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Assessing Cross-dataset Generalization of
Pedestrian Crossing Predictors

Joseph Gesnouin'?, Steve Pechberti', Bogdan Stanciulescu? and Fabien Moutarde®
I Institut VEDECOM, 78000 Versailles, France

2 Centre de Robotique, MINES ParisTech, Université PSL, 75006 Paris, France

Abstract—Pedestrian crossing prediction has been a topic of
active research, resulting in many new algorithmic solutions.
While measuring the overall progress of those solutions over
time tends to be more and more established due to the
new publicly available benchmark and standardized evaluation
procedures, knowing how well existing predictors react to
unseen data remains an unanswered question. This evaluation
is imperative as serviceable crossing behavior predictors should
be set to work in various scenarios without compromising
pedestrian safety due to misprediction. To this end, we conduct a
study based on direct cross-dataset evaluation. Our experiments
show that current state-of-the-art pedestrian behavior predic-
tors generalize poorly in cross-dataset evaluation scenarios,
regardless of their robustness during a direct training-test set
evaluation setting. In the light of what we observe, we argue that
the future of pedestrian crossing prediction, e.g. reliable and
generalizable implementations, should not be about tailoring
models, trained with very little available data, and tested in a
classical train-test scenario with the will to infer anything about
their behavior in real life. It should be about evaluating models
in a cross-dataset setting while considering their uncertainty
estimates under domain shift.

Index Terms—Pedestrian Intention Prediction, Uncertainty
Estimation, Cross-dataset Evaluation

I. INTRODUCTION

The topic of pedestrian discrete behavior prediction is
deemed essential for robust and reliable planning leading to
the deployment of autonomous vehicles. While the domain
has attracted significant interest in computer vision and
robotics communities for the past decade, the field of research
has suffered for a long time from the lack of common evalua-
tion protocols and standardized benchmarks, making the task
of comparing performance between approaches complex if
not impossible to achieve. To compensate for such problems,
a standardized benchmark [1] to evaluate pedestrian behavior
prediction for three datasets was recently proposed to advance
research further. While this brought a breath of fresh air to
the field of pedestrian behavior prediction, we believe that
current evaluation protocols do not adequately represent the
applicability of existing pedestrian prediction models for real-
world scenarios. Comparable studies have previously been
conducted in computer vision, questioning whether recent
progress on the ImageNet [2] benchmark continues to rep-
resent meaningful generalization [3] and identifying various
sources of bias and noise [4], [5]. However, going beyond
accuracy to evaluate a model for a high-risk application with
limited amount of training data, such as pedestrian crossing

Fig. 1. Examples of crossing and non-crossing pedestrians from JAAD and
PIFE datasets. The conditions under which pedestrians act from one scenario
to another can differ drastically concerning input format and domain shift:
pedestrian size, pedestrian positioning in the scene, illumination conditions,
occlusion...

prediction, has never been properly investigated. In this
work, we assess how pedestrian action prediction approaches
react to small domain shifts and evaluate their generalization
capability outside a standard train-test evaluation protocol.
We show that all the current pedestrian behavior predictors
show signs of over-fitting when evaluated during a direct
training-test sets evaluation setting on those standardized
benchmarks.

This problem leads to two major drawbacks for the field:

o The training source being generally not dense in variety

of scenarios nor in the number of examples, the results
of state-of-the-art approaches on each dataset might
just come from noise: this noise effect should probably
be further aggravated since the existing approaches
are based on deep learning, depending heavily on the
quantity and quality of data where the performance of
approaches scales up with the amount of training data.
o It prevents pedestrian behavior predictors from scaling
up to real-world applications, as they are not applicable
in various scenarios with small domains shifts.

The above examples recap the general motivation of this
work, encouraging us to rethink the evaluation methodology
to rank current top-scoring behavior predictors from the
perspective of uncertainty evaluation to small domain shifts.
We argue that:

e The only empirical evaluation of models in a direct

train-test sets evaluation offered by the original work
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Fig. 2. Pedestrian crossing prediction performance for PIE, JAADpehgvior and JAAD ;. We show a comparison between traditional single-dataset
train and test evaluation on each dataset compared to cross-dataset evaluation for eleven methods representing the diversity of architectures and modalities
usually used for pedestrian crossing prediction. Ensembling denotes the average output of instances of the same model trained on different training datasets

and tested on a given test set.

introducing the method is not sufficient to effectively
conclude anything about its applicability in a real-world
scenario. The result is often statistically non-significant
during a cross-dataset evaluation scenario and leads to
an ever-changing state-of-the-art.

o It would be more interesting to compare each method
by evaluating how trustworthy are their uncertainty
estimates under different domain shifts.

II. RELATED WORK
A. Pedestrian Crossing Prediction

Pedestrian crossing prediction formulates the prediction
task as a binary classification problem where the objective
is to determine if a pedestrian ¢ will start crossing the street
given the context observed up to some time ¢. The prediction
can rely on multiple sources of information, including visual
features of the pedestrians and their surroundings, pedestrian
kinematics, spatial positioning of the pedestrian based on
2D bounding box locations, optical flow and ego-vehicle
speed. Early works [6], [7], formulated the problem as a
static image classification problem with 2D Convolutions [8],
[9], using only the last frame in the observation sequence
to predict crossing behaviors. More successful approaches
were designed to take into account temporal coherence in
short-term motions of visual features of the pedestrians by
using ConvLSTMs [10], [11], 3D Convolutions [12], [13],
[14], or Spatio-Temporal DenseNet [15]. Approaches trying
to minimize the inference time of their models by avoiding
the usage of RGB images were explored: [16] proposes a
transformer using only spatial positioning of the pedestrian
based on 2D bounding box locations. Crossing prediction
based on kinematics only was also explored with various
available learning architectures to monitor temporal evolution
of skeletal joints such as convolutions [17], [18], [19],

recurrent cells [20], [21] or graph-based models [22]. More
recently, approaches combining multiple sources of infor-
mation emerged. By combining several of these perception
modalities in order to obtain a multi-modal representation
of the scene, one obtain approaches that are often very
discriminative and powerful for action prediction. However,
this is at the expense of the inference’s speed of the model
and it highly depends on the quality of the fusion or co-
learning algorithm. Therefore, multi-modal approaches differ
by the way they merge the available sources, e.g. scenes,
trajectories, poses and ego-vehicle speed, and the learning
architecture used to infer a crossing prediction, e.g. RNN-
based models [23], [24], [25], [1], [26] or Transformer-based
models [27], [28].

B. Cross-dataset evaluation

In its first year of existence, proposed approaches evaluated
on the benchmarks [1] constantly report higher classification
scores [19], [16], [26], [29], [30], [31], giving the impression
of clear improvements in pedestrian intention prediction.
Usually, a new algorithm is proposed and the implicit hy-
pothesis towards the proposed contribution is made such that
it yields an improved performance over the existing state-of-
the-art. To confirm such hypothesis, an empirical evaluation
of the given contribution is realized in a direct train-test
sets evaluation and the quality of the model is evaluated
by regular classification metrics: newly proposed methods
are then claimed as the new state-of-the-art as soon as they
outperform previous ones even by a small margin. However,
the ranking of the methods for a given task is currently
only as good as the quality of the data used for comparison
purposes, and the results obtained by one method on a given
dataset do not always reflect its robustness in real-world
applications.
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Fig. 3. Distribution of pedestrian bounding box height in pixel for P/ E,

JAADbehavior and JAADa”.

In this work, we evaluate how pedestrian action prediction
approaches react to small domain shifts by interchanging the
training set of dataset A by the training set of dataset B and
test it on the testing set of A. The given training routine is
consistent across all experiments for all three datasets. This is
referred throughout the paper as cross-dataset evaluation [32],
[33], [34]. By adopting cross-dataset evaluation, we test the
generalization abilities of several state-of-the-art pedestrian
crossing predictors to distributional shift such as pedestrian
size, as shown in Fig 3, pedestrian positioning in the scene,
illumination conditions or occlusion as shown in Fig 1.

C. Uncertainty Metrics

In real-world scenarios, quantifying uncertainty is crucial
as the input distributions are frequently shifted from the
training distribution due to a number of causes such as sam-
pling bias. Evaluating the generalization abilities of models
by using cross-dataset evaluation and classification metrics
only is not sufficient. In high-risk applications such as pedes-
trian behavior prediction, the idea that a model’s predicted
probabilities of outcomes reflect true probabilities of those
outcomes is mandatory for high-level decisions (i.e., vehicle
planning module in crowded urban traffic environments).
Expected Calibration Error (ECE) and Maximum Calibration
Error (MCE) are standard uncertainty' metrics in this context
[35], [36], [37], [38]. Predictions are divided into M interval
bins according to a given binning strategy, we then calculate
the accuracy of each bin to estimate the predicted accuracy
from finite data. Let B,, denote the set of sample indices for
which prediction confidence is inside one interval bin. The
accuracy of B,, is defined as

1 N
acc (Bp) = Bl > 1 =w) )
mi €B,,
where g; and y; are respectively the predicted and true

class labels for sample ¢. The average confidence within one
interval bin B,,, is defined as:
> b )

i€Bm,

conf (B,,) = ——

1
| B

Because confidence is the additive inverse of uncertainty with regard to
1, the terms are often interchanged.

where p; is the model confidence for sample . Throughout
our experiments, the maximum softmax probability [39] is
used as the confidence score. We therefore compare each
model output pseudo-probabilities to its accuracy. We obtain
the following metrics to rank methods based on their cali-
bration:

Expected Calibration Error (ECE): takes a weighted
average of the absolute difference in accuracy and confidence.

M
| Bm|
ECE = — B,,) — conf (B, 3
7;:1 - lace (By,) — conf (By,)| 3)
Maximum Calibration Error (MCE): measures the max-
imum discrepancy between accuracy and confidence.

MCE = max |acc (B,) — conf (Bp,)| 4)

Since the underlying binning approach has a significant
impact on the accuracy and reliability of ECE and MCE, we
use an adaptive binning strategy [40] instead of a uniform
partition?: the number of samples in a bin is adaptive to the
distribution of the samples in the confidence range.

III. GENERALIZATION CAPABILITIES
A. Datasets and Implementation Details

For this evaluation, we use two large public naturalistic
datasets for studying pedestrian behavior prediction: JAAD
[41] and PIFE [42]. These datasets are typically obtained by
a vehicle-mounted camera as it navigates through crowded
urban traffic environments: JAAD contains 346 clips and
focuses on pedestrians intending to cross, PIE contains 6
hours of continuous footage and provides annotations for
all pedestrians sufficiently close to the road regardless of
their intent to cross in front of the ego-vehicle and provides
more diverse behaviors of pedestrians. There are significant
differences between JAAD and PIE dataset in terms of
sensors: 3 different cameras are used in JAAD with narrow
FOV while PIE continuous footage was recorded with with
a single wide-angle lens camera. The JAAD dataset is
split into JAADpepavior and JAAD . JAADyehavior 18
biased towards pedestrians attempting to cross the street
(402 crossing out of 648) and the smallest dataset available.
JAAD,; adds all visible pedestrians in JAAD, regardless
of their position in the scene and contains more non-crossing
pedestrians (490 crossing out of 2580). Similarly, PIFE
contains more non-crossing pedestrians (512 crossing out of
1842). All three datasets are heavily skewed towards one
class. To compensate for such significant datasets shifts label-
wise, we train all our models using class weights inversely
proportional to the percentage of samples for each class.
Following the existing evaluation procedures [1], we use the
same data sampling method, the same splits and the same
inputs sets for our experiments®. However, we disregard the
ego-vehicle speed input for all our models as the sensor data
used for the ego-vehicle speed is only available for PIF
and could not be used for cross-dataset evaluation purposes.

Zhttps://github.com/yding5/AdaptiveBinning
3https://github.com/ykotseruba/PedestrianActionBenchmark
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Fig. 4. Critical Difference Diagram [43]: first a Friedman test is performed
to reject the null hypothesis, we then proceed with a post-hoc analysis based
on the Wilcoxon-Holm method. We compare the robustness of classifiers
over multiple training and testing sets shifts. We can see how each method
ranks on average. A thick horizontal line groups a set of classifiers that are
not significantly different (o« = 0.1).

The observation length for all models is fixed at 16 frames.
In order to combine different models trained on different
data sets, the sample overlap is set to 0.8 for both PIE
and JAAD trainings. We report the results using standard
binary classification metrics: AUC and F1 Score and standard
confidence calibration metrics: adaptive ECE and MCE.

B. Baselines and state-of-the-art models

We select a subset of methods from the pedestrian crossing
prediction literature, and more broadly, action recognition
literature for their prevalence, practical applicability and
diversity in terms of architectures and input modalities. These
include:

e VGGI16 [8] and Resnet50 [9] : two baseline static
models that use only the last frame in the observation
sequence to predict the crossing behavior of a pedes-
trian.

e ConvLSTM [10]: A model using a stack of images as
input, pre-process those images with pre-trained CNN
and apply ConvLSTM on those features.

o Convolutional-3D (C3D) [12] and Inflated-3D (/3D)
[13]: two models pretrained on SportslM [44] using a
stack of images as input and applying 3D convolutions
to extract features.

e SPI-net [18] and TrouSPI-net [19]: two multi-modal
models relying on pedestrians’ pose kinematics ex-
tracted by OpenPose [45], relative euclidean distance
of key-points and evolution of the pedestrian spa-
tial positioning. Poses sequences are converted into
2D image-like spatio-temporal representations and self-
spatio-temporal attention is applied via CNN-based
models for multiple time resolutions. Each remaining
feature is independently processed via either U-GRUs
[46] or feed forward neural network and fused by either
applying temporal and modality attention or sent to a fc
layer to predict crossing behaviors.

o SingleRNN [23], Multi-stream RNN (MultiRNN) [24]
and Stacked with multilevel Fusion RNN (SFRNN)
[47]: Three multi-modal models relying on RGB Images
extracted by VGG16 [8], pose kinematics extracted by
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Fig. 5. Distribution of the performance of the eleven selected approaches

when evaluated in a direct train-test scenario and when evaluated in cross-
dataset scenarios.

OpenPose [45] and evolution of the pedestrian spatial
positioning. Input features are either concatenated into
a single vector and sent to a recurrent network followed
by a fc layer for crossing prediction, either processed
independently by GRUs [48] and the hidden state of
GRU s are then concatenated and sent into a fc layer for
crossing prediction or either processed by GRUs [48§]
and fused gradually at different levels of processing and
complexity.

o Pedestrian Crossing Prediction with Attention
(PCPA) [1]: A multi-modal model relying on RGB
images extracted by C3D [12], pose kinematics ex-
tracted by OpenPose [45] and evolution of the pedestrian
spatial positioning. Non-images features are indepen-
dently encoded by GRUs [48] and each is fed to a
temporal attention block. 3D Convoluted features are
flattened and fed into a fc layer. Modality attention
is then applied to all the branches to fuse them into
a single representation by weighted summation of the
information from individual modalities.

C. Cross-dataset Evaluation Results

We present the coarse results of our cross-dataset evalu-
ation on Fig 2. For readability purposes, the corresponding
critical difference diagram is reported on Fig 4 and the aver-
age distribution of performance of the selected approaches is
reported on Fig 5. The results of the average prediction given
by the three models trained on each training set for one given
test set is reported on Table I. As expected, all methods,
regardless of their architecture or input modalities, suffer
a consequent performance drop when trained on PIFE and
tested on JAAD and vice versa. Fig 5 shows that however
robust the individual classifier is, there is a general trend
for classifiers to decline when exposed to a different test
set than the expected one. This is consistent towards all our
experiments with the exception of JAADyenavior- JAADqy



AUC (1) F1(1) ECE({) MCE ()

Method pie (+002  beh (002  all (001 | pie (+003  beh ooy all (+oo2 | pie (001  beh (+002  all (+002) | pie (+002  beh (+003 all +0.03
VGG16 [8] 0.52 0.62 0.76 0.28 0.67 0.60 0.07 0.06 0.20 0.24 0.13 0.25
Resnet [9] 0.58 0.60 0.63 0.45 0.68 0.37 0.09 0.05 0.04 0.37 0.15 0.44

" ConvLSTM [10] ~ ~ 030 ~ ~ 051 057 | 0210~ 043 030 | 009 014 T 010 | 022" T 025 041
C3D [12] 0.59 0.56 0.70 0.46 0.73 0.43 0.17 0.08 0.03 0.43 0.12 0.11
13D [13] 0.64 0.62 0.74 0.48 0.71 0.51 0.05 0.08 0.09 0.13 0.15 0.16

TPCPA 1] T T« 069 057 064 | 056 067 038 | 0120 ~ 004 012 | 036 013 = 028
SingleRNN [23] 0.78 0.58 0.66 0.65 0.69 0.40 0.09 0.02 0.09 0.16 0.15 0.14
MultiRNN [24] 0.76 0.54 0.60 0.64 0.74 0.35 0.06 0.08 0.19 0.13 0.17 0.378
SFRNN [47] 0.77 0.63 0.62 0.67 0.58 0.36 0.07 0.08 0.11 0.11 0.29 0.16

T Spi-Net [18] ~ ~ 054 059 " 071 | 035 ~ 061 ~ 050 ] 010 007 T 022 | 030 "~ 015 033 -~
TrouSPI-net [19] 0.73 0.59 0.56 0.61 0.76 0.32 0.07 0.05 0.24 0.12 0.13 0.41

TABLE 1

AVERAGE PREDICTION GIVEN BY THREE INDIVIDUAL MODELS AND THEIR RESPECTIVE OUTPUTS FOR EACH TEST SET (ENSEMBLING), EACH
INDIVIDUAL MODEL IS EITHER TRAINED ON PIE, JAADpehavior OR JAAD ;. IN ADDITION TO CLASSIFICATION METRICS (WE USE ARROWS TO
INDICATE WHICH DIRECTION IS BETTER), WE COMPARE MODELS WITH PREDICTIVE UNCERTAINTY METRICS SUCH AS EXPECTED CALIBRATION
ERROR (ECE) AND MAXIMUM CALIBRATION ERROR (MCE). DASHED LINES SEPARATE DIFFERENT TYPES OF ARCHITECTURES.

being an extension to the set of samples with behavioral
annotations, JAAD,;; “generalizes” well on JAADyehavior
but unsurprisingly, the converse is far from true. Even when
trained on a relatively diverse dataset (P/FE) and inferred
on a smaller one in comparison (JAADpenavior), Selected
methods barely show signs of generalization. More alarming,
some methods even under-performed a random binary guess
based on class distribution when exposed to a different testing
set than the expected one. While the task, standardized inputs
and observation length are the same across all three datasets,
none of the tested models reaches a satisfactory level of
generalization across any other testing set. When it comes
to compare performance towards small domain-shift at the
granular level of individuals methods, the critical difference
diagram reported on Fig 4, shows that none of the selected
methods arise as a clear winner when it comes to cross-
dataset ranking. More importantly, the obtained ranks of each
method when evaluated under cross-dataset evaluation is far
from the one we usually consider when developing pedes-
trian crossing behavior predictors: some general methods
such as I3D or C3D are on par with multi-modal methods
specifically designed to tackle the problem of pedestrian
crossing prediction, while part of this could be due to the
removal of ego-vehicle data which is an important source
of information exploited by many multi-modal approaches.
This confirms the importance of rethinking the evaluation
methodology of our approaches. The ensembling provided
in Table I, is the closest plausible approximation of the
selected models’ robustness for real-world application as it
integrates all available conditions and training instances while
removing the sampling biases of each specific training set.
It shows that the only empirical evaluation of models in a
direct train-test sets evaluation is not sufficient to effectively
conclude anything about its applicability in a real-world
scenario. This also demonstrates that the use of classification
metrics alone is not representative of the overall capacity
of the models. For two given models which are equivalent
with respect to classification metrics (AUC or F1 score),
their calibration (ECE and MCE) can differ drastically. This
supports our argument that the usage of uncertainty metrics
should complement the metrics conventionally used in order
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Fig. 6. Reliability Diagrams between I3D [13] randomly initialized
(left) and pre-trained on SportsIM [44](right) on PIE, JAAD,; and
JAADpehavior datasets. If the model is perfectly calibrated, then the
diagram plots the identity function. Any deviation from a perfect diagonal
represents miscalibration: the model is either overconfident (orange) or
subconfident (green).

to obtain a comprehensive view of the robustness of existing
approaches.

D. Role of pre-training in uncertainty calibration

Table I illustrates that generic baseline methods (i.e.
VGG16, C3D, I3D) pre-trained on well diverse and dense
datasets further away from the target domain, benefit in
terms of generalization and uncertainty calibration as they
are on par with the methods specifically designed to tackle
the problem of pedestrian crossing prediction, which was not
the case in a simple train-test evaluation setting.

To better isolate the effects of pre-training with larger
datasets we consider two I3D [13] but trained with different



AUC (1) F1(1) ECE (1) MCE ()

Method pie beh all pie beh pie beh all pie beh all
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TABLE II

AVERAGE PEDESTRIAN CROSSING PREDICTION PERFORMANCE FOR PIE, JAADpehavior AND JAAD,;; (5 RUNS). DASHED LINES SEPARATE
EACH PROBABILISTIC DEEP LEARNING BASELINE. EACH BASELINE IS TESTED TWICE: FIRST, IN A CLASSICAL TRAIN-TEST EVALUATION PROTOCOL
AND THEN TESTED BY ENSEMBLING ALL THREE MODELS TRAINED ON EACH TRAINING SET TO EVALUATE ITS ROBUSTNESS TO SMALL DOMAIN
SHIFT. WE HIGHLIGHT THE HIGHEST SCORES FOR EACH METRIC AND FOR BOTH EVALUATION PROTOCOLS: TRAIN-TEST OR ENSEMBLING.

configuration: the first one being randomly initialized and the
second one being pre-trained on SportsIM [44]. We assess
their performance on the same datasets and report our find-
ings in Fig 6. We show that pre-trained models significantly
outperform randomly initialized models across all three
datasets in terms of calibration. As far as robustness aspects
towards small domain shifts are concerned, this may become
an important factor to consider when designing pedestrian
crossing behavior approaches for real-world scenarios. The
training source being generally not dense in variety of con-
ditions nor in the number of examples, the results provided
on each dataset might just come from noise on testing sets.
Pre-training well-established models on diverse and dense
datasets further away from the target domain before fine-
tunning to our target task might prove efficient and mandatory
for the next step of pedestrian crossing behavior prediction:
generalization and vehicle implementation.

IV. IMPROVING UNCERTAINTY CALIBRATION

For the very same approach, there is a significant discrep-
ancy between traditional train-test and cross-dataset evalua-
tion results. This calls into question the reliability of current
methods in regard to their capacity to generalize. In addition,
we have shown that the standard classification metrics are
not sufficient to reliably evaluate an approach since the
use of uncertainty metrics raises additional issues that are
not reflected otherwise. We are confident that the future
breakthroughs in the area will not occur by outperforming
current state-of-the-art by a small margin on conventionally
used evaluation protocols as they currently fail to provide the
big picture of pedestrian crossing behavior prediction.

As we encourage the community to change the direction
in which we are taking the research field, we investigate
how additional baselines from the probabilistic deep learning
literature improve the generalization ability of pedestrian
behavior predictors towards small domain shifts. We believe
that those methods could prove useful for the next generation
of predictors and present our results with the intention that
they will serve as a baseline for future work addressing our
prescriptions.

A. Baselines from the probabilistic deep learning literature

Below, we present the selected methods from the proba-
bilistic deep learning literature applied on top of an I3D [13]
model:

« Non-pretrained and Deterministic: Maximum softmax
probability [39] of IV networks trained independently on
each dataset using either random initialization or pre-
trained weights from Sports1M [44]. (We set N = 5 for
each method below.)

« Monte-Carlo Dropout (MC Dropout): Dropout acti-
vated at test time as an approximate bayesian inference
in deep Gaussian processes [49].

o Temperature Scaling* (TempScaling): Post-hoc calibra-
tion of softmax probability by temperature scaling using
a validation set [36].

o Last Layer Dropout (LL Dropout): Bayesian inference
for the parameters of the last layer only: Dropout
activated at test time on the activations before the last
layer.

« Last Layer Stochastic Variational Bayesian Inference
(LL SVI): Mean field stochastic variational inference on
the last layer using Flipout [50].

o Ensembling (Ens): Average prediction of three net-
works trained independently on each training set using
pre-trained weights [51]. Similarly to Table I, we use
ensembling as a plausible approximation of one model’s
robustness for real-world scenarios.

B. Discussion

We present the results obtained by probabilistic methods
for both evaluation protocols: train-test and ensembling on
Table II. This allows us to report the effect of dataset shift on
accuracy and calibration for the probabilistic deep learning
methods. Naturally, we would like to obtain a model, that
is well-calibrated on the training and testing distributions
of each dataset and remains calibrated with ensembling.
We observe that, similarly to the deterministic methods, the
quality of predictions consistently degrades with dataset shift
regardless of the selected probabilistic method for both PIE
and JAAD,;. However, overall robustness degrades more

“https://github.com/gpleiss/temperature_scaling



significantly for some methods. For instance, TempScaling,
e.g. post-hoc calibration of softmax probability, seems to be
one of the best train-test probabilistic methods in regards
to expected calibration error (ECE) when evaluated in a
standard train-test procedure but falls behind when evaluated
under dataset shift. In fact, when evaluated under dataset
shift, all the methods except Non-pretrained ones outperform
TempScaling in regards to ECE. Similarly, we report that
better calibration and accuracy on each test set does not cor-
relate with better calibration under ensembling: the average
ECE of the methods when evaluated with classical train-test
scenario is [0.166, 0.074, 0.056, 0.042, 0.079, 0.070] and
the average ECE of the same methods under dataset shift
are [0.096, 0.077, 0.078, 0.085, 0.077, 0.042]. Interestingly,
most of the selected probabilistic methods perform better on
average than the deterministic I3D under train-test evaluation
protocols but fail to generalize when exposed to dataset shift.
The exception to the rule is LL SVI, which looks very
promising in terms of generalization to small domain shift.
As our experiments required pre-trained weights from 13D,
we could not replace each convolutional layer with mean-
field variational Flipout layers, we only changed the last
layer of the given model to obtain a variational bayesian
inference for a quick baseline. Nevertheless, we believe that
this could be a future research to consider. We should explore
the effects of transferring initially learned features on large
bases further away from the target task and explore how
probabilistic methods react to transfer-learning and domain-
shift.

V. CONCLUSION

In this paper, we show that the classical train-test sets
evaluation for pedestrian crossing prediction, i.e., models
being trained and tested on the same dataset, is not sufficient
to efficiently compare nor conclude anything about their
applicability in a real-world scenario: the benchmarks being
either too small or too loose in variety of scenarios, it is easy
for a given model to over-fit on a specific target dataset. In or-
der to evaluate the generalization capacity of the approaches,
we conduct a study based on direct cross-dataset evaluation
for eleven methods representing the diversity of architectures
and modalities used for pedestrian crossing prediction. We
found a huge lack of generalization and robustness for all
selected approaches. This led us to a ranking of existing
approaches that is much more complex and less absolute
than the standard one. We secondly discuss the importance of
quantifying a model’s uncertainty. Although this is currently
completely disregarded, it is common sense to use it in our
field of application. We discover two interesting properties:
pre-training well-established models on diverse and dense
datasets further away from the target domain before fine-
tuning to our target task improves calibration and, two models
with equivalent classification scores do not necessarily have
equivalent calibration scores. This may prove interesting
to consider when comparing their usefulness in real-world
scenarios with inputs distribution frequently shifted from
the training distribution. Finally, we enforce the importance

of evaluating the robustness of pedestrian crossing behavior
models by evaluating how trustworthy are their uncertainty
estimates under domain shifts with cross-dataset evaluation.
We encourage the community to consider those new protocols
and metrics in order to reach the end-goal of pedestrian
crossing behavior predictors: vehicle implementation. In or-
der to build the foundation on which future work should
be based on, and, in addition to the eleven deterministic
baselines evaluated under domain shift, we report the results
of multiple baselines from the probabilistic deep learning
literature, designed to tackle the problem of improving model
calibration. Given all of the above, we advise the community
to change the direction in which we are taking the research
field: with so little existing data, non-existent generalization
of models, and inconclusive ranking of them, we need
to agree to properly evaluate our approaches in order to
minimize the noise of our productions and thus, make the
research field more sustainable and representative of the real
advances to come.
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