estimation [1], [2]. Epistemic uncertainty outlines
some knowledge that can’t be known by the observer at
prediction time: what is the car destination, will it choose to

1IoV team, Paris Research Center, Huawei Technologies France
2MINES ParisTech, PSL University, Center for robotics
Contact: thomas.gilles@mines-paristech.fr

overtake the car by the left or stay behind ? Recent methods
use multimodal outputs based on anchors [3], [4], predefined
learning heads [5] or the available HD-Map [6]–[9] to cover
the span of these possible manoeuvres.

However, existing methods trying to deal with the afore-
mentioned uncertainties in trajectory prediction have limi-
tations. Gaussian predictions are constrained to a 2D pre-
defined shape, that cannot adapt easily to the specific road
context, for example at high speed on a curvy road the
distribution of the future agent position should resemble the
center lane curvature. Regressed sets of coordinates may
encounter mode collapse and converge to the same solution,
as they are trained with only one ground truth per sample.
On the other hand, anchor-based and map-based predictions
are restricted to a predefined set of possibilities, depending
on preprocessed trajectory clustering or a fixed sampling of
the centerlines.

Motion forecasting can also be tackled through the use
of a heatmap output representing the final trajectory point
location distribution [10], [11]. The intermediary waypoints
can then be reconstructed from the history and end point.
This brings many advantages for uncertainty modelization
and multimodal prediction. First of all it does not restrict the
representation of the prediction uncertainty to a parametric
form (like a gaussian). Moreover, it conveys a richer infor-
mation regarding the future probability distribution compared
to a predefined number of predicted trajectories, enabling
predictions with a much better coverage . This is usually
achieved rasterizing an image to represent the context around
the car, and processing it through an encoder-decoder CNN.
However, the distance a car can travel in a given time horizon
can exceed this image boundary, and extending the reach

Lane heat maps
Graph encoding
& Lane scoring

Top k
lanes

Top k
lane
rasters

Global heat map

Trajectory sampling

0.4

0.30.1

0.1

0.05

Context

Fig. 1: GOHOME pipeline. The lane graph extracted from the HD-Map is processed through a graph encoder. Each lane
then generates a local curvilinear raster that is combined into a predicted probability distribution heatmap.

results in quadratic complexity increase. Moreover, convo-
lutional networks commonly used for the task of generating
images have to operate on the full square image while the
actual road and drivable area take a much sparser space.

HOME [10] introduces the use of a probability heatmap as
model output for car trajectory prediction, but uses a fully-
convolutional model and is limited to a restricted image size
. We iterate on this work and present an optimized motion
forecasting framework solely based on graph operations to
provide efficiently an heatmap with uncertainty measure
exploiting the vectorized form of HD map. We also highlight
that heatmap output is suitable for model ensembling without
any risk of mode collapse and bring significant improvement
to the state-of-the-art using this ensembling. Our GOHOME
pipeline is illustrated in Fig. 1.

II. RELATED WORK

The sequential nature of temporal trajectories makes them
a straightforward application of recurrent neural networks
[2], [12]. However, the need for local map and context infor-
mation leads them to be often combined with Convolution
Neural Networks (CNNs) applied on top-view images [5],
[13]–[15].

Lately, Graph Neural Networks (GNNs) have been in-
creasingly applied in order to process compact map encod-
ings with a deepened connectivity understanding. VectorNet
[16] treats indifferently trajectory and map lanes as sets of
points (polylines), and encodes them into a global interaction
graph. LaneGCN [17] uses graph convolutions onto the
connected lane graph before fusing this lane information with
actor information.

While most previous works tackle multimodality through
learned regression heads, recent work brought different out-
put representations in order to avoid mode collapse and
sample inefficiency. CoverNet [4] and MultiPath [3] use
anchor trajectory priors to have identified modes without
risk of averaging them. PRIME [18] generates model-based
trajectories and then ranks them with a learned model. TNT
[6] samples target candidates along lane priors and scores
them using a VectorNet backbone, while LaneRCNN [7]
generates a lane graph for each actor and uses the lane nodes
as a classification output for future position. GoalNet [19]

identifies possible long-term goals proposals with the map,
and runs a GNN where the features for each possible goal
are a path-relative raster.

Generative methods can also be used to obtain multimodal
predictions, through either Variational Auto Encoders [13],
[14], [20], [21] or Generative Adversarial Networks [22],
[23], but they require multiple forward passes for each
prediction, do not guarantee diversity in the samples obtained
and their inherent randomness in not advisable in production
systems..

Other methods focus on a heatmap output to represent
the future distribution, as it possesses natural multimodality
and is therefore not subject to mode collapse. Mangalam
et al. [11] models both long-term goals and intermediary
waypoints in the two-dimensional space as an image for
pedestrian trajectory forecasting, combined with random
sampling and Kmeans clustering. HOME [10] predicts a
future probability heatmap for car trajectories, and devises
deterministic sampling algorithms for various metric opti-
mization. However, most of these heatmap-based methods
use a full CNN architecture. To our knowledge, we are the
first work to combine a GNN architecture and a heatmap
output without the use of any CNNs.

III. METHOD
The goal is to output a heatmap that represents the position

of an agent at a given time in the future. The trajectory is
then regressed conditioned to the final end point. To achieve
this, our GOHOME system focuses on lane-level operations
as illustrated in Fig. 1. The local HD-Map is provided in
the dataset as a graph of L lanelets. A lanelet represents a
macro section of the road (10 to 20 meters on average), as
our goal is to encode connectivity at a macro level (lane
segments), and not micro level (every meter). Each lanelet is
defined as a sequence of centerline points, and is connected
to its predecessor, successor, left and right neighbors if they
exist. We encode each lanelet into a road graph, where
geometric and connectivity information are represented. Our
model yields a score for each of these lanelets, that is used
to identify most probables lanes. A partial heatmap is then
generated for the top ranking lanelets, and projected onto a
global heatmap. Afterwards, we sample a set of endpoints
from the heatmap and recreate a trajectory for each.

Lane
Features

Past trajectories

G
ra

p
h

E
n

c
o
d
e

r1

T
ra

jE
n

c
o

d
e

r

Lanes2Agents

A
g
e

n
ts

2
A

g
e

n
ts

HD Map

Map features

Agents
features

Map aware
Agents features

L
a

n
e

E
n

c
o
d
e
r

Graph

GraphEncoder2

0.4

0.30.1

0.1

0.05

Lanes2Raster

Lane scoring

Top K lanes

Heatmap

Lanes score

Interaction aware
ego features

Fig. 2: GOHOME model architecture

A. Graph neural network for HD-Map input

The model architecture is illustrated in Fig. 2. We encode
each lanelet through a shared 1D convolution and UGRU
[24], [25] recurrent LaneEncoder into features F of C
channels. The lanelet features F are then updated through
a GraphEncoder1 made of a sequence of four graph
convolution operations similar to [17] in order to spread
connectivity information:

F ← FW +
∑
r

ArFWr (1)

where F is the (L,C) lane feature matrix , W is
the learned (C,C) weight for ego features encod-
ing. Ar and Wr are the respective adjacency matrix
(L,L) and learned weight (C,C) for the relation r ∈
{predecessor, successor, left, right} derived from the lane
graph. Ar is fixed as it comes from the HD Map, while
Wr enables to learn different operations for each possible
relation.

Parallely, each agent trajectory, defined as a sequence
of position, speed and yaw, is encoded with a shared
TrajEncoder also made of a shared 1D convolution and
a UGRU layer. Each agent feature is then updated with map
information through a cross-attention Lanes2Agents layer
on the lanelet features. Interactions between agents are then
taken into account through a self-attention Agents2Agents
layer between agents. Finally the target agent feature is con-
catenated to all the lanelet features by Ego2Agents and then
treated through a final GraphEncoder2 layer, also made of
4 graph convolutions to obtain the final graph encoding that
will be used to generate the different predictions.

Compared to other methods using graph neural networks,
our method uses graph convolutions like LaneGCN [17] and
LaneRCNN [7], but applies them to lanelets instead of lane
nodes (a lane node is a single point in the sequence of
a lanelet). VectorNet [16] and TNT [6] also use lanelets,
called polylines, but connect them through global attention
instead of using graph connectivity. We chose to use a GNN
on the lanelets since we wanted an efficient and high-level
representation allowing to spread information easily through
the graph, while still leveraging connectivity.

B. Heatmap generation through Lane-level rasters

For the heatmap output, we wish to have a dense image
in cartesian coordinates of dimensions (H,W). To do so
without using any convolution on the full image, we create
a raster for every lanelet in curvilinear coordinates. We use
lane ranking to generate these lane rasters only for the top
k lanelets and not all of them.

a) Lane raster generation: Each of the small lane
rasters of size (h,w) has a longitudinal lenght of 20m and
a transversal width of 4m. These lane rasters are created
as a discretization of the Frenet-Serret referential along the
lane , as illustrated in Fig. 3. We decompose the probability
distribution along a lanelet in a longitudinal component
(h, 1, 8) and a lateral component (1, w, 8) predicted from
the lanelet encoding. These components are summed together

with broadcast to create a (h,w, 8) Rfeatures volume. This
way the complexity to create the volume is (h+w)×8 instead
of h×w×8. The obtained volume is then concatenated with
pixelwise cartesian coordinates, heading, lane occupancy and
curvature informations before a final linear layer on which
is applied a sigmoid to get the Rproba output.

𝑛

𝑠

𝑥

𝑦

b) Curvilinear raster c) Cartesian rastera) Lanlet

Fig. 3: Lane raster grid projection onto cartesian coordinates.
a) A single node of the graph is a lanelet and describes
a road segment. b) A rectangular raster is generated along
the curvilinear coordinates of the lanelet. c) The lanelet
coordinates are then used to project the predicted raster
back into cartesian coordinates to complete the final heatmap
output.

The resulting lane-level Rproba heatmaps are then pro-
jected onto the full cartesian heatmap Ŷ using each pixel
cartesian coordinates as illustrated in Figure 3. If multiple
lane-level pixels fall into the same cartesian pixel, their
values are averaged. The lane raster widths are set such
that adjacent lane rasters overlap and can cover lane change
behaviors. The target Y for this final prediction Ŷ is a
Gaussian centered around the target agent ground truth
position. We use the same pixel-wise focal loss as [10]
inspired from CenterNet [26]:

L = − 1

P

∑
p

(Yp − Ŷp)
2f(Yp, Ŷp)

with f(Yp, Ŷp) =

{
log(Ŷp) if Yp=1
(1− Yp)

4 log(1− Ŷp) otherwise

(2)

b) Lane ranking: The lanelet classification is obtained
with a linear layer on the graph encoding, followed by a
sigmoid activation. The ground-truth is defined by a 1 for
all lanelets where the future car position is inside the lanelet
polygon and 0 otherwise. The loss is a binary cross-entropy
added to the pixel-wise loss of Eq. 2 with a 1e−2 coefficient.
Since only a fraction of the lanelets will actually be useful to
represent the future car location, we can compute the lane-
level rasters only for a subselection of lanelets, saving more
computation. We use the classification score clane predicted
by the network to select only the top k ranking lanelets, and

only compute and project the lane raster for these. Since
the raster predictions for the other unselected lanelets would
have been very close to zero anyway, this does not decrease
performance at all, as demonstrated in Sec. IV-C.2.

c) Cartesian image connection: Some lane rasters may
be projected onto the same pixels and overlap, which is
very difficult for the model to know of beforehand. To
help the model know of overlaps and propagate location
information through the lane rasters, we do a first projection
of the lane rasters onto the cartesian coordinates before the
final probability estimation. The (h,w, 8) lane raster features
Rfeatures are projected onto a (H,W, 8) cartesian image
Ifeatures through the same operation previously described
for the probability heatmaps, with the overlaps averaged.
The occupancy (number of raster pixels aggregated in each
cartesian pixel) information is also concatenated to the
volume Ifeatures. A linear layer is then applied on the
last dimension of Ifeatures, which is then reprojected onto
curvilinear coordinates and concatenated to the initial lane
rasters Rfeatures before final probability estimation and
projection. This way, the features of overlapping lanes are
shared between them so that they can propagate information
and homogenise probability.

C. Sparse sampling for Miss Rate Optimization and Full
trajectory generation

To derive final trajectory points from the heatmap, we
use the same MissRate optimization sampling algorithm
as HOME [10]: we iteratively select the grid point that
maximizes surrounding probability in a local neighborhood
of radius r, then set this local neighborhood probabilities to
zero so the next iteration doesn’t select the same location.
The radius r is a simple hyper-parameter that can be tuned
according to the spread of uncertainty present in the dataset,
as we will demonstrate in Sec. IV-B.

Full trajectories are then inferred from the sampled end
points with a simple fully connected model of 2 hidden layers
with 64 features each, taking the history and end point as
inputs and trained with the ground truth end points.

D. Model ensembling
Because of the multimodal nature of the predictions,

model ensembling is usually tedious in trajectory prediction,

as it is not possible to determine which modality should be
averaged with which, and even shortest distance matching
doesn’t guarantee that two predictions highlight the same
decision and would make sense averaged together. On the
other hand, probability heatmap are a great way of represent-
ing information coming from different sources or models in
a common system of reference and can be averaged together
without any assumption nor risk of mode collapsing.

IV. EXPERIMENTAL RESULTS

A. Experimental settings

a) Datasets: The Argoverse Motion Forecasting
Dataset [41] is made of 205942 training samples, 39472
validation samples and 78143 test samples, with 2 seconds
history, and 3 seconds future sampled at 10Hz. The NuScenes
Prediction dataset [42] is made of 32186 training samples
and 9041 validation samples, with 2 seconds history and 6
seconds future sampled at 2Hz. The Interaction dataset is
made of 447626 training samples and 130403, with 1 seconds
history and 3 seconds future trajectory sampled at 10Hz. All
datasets provide the local HD-Map as a lanelet graph.

b) Metrics: The metrics commonly used by both
datasets are the MRk and minFDEk, which are respectively
the Miss Rate and the minimum Final Displacement Error
for the top k predictions, as well as the minimum Average
Displacement Error minADEk. Following their respective
leaderboards, we report these metrics for k=1,5 for Argo-
verse, k=1,5,10 for NuScenes and k=1,6 for Interaction. All
metrics are the lower the better.

c) Implementation details: All models are trained with
batchsize 32 and Adam optimizer. Trainings last 16 epochs
for validation evaluation and 32 epochs for test evaluation.
The initial learning rate is 1e−3 and is divided by 2 at epochs
3, 6, 9 and 13. All layers have 64 channels, graph convolution
and attention layers are followed by Layer Normalization
[43]. ReLU activation is used after every layer. We upsample
the HD-Maps lanelets to obtain an average lenght of 10m per
lanelet.

The architecture is the same for all datasets, with the
exception of the sampling radius r that we can tune according
to the uncertainty spread of the dataset and the metrics
we want to optimize. The default sampling radius we use

TABLE I: Argoverse Leaderboard [27]

K=1 K=6
minFDE MR minADE minFDE MR

LaneGCN [17] 3.78 59.1 0.87 1.36 16.3
TPCN [28] 3.64 58.6 0.85 1.35 15.9
Jean [2] 4.24 68.6 1.00 1.42 13.1
SceneTrans [29] 4.06 59.2 0.80 1.23 12.6
LaneRCNN [7] 3.69 56.9 0.90 1.45 12.3
PRIME [18] 3.82 58.7 1.22 1.56 11.5
DenseTNT [30] 3.70 59.9 0.94 1.49 10.5
HOME [10] 3.65 57.1 0.93 1.44 9.8
GOHOME 3.65 57.2 0.94 1.45 10.5
HO+HO 3.57 56 0.92 1.41 9.4
HO+GO 3.53 55.8 0.92 1.40 9.1
Best ensemble 3.68 57.2 0.89 1.29 8.5

TABLE II: NuScenes Leaderboard [31]

K=5 K=10 k=1
minADE MR minADE MR minFDE

CoverNet [4] 1.96 67 1.48 _ _
Trajectron++ [32] 1.88 70 1.51 57 9.52
ALAN [8] 1.87 60 1.22 49 9.98
SG-Net [33] 1.86 67 1.40 52 9.25
WIMP [34] 1.84 55 1.11 43 8.49
MHA-JAM [35] 1.81 59 1.24 46 8.57
CXX [36] 1.63 69 1.29 60 8.86
LaPred [9] 1.53 _ 1.12 _ 8.12
P2T [37] 1.45 64 1.16 46 10.50
GOHOME (r=2.6m) 1.42 57 1.15 47 6.99
GOHOME (r=1.8m) 1.59 46 1.15 34 7.01

TABLE III: Interaction Validation

minFDE1 minFDE6

TNT [6] _ 0.67
HEAT-I-R [38] 0.66 _
ReCoG [39] 0.65 _
ITRA [40] _ 0.49
GOHOME 0.61 0.45

TABLE IV: Performance/Complexity comparison

Model K=6 #Param FLOPs
minFDE MR

HOME 1.28 6.8 5.1M 4.8G
GNN-HOME 1.28 7.2 0.43M 0.81G
GOHOME 1.26 7.1 0.40M 0.09G

TABLE V: Lane ranking speed-up

lanes K=6 FPS
minFDE MR

All 1.28 7.5 17
20 1.26 7.1 34
10 1.26 7.3 45

for Argoverse is 1.8m, slightly less than the 2m threshold
defining the MissRate. Since the nuScenes dataset has a
longer prediction horizon, it is more uncertain and therefore
a larger radius of 2.6m is required to optimiwe the minADE5,
however MissRate remains better for a lower radius of 1.8m.
Finally, since Interaction perception data comes from drones,
it is much less noisy and therefore generates much more
focused probability predictions which we sample with a
radius of 1.4m.

B. Comparison with State-of-the-art

We report our results on the online Argoverse test set in
Tab. I, on the online NuScenes leaderboard in Tab. II, and
on the Interaction validation set in Tab. III. We compare it
to the published methods on each of these benchmarks. On
Argoverse, our GOHOME method reaches 2nd place in MR6,
with the use of a lighter and faster model than 1st HOME as
will be showed in Sec. IV-C. On NuScenes and Interaction,
GOHOME ranks first in multiple metrics as well.

a) Ensembling for increased performance and highlight
of model differences: We also report the results of our
ensembled models on the test set. We first highlight that the
ensemble of two similar HOME models (HO+HO) brings
significant improvement compared to HOME alone. As a
general rule, the more different and complementary two
models are, the greater the performance increase will be. We
notice that the combination of HOME and GOHOME models
(HO+GO) brings a greater improvement than HO+HO, de-
spite each HOME model being better in single performance
than the GOHOME model. Our best ensembling, a weighted
combination of 9 HOME and GOHOME models, allows us

to improve on the existing state-of-the-art by a significant
margin, with a more than 15% MR6 decrease.

C. Ablation studies

We highlight the gains made by replacing convolution
operations with graph operations. To measure inference time,
we use a batchsize of 16, which can be considered as an
average number of agents to be predicted at a given time. We
report only the model forward pass, omitting preprocessing
and postprocessing, but notice that image preprocessing is
sensibly slower, particularly because of the rasterization
of the different semantic layers. All times are measured
with a Nvidia 2080 TI. While we report inference time,
we also notice that training times record an even greater
difference. We mostly consider three different architectures:
HOME, GNN-HOME which is a modified HOME model
with a GNN encoder but the usual CNN decoder, and our
new method GOHOME. All numbers are reported on the
Argoverse validation set.

1) Graph operation speed-up: We evaluate the speed-up
gained by using graph encoding and lane rasters instead
of full convolutions in Tab. IV. The CNN encoding and
decoding corresponds to the full HOME model, and the GNN
with Lane Rasters (LR) to the GOHOME model. We also
estimate the impact from the encoding separately by testing
a model with GNN encoding and CNN decoding. We report
FLOPs, number of parameters and Frame per Seconds. We
measure an average number of 140 lanelets and 10 agents
per sample to compute FLOPs.

2) Trade-off from lane ranking: We show in Tab. V the
effects of only selecting the top k lanes to extract rasters. We

Fig. 4: Inference time with regard to output range Fig. 5: Inference time with regard to pixels per meters

fix an input range of 128 and output range of 192 with 0.5m
x 0.5m pixel resolution. We observe that this ranked selection
doesn’t decrease performance, as limiting the number of
projected lanes seems to actually improve the metrics, and
brings effective speed-up.

3) Image size and resolution scaling: While a 192m
image range, which amount to a 88m reach in each direction,
may be sufficient in most urban driving predictions with a
time horizon of 3s, other datasets can require predictions
up to 6 or 8 seconds [42], [44]. There is therefore a need
to increase this output range, which can be done without
necessarily increasing the input size, as far distances are
reached with long straight trajectories that can be easily
extrapolated on highways.

We compare the scaling of our graph-based GOHOME
model to the one of an image-based HOME model with
regard to output range and resolution. Fig. 4 highlights the
output range scaling, where we use a fixed input range of
128 meters, and a resolution of 0.5m per pixel. Whereas
the CNN decoders of HOME and GNN-HOME lead to a
quadratic scaling, the lane rasters combined with the top 20
lane ranking enable a scaling that is even less than linear.

We show in Fig. 5 the inference time with regard to the
number of pixels per meter, which is the inverse of the
resolution. While efficient optimization of convolution and
constant costs lead to close inference times for the initial

2 pixels per meter, the more efficient scaling shows clearly
for GNN inputs and especially Lane Rasters outputs. As the
resolution of the lane rasters is also scaled with the total
resolution, the quadratic complexity is still applied, but with
a much lesser coefficient that allows for realistic training and
inference times for finer resolutions.

D. Qualitative results

We show in Fig. 6 some qualitative results of our GO-
HOME model. The lane prediction displayed on top can be
assimilated to the representation of epistemic uncertainty, as
the choice of where the driver will decide to go, whereas the
spread of the final heatmap modes models aleatoric uncer-
tainty in the trajectory controls. We observe that the model
assign different modes for each lane possibility, and that each
of these modes is well aligned with the corresponding lane
with a spread along the curvilinear direction.

V. CONCLUSION

In this paper, we propose GOHOME, a trajectory pre-
diction framework generating a global heatmap probability
distribution without the use of any image based convolution.
Through the use of graph operations, ranking and projections,
our model reaches state-of-the-art performance on three
datasets with great scaling with regards to the predicted range
and resolution.

0.31

0.69

0.890.11

0.72

0.11
0.10

0.07

0.61

0.25

0.05
0.61

0.33

0.16

0.21

0.17

0.38

0.99

0.71

0.25

0.03

Fig. 6: Qualitative examples of GOHOME output. Graph lane classification is shown in framed inserts

REFERENCES

[1] N. Deo and M. M. Trivedi, “Multi-modal trajectory
prediction of surrounding vehicles with maneuver
based lstms,” in IV, 2018.

[2] J. Mercat, T. Gilles, N. El Zoghby, G. Sandou,
D. Beauvois, and G. P. Gil, “Multi-head attention
for multi-modal joint vehicle motion forecasting,” in
ICRA, 2020.

[3] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov,
“Multipath: Multiple probabilistic anchor trajectory
hypotheses for behavior prediction,” in CoRL, 2020.

[4] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O.
Beijbom, and E. M. Wolff, “Covernet: Multimodal
behavior prediction using trajectory sets,” in CVPR,
2020.

[5] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T.
Nguyen, T.-K. Huang, J. Schneider, and N. Djuric,
“Multimodal trajectory predictions for autonomous
driving using deep convolutional networks,” in ICRA,
2019.

[6] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadara-
jan, Y. Shen, Y. Shen, Y. Chai, C. Schmid, et al., “Tnt:
Target-driven trajectory prediction,” CoRL, 2020.

[7] W. Zeng, M. Liang, R. Liao, and R. Urtasun, “Lan-
ercnn: Distributed representations for graph-centric
motion forecasting,” arXiv:2101.06653, 2021.

[8] S. Narayanan, R. Moslemi, F. Pittaluga, B. Liu, and
M. Chandraker, “Divide-and-conquer for lane-aware
diverse trajectory prediction,” in CVPR, 2021.

[9] B. Kim, S. H. Park, S. Lee, E. Khoshimjonov, D. Kum,
J. Kim, J. S. Kim, and J. W. Choi, “Lapred: Lane-
aware prediction of multi-modal future trajectories of
dynamic agents,” in CVPR, 2021.

[10] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu,
and F. Moutarde, “Home: Heatmap output for future
motion estimation,” arXiv preprint arXiv:2105.10968,
2021.

[11] K. Mangalam, Y. An, H. Girase, and J. Malik, “From
goals, waypoints & paths to long term human trajec-
tory forecasting,” arXiv:2012.01526, 2020.

[12] F. Altché and A. de La Fortelle, “An lstm network for
highway trajectory prediction,” in ITSC, 2017.

[13] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr,
and M. Chandraker, “Desire: Distant future prediction
in dynamic scenes with interacting agents,” in CVPR,
2017.

[14] Y. C. Tang and R. Salakhutdinov, “Multiple futures
prediction,” in NeurIPS, 2019.

[15] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou,
“Multimodal motion prediction with stacked trans-
formers,” arXiv preprint arXiv:2103.11624, 2021.

[16] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C.
Li, and C. Schmid, “Vectornet: Encoding hd maps
and agent dynamics from vectorized representation,”
in CVPR, 2020.

[17] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng,
and R. Urtasun, “Learning lane graph representations
for motion forecasting,” in ECCV, 2020.

[18] H. Song, D. Luan, W. Ding, M. Y. Wang, and Q. Chen,
“Learning to predict vehicle trajectories with model-
based planning,” arXiv:2103.04027, 2021.

[19] L. Zhang, P.-H. Su, J. Hoang, G. C. Haynes, and
M. Marchetti-Bowick, “Map-adaptive goal-based tra-
jectory prediction,” in CoRL, 2020.

[20] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2p2:
A reparameterized pushforward policy for diverse,
precise generative path forecasting,” in ECCV, 2018.

[21] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E.
Adeli, J. Malik, and A. Gaidon, “It is not the journey
but the destination: Endpoint conditioned trajectory
prediction,” in ECCV, 2020.

[22] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet,
L. Fei-Fei, and S. Savarese, “Social lstm: Human
trajectory prediction in crowded spaces,” in CVPR,
2016.

[23] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose,
H. Rezatofighi, and S. Savarese, “Sophie: An atten-
tive gan for predicting paths compliant to social and
physical constraints,” in CVPR, 2019.

[24] A. Erdem, 6th place solution: Very custom gru, www.
kaggle . com / c / riiid - test - answer -
prediction/discussion/209581.

[25] R. Rozenberg, J. Gesnouin, and F. Moutarde, “Asym-
metrical bi-rnn for pedestrian trajectory encoding,”
arXiv:2106.04419, 2021.

[26] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as
points,” arXiv:1904.07850, 2019.

[27] Argoverse motion forecasting competition, https:
//eval.ai/web/challenges/challenge-
page / 454 / leaderboard / 1279, Accessed:
2021-06-15.

[28] M. Ye, T. Cao, and Q. Chen, “Tpcn: Temporal point
cloud networks for motion forecasting,” in CVPR,
2021.

[29] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L.
Chiang, J. Ling, R. Roelofs, A. Bewley, C. Liu, A.
Venugopal, et al., “Scene transformer: A unified multi-
task model for behavior prediction and planning,”
arXiv:2106.08417, 2021.

[30] J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end
trajectory prediction from dense goal sets,” in ICCV,
2021.

[31] Nuscenes prediction competition, https://eval.
ai / web / challenges / challenge - page /
591/leaderboard/1659, Accessed: 2021-09-14.

[32] T. Salzmann, B. Ivanovic, P. Chakravarty, and M.
Pavone, “Trajectron++: Dynamically-feasible trajec-
tory forecasting with heterogeneous data,” in ECCV,
2020.

[33] C. Wang, Y. Wang, M. Xu, and D. J. Crandall, “Step-
wise goal-driven networks for trajectory prediction,”
arXiv:2103.14107, 2021.

[34] S. Khandelwal, W. Qi, J. Singh, A. Hartnett, and D.
Ramanan, “What-if motion prediction for autonomous
driving,” arXiv:2008.10587, 2020.

[35] K. Messaoud, N. Deo, M. M. Trivedi, and F.
Nashashibi, “Multi-head attention with joint agent-
map representation for trajectory prediction in au-
tonomous driving,” arXiv:2005.02545, 2020.

[36] C. Luo, L. Sun, D. Dabiri, and A. Yuille, “Probabilistic
multi-modal trajectory prediction with lane attention
for autonomous vehicles,” arXiv:2007.02574, 2020.

[37] N. Deo and M. M. Trivedi, “Trajectory forecasts
in unknown environments conditioned on grid-based
plans,” arXiv:2001.00735, 2020.

[38] X. Mo, Y. Xing, and C. Lv, “Heterogeneous edge-
enhanced graph attention network for multi-agent tra-
jectory prediction,” arXiv:2106.07161, 2021.

[39] ——, “Recog: A deep learning framework with het-
erogeneous graph for interaction-aware trajectory pre-
diction,” arXiv:2012.05032, 2020.

[40] A. Scibior, V. Lioutas, D. Reda, P. Bateni, and
F. Wood, “Imagining the road ahead: Multi-agent
trajectory prediction via differentiable simulation,”
arXiv:2104.11212, 2021.

[41] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S.
Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ra-
manan, et al., “Argoverse: 3d tracking and forecasting
with rich maps,” in CVPR, 2019.

[42] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E.
Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom, “Nuscenes: A multimodal dataset for
autonomous driving,” in CVPR, 2020.

[43] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer
normalization,” in arXiv:1607.06450, 2016.

[44] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao,
S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou, et
al., “Large scale interactive motion forecasting for au-
tonomous driving: The waymo open motion dataset,”
arXiv:2104.10133, 2021.

