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We introduce mech.v, a new framework for the specification and verification of mechanisms, implemented
using the Coq interactive theorem prover and the Mathematical Components library.

We provide a general definition of mechanism, a subclass capturing auctions, and a few examples of auctions
including three notions of Vickrey-Clarke-Groves (VCG), proving their main incentive properties such as
truthfulness with reasonable verification effort.

We define and prove some more lemmas and definitions usually found in the mechanism design (MD)
literature such as Pareto-optimality, rationality, dominance and Nash equilibria.

We also define a mechanism refinement system, which we use to relate the implementation of an efficient
version of the VCG mechanism for an online advertisement auction to the general VCG specification, allowing
us to transfer the truthfulness property from the generic proof.

We hope that our library can be useful as a formally verified, unambiguous reference with applications
ranging from verification of deployed mechanism to education, and that this is a first step to gather interesting
results and definitions from the MD literature to eventually provide a comprehensive mechanically formalized
reference.

1 INTRODUCTION
We live in an era where the complexity and size of mathematics and computer programs have
well gone beyond what humans can understand and process. State-of-the-art mathematical papers
routinely take hundreds of pages these days, and can only be read by a very reduced number
of experts. Checking, and understanding them can take months, or even years, and the process
remains brittle, as it is hard for human readers to reach full confidence in such results. Moreover,
in addition to their academic impact, mistakes in mathematical theorems and software can be
extremely costly, and create mistrust among rational players, either due to risk, to complexity, or
to both accounts. Fortunately, solutions exist to help address those issues.

Formal Verification. The development of modern mathematical logic in the 20th century and, in
particular, the advent of mechanized type theory1 in the second half of it have provided mathemati-
cians and computer scientists the means to check the truth of mathematical statements beyond any
reasonable doubt.

Building on the development of this type-theoretical approach to logic, state-of-the-art computer
programs called “proof assistants” such as Coq or Lean combine excellent expressivity with very
strong guarantees of correctness, bymeans of reducing the proof-checking problem to a computation
using aminimal, trusted kernel. Significantmilestones have been achieved in the last years, including
fully verified proofs of the 4-color theorem, the Kepler conjecture, the Feit-Thompson theorem for
the classification of finite groups, and the construction of the Compcert verified C compiler.

Such pioneering work has enabled mathematicians and computer scientists to push the bound-
aries on the complexity of the reasoning they are willing to handle, as they can now be assisted
by machines. This also helps saving reviewer time, which is a scarcer resource every day; see, for
example, the effort involved in trying to review Shinichi Mochizuki’s proof of the ABC conjecture.
1Caveat: this notion is totally different from the one used in mechanism design (See Section 3.1).
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Moreover, these proof assistants, also called “interactive theorem provers” (ITP), also allow the
verification of not only mathematics, but of algorithms that can be proved correct, and then used
as part of the proof itself.

Very recently, a considerable part of the mathematics community have started to embrace ITPs
in their day-to-day work, motivated by the complexity our their own proofs becoming challenging.
For example, Peter Scholze used the Lean theorem prover to help him understand the correctness
of an ongoing proof in analytic geometry 2, with excellent results, quoting M. Scholze:

“Theorem 9.4 is an extremely technical statement, whose proof is however the heart of
the challenge, and is the only result I was worried about. So with its formal verification,
I have no remaining doubts about the correctness of the main proof. Thus, to me the
experiment is already successful.”

Not only do ITPs allow to ensure the correctness of a mathematical proof beyond any reasonable
doubt, they also provide a standard, non-ambiguousmathematical language for formal specifications,
which is a net improvement over the status-quo of communicating and stating properties using
ink on paper or„ at best, LATEXfiles. The construction of formally-verified libraries that serve as a
repository of mathematical definitions and facts is well underway, with the a few popular examples
being the AFP, based on Isabelle, mathlib, based on Lean, and math-comp, based on Coq. Research
to have these libraries communicate among them is also underway.

Mechanism design. At the same time, as algorithmic governance advances steadily in its ap-
plication domain, mechanism design has become very important in the world and takes a more
central role in everyone’s life. Be it in blockchains, distributed energy grids, advertisement auctions,
or car routing, strategic agent planning plays a central role in today’s economy. However, such
pervasiveness comes with its own challenges due to complexity, opacity, and risk management
due to mistakes and adversarial scenarios. Our motivation for the research reported in this paper
arose exactly when we found ourselves facing that particular last point. When trying to implement
the Vickrey-Clarke-Groves (VCG) auction as a library for use in a so-called “smart contract” in
blockchain technology, we faced several challenges: we needed to define VCG formally, check that
the implementation was bullet-proof, and moreover, state VCG’s properties in a formal language
that could be understood by users and verification-tool clients of our code. Our attempt was a
success, in the sense that it took us just a few lines of Coq code to rigorously define VCG and
prove its core property, truthfulness. This is when we decided to test the idea of building a small
foundational library of mechanism-design implementations and concepts, with both provides
canonical, machine-level definitions of mechanism and checks the correctness of definitions and
implementations.

Contributions. Our paper contributes to what we consider as three key issues that need to be
addressed before enabling the emergence of formally verified mechanisms in the field, namely
reference, assurance and extension, detailed below.

Reference The first contribution is mech.v, an open-source library of formally defined core
mechanisms and concepts of mechanism design. The library is implemented using the widely-
used Coq proof assistant, since we believe the Coq notation system and language makes the
definitions accessible to non-experts, just after a minimal amount of training.
We provide a generic definition of mechanism (using the class-based methodology of [16],
an auction sub-class, and generic properties including strategy-dominance and truthfulness,
which apply to all instances of the mechanism class. We also provide a few instances of the
mechanism and auction classes; in particular we define Fixed Price, First Price, Second Price,

2https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
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Generalized Second Price, General VCG, and a refinement of VCG from [26] apt for online
ad auctions. We also prove some key properties, such as the truthfulness of each of those
mechanisms (or the lack of it).
This library can be seen as having both educational and scientific value, and allows us to ask
for feedback from the community as to understand what further concepts and mechanisms
could be useful to be added to it.

Assurance Similarly to traditional applications of theorem proving in mathematics and com-
puter science, we check that the mechanisms defined in the libraries meet their intended
specification, benefiting from the additional assurance that a mechanized proof brings as
compared with a pen-and-paper proof outline.
In particular, we borrow a common technique from the programming literature, proof by
refinement, to prove that the implementation of VCG for online ads auctions is a refinement
of the general VCG version, thus transferring the truthfulness property for (almost) free. We
introduce a relational refinement mechanism written in Coq that allows to reduce the proof
of truthfulness of a mechanism m1 to that of proving it is a refinement of an existing truthful
mechanism m2, which is usually a much more compact and organized proof when stated
mechanically than direct proofs.
While we don’t think correctness is a concern in the current economic and mechanism
design literature (modulo errors such as the ones in Reinhart/Rogoff, which we don’t directly
address3), we think this work is a step towards handling mechanically more complex proofs
(such as the ones for probabilistic mechanisms), which are tedious to review or trust, and a
step towards more reproducible research.

Extension A third important contribution of this paper appears by virtue of the foundational
characteristic of our verification tool of choice: Coq proofs are simple combinatorial syntactic
objects that can be manipulated and checked by minimalistic proof checkers. This way, the
agents participating in a mechanism don’t even have to trust the provided proof. They can
opt to trust a different reference proof checking implementation to check for themselves
that a particular strategy is, indeed, dominant, increasing their trust in the mechanism while
relieving from possibly heavy cognitive load. In turn, this may allow the mechanism designer
to use even more complex design methods that remain truthful while providing better welfare
for all.
This virtuous circle may have several beneficial effects, for example in improving agents’
rationality and participation. All an agent needs to understand to fully trust the mechanism is
the statement of the mechanism’s properties, which are, with the currently Coq technology,
expressed in a manner close enough to human (mathematical) language.

Structure of the paper. After this introduction (Section 1), Section 2 surveys the related work
for formal verification and design. Building upon Section 3, which presents the basis of the type-
theoretical approach to theorem proving, Section 4 introduces the main concepts of the mech.v
library for mechanism design, while some simple applications to basic auctions are sketched in
Section 5. We detail our relational framework for mechanisms in Section 6, using VCG auctions,
with its General and ad-oriented versions, as a use case. We conclude and discuss possible future
work in Section 7.

2 RELATEDWORK ON FORMAL VERIFICATION AND MECHANISM DESIGN
A first related work is [3], where relational logics [1, 2] and relational properties [10] capture the
reasoning used in mechanism design quite effectively. The approach of [3] relied on a custom type
3See, for instance, https://www.bbc.com/news/magazine-22223190

https://www.bbc.com/news/magazine-22223190
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system for a toy functional programming language, such that the mechanisms themselves and their
utility could be specified as functions in this language where types (in the sense of C or Java types)
can capture properties about the inputs and outputs of two different runs of the program. This is
expressive enough to capture truthfulness:

Ui : {x : t | x1 = vi } → {r : real | r1 ≥ r2}.

We can read the type for U as “the utility function U takes as an input a value x of type t for agent i ,
and outputs the utility r as a real. If the action on the first run, denoted by the subscript 1 is equal to
the true belief of the agent, then the utility on the first run will be greater than equal to the one in
the second run (subscript 2)“. A custom type checker, in combination with SMT4 solvers5, was able
to check several interesting examples for truthfulness and other properties, including probabilistic
ones. This approach was extended in [4] in order to handle more complex properties such Bayesian
Incentive Compatibility, and in particular the verification of the Replica-Surrogate-Matching of [19];
a detailed argument was made in this paper on the role that proof certificates can have on improving
participation, as agents don’t need to understand why the stated properties of a mechanism are
obvious, but can rely on the verification tools (see [24]).

The approach followed in [4] is, however, not fully satisfactory for a few reasons.
• The approach used there uses custom-made tools, which, while providing a very good
automation, are hard to trust themselves, and to maintain. Moreover, the tools used (including
SMT solvers) are not foundational in nature, that is to say, contrary to Coq or Lean, they
don’t produce certificates that can be checked by a minimalistic, trusted kernel.

• Moreover, and related, the number of axioms relied upon can get large, as these tools cannot
usually handle the full mathematics involved in proofs. For example in [4], the existence of a
VCG mechanism is assumed, and parts of probability theory too. This can quickly turn into a
problem as it is easy to create an incompatible set of axioms.

• And last, the expressivity of the custom tools can become a problem when one is interested
in more general or complex theorems needing advanced mathematical notions. It is well
understood that stating non-trivial mathematical theorems in a readable way inside interactive
proof assistants requires complex notation and class systems (see for example [17]).

In this work, we use a foundational setting, thus improving or solving all these concerns; the
definitions and proofs in this paper use standard, state-of-the-art math formalization technology
and display, rely on the trusted Coq kernel, and produce certificates in the kernel language.
Closely related to the spirit of our work is [20], where the authors formalize a non-trivial

amount of voting theory and definitions. The Lean system is very close to our use of Coq plus the
Mathematical Components library, and indeed, technology to reuse proofs from Lean in Coq has
been already prototyped so it is not hard to imagine a future where both libraries on mechanism
design and voting could be combined. The most significant difference with our work — apart
from the fact that we target a very different class of utility-based mechanisms instead of order-
based ones — is that we address the issue of implementation of mechanisms, and we provide a
program refinement framework that allows to relate a significantly different implementation to its
specification in a systematic way.
Closely related too, but with marked differences, is the work of [9, 21]. In their work, they use

the Isabelle proof assistant to prove some properties of the combinatorial variant of VCG. Their
formulation of VCG is different and less general than ours, and in our setting, thanks to a more
functional specification, several of their properties hold by construction. Moreover, they neither
consider incentive properties, nor address the questions of providing efficient implementations of
4Satisfiability Modulo Theories.
5Domain-specific solvers that can decide a class of formulas automatically.
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the auction by using a different interface as we do for VCG for Search ad-based auction. Finally,
Isabelle doesn’t provide proof certificates. A survey on mechanism design and verification by some
of the same authors can be found at [22].
In [7], the authors use SMT solvers to prove an incompatibility between mechanism efficiency

and manipulation avoidance in randomized aggregation mechanism. This is interesting work, and
complementary to ours, as the integration of SMT solvers with interactive proof assistants has
advanced a lot in recent times [6, 14]. Our approach, however, is not only limited to arbitrary
properties, but also can scale to proofs of very large mathematical complexity, which is out of reach
for current SMT solvers.
The work of [8] reduces the truthfulness of particular mechanisms to linear problems that can

be checked efficiently; it would be interesting to actually use our framework to understand that
particular class of mechanisms and provide a certified decision procedure. Testing for truthfulness
is considered in [25]. The automated generation of truthful mechanisms with certain optimal
properties is introduced in [11, 28].

3 A QUICK PRIMER ON TYPE THEORY AS A MATHEMATICAL LANGUAGE
Interest in the foundations of modern mathematics gained traction on the second half of the XIXth

century, and achieved an impressive development in the XXth one. In recent times, the task of
determining whether a mathematical statement holds has gained central importance in many
areas, as the complexity and size of proofs has grown beyond what human reviewers can address
effectively.
There are several different approaches to provide assistance to mathematicians and computer

scientists. A particular successful approach to the mechanization of mathematics is type theory,
which was developed with contributions from B. Russell, A. Church, Martin-Löf, J.Y. Girard, T.
Coquand, and many others.

3.1 Types as mathematical objects
The core idea of type theory is to classify objects by their type, which can be understood informally
as them belonging to a class or set of objects. This has deep connections with programming.

Informally, we can see type theory as a kind of set theory. Objects x are given a type T , which we
usually write x : T , which can informally be read as x ∈ T .
Often, T is a logical formula, and p is a program. For example, let T be “4 = 2 + 2”. In this case,

p : 4 = 2 + 2 can be read as “p is a proof for 4 = 2 + 2”. This key correspondence between programs
and proofs is usually referred to as the Curry-Howard-Kolmogorov correspondence.

A proof checker for type theory uses rules to ensure that x : T is a valid type judgment. Thus, for
the above example, we will give the input p : 4 = 2 + 2 to our proof checker, and it will answer yes
or no depending on whether the proof is correct. In the systems we use in practice, this process is
decidable, but can take a very long time in some cases, thus proof engineers must use sometimes
strategies to refactor proofs so they check in reasonable time.

The second key component type theory provides is abstraction, which allows us to reason under
hypothesis. A common notation for abstraction is ∀(x : T ), P x , which should be read as “for all
objects x of type T , the property P holds for that x . This allows us to instantiate such properties
easily. How proofs are built on type theory is beyond the scope of this short overview, but the most
common approach is to use a computational interpretation, where a proof p of p : ∀(x : T ), P x is
just a computable function that given as input x will return a proof of P x . Note how, in this setting,
objects can also appear in types, a property of dependent type theories, a common terminology used
for systems that allow this dependency to happen.
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Modern type theories provide several facilities to work with top-level definitions, datatypes,
records, and many other convenience utilities, but their core remains quite minimal.

An example of a non trivial theorem stated in type theory is the infinitude of primes:
Lemma prime_above : forall m, exists p, m < p ∧ prime p.

The above lemma reads “for any natural numberm, there exists a natural number p, such that a)
it is greater thanm, and b), it is prime”, where prime is defined in the mathematical components
library, in this case as an algorithm of type prime : nat → bool. Note also how Coq can infer that
the types of m and p are natural numbers, thus saving the programmer from verbose proof writing.
Note how close this formulation is to standard mathematical language. Finding a proof of this

theorem would involves finding a program with the right type. This can get complex quickly, so in
modern practice systems provide tactics closer to standard mathematical writing all will produce
the right proofs. Note that tactics don’t need to be trusted themselves, because at the end the system
will check the generated proof term.

3.2 Coq overview
Coq [29] is mature interactive theorem prover, based on the Calculus of Inductive Constructions [12,
13, 27]. A recipient of the ACM Software System Award, Coq has been used to reach several first
verifiation milestones such as the formal proof of the four colors theorem [18], the Feit-Thompson
theorem [17], the CompCert verified C-compiler [23], and to this day plays a central role in the
programming languages community.

The core of Coq is the Gallina Programming Language, which is higher-order dependently-typed
λ-calculus in which proofs, types, and definitions are written. The main syntactic particularity of
Gallina, as with other functional programming languages is that function application is denoted by
space. Thus, the math-based term f (x ,y) is written f x y in Gallina.

Coq provides many facilities to help users to write formal proofs, including all kind of automatic
and interactive tactics, a type inference engine, a proof search engine and programmable tactic
language, a plugin system, an advanced parser and notation engine, an “extraction” system to
generate programs, and a library and module organization system.

3.3 Trust Setting
A core feature of the type-theory setting for mechanized proof checking is that theorems and
definitions are elaborated to a quite minimal core language, which can be then checked for con-
sistency using a fairly small trusted “kernel”. This is fairly remarkable, as, while current kernels
are not designed to be adversarial-resistant, they have been in production for many decades and it
is extremely unlikely for a user to find a bug in them. Thus, we can assert that verification using
type theory provides a high degree of trust and guarantees; moreover, proof terms can be checked
independently on different hardware / software platforms, thus providing assurance against possible
Trojan horses by a malicious player. In the case of Coq, the kernel is around 10,000 lines of code,
written in the OCaml functional programming language, and is not adversarial resistant, though
significant progress has been made to develop a smaller and bootstrapped verified kernel so far.

3.4 Mathematical Structures
A common way to structure knowledge in interactive proof assistants is by defining a class hier-
archy. Similar to object-oriented programming, users can define class interfaces, subclasses, and
implementations. A typical example comes from universal algebra. We will say that a type T is a
group, if there exists operations ⊙ and (·)−1, of respective types T → T → T and T → T , such that
the usual group laws hold. Usually, these operations and laws are packed using a record, which is
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similar to a structure in most programming languages. We can now define the sub-class of groups
that are commutative, by extending the record to include a new law comm : ∀xy,x ⊙ y = y ⊙ x .
Note that all commutative groups are also groups.
The problem of defining usable mathematical structures is quite interesting and only partially

solved, as the relations between structures can be quite complex and ambiguous. In this paper, we
will follow the approach of [16] and use records to pack a particular carrier type and its properties.

3.5 The Mathematical Components Library
The Mathematical Components Library is the result of 20 years of work on the formalization of
mathematics, and includes hundredths (if not thousand) of tested mathematical objects ready for
use, including finite types, finite sets, matrices, groups, big operators, a full abstract algebraic and
numerical hierarchy, linear algebra, etc. . .

For this work, finite types, tuples (sequences of fixed length), and big operators [5] are the more
relevant parts of the library.

4 MECH.V, A LIBRARY FOR MECHANISMS
We describe in this section the main features of the new Coq mech.v6 library dedicated to the
specification of pure, i.e., deterministic, mechanisms.

4.1 Basic Definitions
All the major notions related to mechanisms are specified as Coq modules, which pack together
definitions and lemmas under a unique naming space. The simplest one is the notion of agent.
Module agent.
Section Agent.
Variable n : nat. (* number of agents in the mechanism *)

Definition type := ' I_n.
End Agent.
End agent.

An agent is represented as a value of an “ordinal” type, here the type ' I_n of natural numbers
strictly bounded by n, which is a parameter that has to be provided when one wants to create a new
agent. For example, an agent a can be declared as Variable (a : agent.type 10). , where the name of
the agent module, agent, is used to access names defined in it, such as type.

Agents participate to mechanisms, which are values of the type mech.type (for space reasons, we
leave out the Module mech and Section Mech commands, similar to the ones above; we will do so in
the rest of this paper).
Record type {A : Type} ( n : nat) :=

new {
O : Type; (* domain of outcomes *)

M : n.−tuple A → O; (* social outcome for the agents' actions *)

}.

Amechanism is abstracted over two values: A is a value of type Type, which is intended here to be the
one of the actions that agents can perform in the mechanism, and n, the number of agents involved.
Given these two parameter-like values, mechanisms of type mech.type A n are then specified as
records, packing both the type O of the mechanism’s outcomes and M, the mechanism’s core, which
is a function mapping n actions (in A packed together in a tuple to one outcome, the social outcome
6. v is the file extension for Coq files
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defined by the mechanism. Note how Coq allows a particular field, here O, to be both used as a field
of the record, and also a type element of another field.

Finally, agents have behaviors, which are specified as preferences’ values of the prefs.type type.
In the code below7, the variable mech is defined as the mechanism type we are dealing with here,
while the agent variable does something similar8 for the agent type Note that we introduce here
the notion of a strategy which we develop in Section 4.3.

Variable (A : Type) ( n : nat).

Definition mech : Type := @mech.type A n.

Notation agent := (agent.type n).
Notation strategy := (agent→ A).

Record type (m : mech) :=
new {

v : strategy; (* true value strategy *)

U : agent→ mech.O m→ nat; (* utility *)

s : strategy (* strategy used in [m] *)

}.

Presently, a value of type prefs.type packs, for each agent, three value together: (1) the “true value”
strategy of the agent, (2) his or her notion of utility, mapping9 a value of the outcome domain
mech.O m of the mechanism m passed as an argument to the prefs.type construct to a numerical
utility, here encoded as an integer, in nat, and (3) the current strategy of the agent.

4.2 Hierarchy
If the definitions above can be used to define very general mechanisms, as could, for example, be
found in game theory, it is interesting to provide more specialised versions of those. We illustrate
here how auctions and truthful mechanisms can be seen as specialized mechanisms.

4.2.1 Auction. An auction is a particular class of mechanism, dedicated to allocating resources in a
priced market. In this particular case, actions, in A, are bids, and thus we restrict here actions to be
values of some ordinal type ' I_m.

Notation A := (' I_m). (* actions are bids *)

Record type :=
new {

b :> @mech.type A n; (* base mechanism *)

p : mech.O b → agent→ option nat (* price to pay *)

}.

7The @ sign is a Coq convention to indicate to the system that all parameters will be provided and, thus, that they don’t
have to be automatically inferred. The special notation _ can be used as a placeholder for a parameter that Coq is expected
to infer.
8The Coq Notation construct specifies a syntactic shortcut to the right-hand side of the assignment.
9In Coq, record fields are seen as functions; so, in the module mech defined for mechanisms, the function O applied to a
mechanism m yields the social outcome computed by m. As mentioned before, outside of the module, O is not visible and, to
be accessed, must have its name fully specified, here as mech.O.
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An auction, of type auction.type, builds upon two fields. The first one is b, which is a value of its
base-mechanism type10 @mech.type A n. The second one, p, specifies the pricing convention used
in the auction: given an outcome provided by the base mechanism b, it yields, for each agent, the
price s/he has to pay in the given outcome. This price is given as an option type: it can be either
Some k , if the agent has won in the bidding and has to pay k , or None, if the agent has lost.
In addition to providing a clearer definition of what auctions are as mechanisms, using this

hierarchical approach is interesting in that it enables the description of general functions and
properties that apply to this particular subset of mechanisms. For instance, we provide a default
utility function, auction.U, that is the usual difference between an agent i’ value ( v i) and the price
to pay, p' , if any.
Definition U (a : type) ( v : strategy) :=
fun i ( o : mech.O a) ⇒ match p o i with | Some p' ⇒ v i − p' | _ ⇒ 0 end.

4.2.2 Truthful mechanism. In the auction case, we extended the notion of a mechanism with
a pricing function. Coq enables records to include not only typical values, but also properties.
A truthful mechanism, a value of the truthfulMech.type type, is a mechanism that satisfies the
truthful property (see Section 4.4). Since the truthfulness property depends on the utility function
of agents, a prefs.type value needs to be provided as well.
Record type :=

new {
b :> @mech.type A n; (* base mechanism *)

p : prefs.type b; (* preferences *)
_ : truthful p (* truthful property *)

}.

Note that the third field doesn’t have a name, as indicated by the _ sign. The Coq proof mechanism
provides ways to access it, however, when need be.
In addition to adding general definitions to modules defined in a hierarchy, as we did in the

auction case, general lemmas can be provided as well. In this particular case, we express, and prove
formally11, that all truthful mechanisms are weakly dominant (see Section 4.3 for the Coq definition
of this notion) with respect to the “true value” strategy, as specified in the preferences ( p m) for any
truthful mechanisms m.
Definition true_value_strategy := prefs.v.

Lemma truthful_implies_weakly_dominant : forall (A : eqType) n (m : truthfulMech.type A n) ,
weakly_dominant (p m) (true_value_strategy (p m)).

4.3 Properties
Mechanism results depend upon agents’ strategies, i.e., which actions they take given a mechanism
outcome. Here, a strategy is a function from agents to actions, for any given mechanism.
Variable (m : @mech.type A n).
Variable (p : @prefs.type A n m).

Definition strategy := agent→ A.
Definition true_value_strategy := prefs.v p.

10The :> sign indicates that, wherever a mechanism value is needed, an auction can be seen as such, via its b field.
11Except in one case, proofs are omitted in this paper.
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An important strategy is the “true value” strategy in which an agent performs the action s/he
privately thinks the most appropriate; it is one of the elements of a prefs value such as p, as seen
above. Relating one strategy to another is a key element of mechanism design: mech.v provides
the most important of these relations, including theorems that can be derived from them (see
Section 4.3. We discuss here dominance, Nash equilibrium and Pareto optimality.

A strategy s for a mechanism m is dominant for an agent iwith preferences p if, whatever strategy
s' envisioned for i and the other agents, the utility U of the action ( s i) is always greater12. Here,
actions are gathered into n-tuples, which can be updated with the set_in_actions function.
Definition U := prefs.U p.

Definition actions (s : strategy) := [tuple s j | j < n].
Definition set_in_actions (s s' : strategy) i := [tuple if j == i then s' j else s j | j < n].

Definition dominates (g : rel nat) ( s s' : strategy) (i : agent) :=
g ( U i ( m ( set_in_actions s' s i))) ( U i ( m ( actions s'))).

The dominates boolean function is abstracted over the comparison relation g (for “greater than” or
“greater than or equal”, as we see below for the two dominance relations) and compares the utilities
of i depending on whether it uses the (supposedly) dominating strategy s or any other s' in the
mechanism m. Using “standard” mechanism design notation, this is equivalent toUi (m (s ′−i , s i)) >д
Ui (m s ′). Notice how the actions tuple ( actions s') is passed to the m mechanism (actually the M

field of the m record, via a coercion not detailed here) to yield the corresponding outcome, passed
then as a second argument to U.
Variable (s : strategy).

Definition weakly_dominant := forall i s', dominates geq s s' i.
Definition strictly_dominant := forall i s', ¬ (s =1 s') → dominates gtn s s' i.

The definitions of Nash equilibria and Pareto optimality are provided in a similar fashion: a
strategy s is a Nash equilibrium if, for any agent i, using another strategy s' would lead to a lower
utility, and it is Pareto-optimal if using a different strategy s' that increases her utility would, on
the other hand, lower the one of another agent i' .
Definition Nash_equilibrium (s : strategy) := (* ∀ i s ′,Ui (m s) ≥ Ui (m (s−i , s

′ i)) *)

forall (i : agent) (s' : strategy),
U i ( m ( actions s)) >= U i ( m ( set_in_actions s s' i)).

Definition Pareto_optimal (s : strategy) :=
(* ∀ i s ′,Ui (m (s−i , s

′ i) > Ui (m s) =⇒ ∃i ′,Ui (m (s−i , s
′ i) < Ui (m s) *)

forall (s' : strategy) (i: agent),
let aa := actions s in

let a' a := set_in_actions s s' i in

U i ( m a' a) > U i ( m aa) → (exists i', U i' ( m a' a) < U i' ( m aa)).

4.4 Theorems
Given the formal definitions of the key properties that strategies can have, one can use those in
at least two ways: the first is to prove general theorems about mechanisms, while the second is
12We use here the “greater than” (resp., “greater than or equal”) function gtn (resp. geq) on natural numbers.



Pierre Jouvelot and Emilio J. Gallego Arias 10

to specialize those definitions to handle specific mechanisms, for which we describe a powerful
relational framework to map one mechanism to another one. We focus here on the first application,
and address the second one in Sections 5 and 6.

We have specified and formally proven some key fundamental theorems about mechanisms. For
instance, the lemma dominant_is_Nash states that any dominant strategy s is a Nash equilibrium
(proof omitted), while Nash_uniq ensures that, if it is strictly dominant, then the Nash equilibrium
is unique and equal to s:

Variable (A : eqType) ( n : nat) ( m : mech.type n) (p : prefs.type m) ( s : strategy A n).

Lemma dominant_is_Nash : weakly_dominant p s→ Nash_equilibrium p s. (* Proof omitted *)

Lemma Nash_uniq :
strictly_dominant p s→ forall s' : strategy A n, Nash_equilibrium p s'→ s' =1 s.

Proof.
rewrite /strictly_dominant /dominates /Nash_equilibrium /=⇒ d s' N i.
move: ( d i s').
have [] := boolP ([ forall i, s i == s' i]) ⇒ [/eqfunP→ //|/not_eqfunP ness' /(_ ness')].
by rewrite ltnNge N.
Qed.

The proof for the lemma Nash_uniq is given here just to give a feel of how such proofs work. The
proof begins with the Proof keyword; the first rewrite command unfolds definitions; move: adds
the proposition ( d i s') , which is the application of the property of strict dominance d to an agent
i and strategy s' , to the current list of hypothesis; have introduces here a case analysis based on
whether s and s' are equal or not (the two branches are treated in the [.|.] construct, the first
one being trivial); and the final rewrite command applies two lemmas (ltnNge, provided by the
mathcomp library nat, states that “less than” is the opposite of “greater or equal”, while N is the
name given to the Nash equilibrium hypothesis present in the lemma specification). The final Qed
command asks the Coq proof assistant to validate the previous proof.
The hierarchy of mechanisms enables the elegant formulation of other interesting and general

theorems about more specific cases. For instance, one can state, and prove, that, for all truthful
mechanisms, the true value strategy is weakly dominant.

Lemma truthful_implies_weakly_dominant :
forall (A : eqType) ( n : nat) ( m : truthfulMech.type A n),
weakly_dominant (truthfulMech.p m) (true_value_strategy (truthfulMech.p m))

Note how the truthfulness property needed here is, in fact, hidden behind the definition of the
truthfulMech.type, and doesn’t need to be stated again explicitly. This approach builds upon the
modularity and abstraction features of the Coq mathcomp framework.

5 BASIC AUCTIONS
The mech.v library provides the specifications and some key properties for the most common auction
mechanisms, namely Fixed Price, First Price, Second Price, Generalized Second Price, General VCG,
Combinatorial VCG and VCG for Search; the last three are detailed in Section 6. Truthfulness are
derived either by instantiation or use of our relational framework. For non-truthful mechanisms
(First Price, Generalized Second Price), we provide explicit counter examples, which are used by
the not_truthful_inv theorem provided in the library. As a use case for mech.v, we focus here on
Second Price, for single-item auctions.
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The number of agents is abstracted over a variable n'' , so that the total number, n, of agents, in
the domain A is greater or equal to 2 (Second Price calls for at least that number of agents). A bid
proposed by an agent is an ordinal, bounded by p; all the bids are gathered in n-tuples, of type bids.
The Second Price algorithm is defined in its own Section: given an initial set of bids bs0 and an
agent i, the algorithm sorts the bids in a decreasing fashion and computes the index i' of i in the
sorted tuple bs. If i has the highest bid, and thus its index i' is ord0, the ordinal of value 0, then i is
the winner and the price s/he has to pay is price, which is the value of the bid of the next highest
bidder (agent.succ is defined in the agent module).
Variable (n'' : nat).
Definition n' := n''.+1.
Definition n := n'.+1.

Definition A := agent.type n.
Notation agent_succ := (@agent.succ n').

Variable p' : nat.
Definition p := p'.+1.
Definition bid := ' I_p.
Definition bids := n.−tuple bid.

Section Algorithm.
Variable (bs0 : bids) ( i : A).
Let bs := tsort bs0.
Let i' := idxa bs0 i.
Definition is_winner := (i' == ord0).
Definition price : nat := tnth bs ( agent_succ i'). (* bsi′+1 *)

End Algorithm.

Now, by viewing this algorithm as an instance of mech.type, and more precisely of auction.type,
we will be able to use the library’s definition of truthfulness to help us specify this property for
Second Price in a concise fashion. The definitions of the auction components are done in two steps:
(1) m is a mechanism that returns as social outcome an n-tuple of pairs of boolean values, indicating
for each agent whether s/he won or not, and the tuple of bids used; (2) a is an auction derived from
m which, for each agent i and given outcome o, yields the price to pay: either Some price computed
using the Second Price algorithm, or None, when losing.
Definition m := mech.new ( fun bs ⇒ map_tuple (fun i⇒ (is_winner bs i, bs)) (agent.agents n)).

Definition a :=
@auction.new _ _ m ( fun o i ⇒ if (tnth o i).1 then Some (price (tnth o i).2 i) else None).

Given any true value strategy v, we can then directly reuse the default prefs value provided in the
auction module to express the truthfulness property that Second Price mechanism possesses.
Variable v : agent.type n → bid.

Definition prefs := auction.prefs a v.

Theorem truthful_SP : truthful prefs. (* Proof omitted *)
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Thanks to this instantiation into auction.type, we also able to prove that this algorithm is Pareto-
optimal (the proof is omitted, here):
Lemma Pareto_optimal_SP : Pareto_optimal prefs (true_value_strategy prefs).

We proceeded in a similar fashion for all the basic auctions mentioned above. The case of VCG is a
bit different, since we relied also on the relational framework introduced by mech.v; we detail this
in Section 6.

6 MECH.V RELATIONAL FRAMEWORK: A VCG USE CASE
The mech.v library provides three versions of the famous Vickrey-Clarke-Groves mechanism: one is
the General VCG mechanism, another is Combinatorial VCG, and the last one is VCG for Search,
a mechanism for auctioning multiple items. We focus here on General VCG and VCG for Search,
since these two specifications are used to illustrate the relational framework introduced by mech.v
to help transfer the truthfulness property13 from one mechanism to another one. In this particular
case, the somewhat easy proof for General VCG truthfulness is transferred to VCG for Search; the
relational framework avoids digging too much in the specifics of the VCG for Search mechanism
(a direct proof turns out to be much more cumbersome). Note that this transfer is even easier for
Combinatorial VCG, since this mechanism is expressed as a direct instantiation of General VCG,
and the proof of truthfulness is thus just one line.

6.1 General VCG
General VCG, listed below, is abstracted over the type O of possible outcomes, a particular instance
o0 (to ensure non-emptiness of O) and an agent i. Here, any agent, among n, is defined by its
bidding, a finite function that maps any possible outcome into the Coq domain nat of natural
numbers. General VCG, given its last parameter, a tuple bs of biddings, must compute the outcome
oStar that maximizes the total bidSum o of bids14. In a truthful mechanism, where the bids of agents
and their “true values” coincide, this outcome maximizes the global good, or “welfare”. For agent i,
the price s/he accordingly has to pay to win whatever is in oStar for her is a penalty induced by
the impact on the global good of her presence in the bidding process (welfare_with_i) compared
to when she is not (welfare_without_i), which could have yielded a possibly different optimal
outcome.
Variable (O : finType) (o0 : O) ( i : A).

Definition bidding := {ffun O → nat}.
Definition biddings := n.−tuple bidding.
Variable (bs : biddings).
Local Notation "'bidding_ j" := (tnth bs j) (at level 10).

Implicit Types (o : O) ( bs : biddings).

Definition bidSum o := \sum_(j < n) ' bidding_j o. (*
∑n−1
j=0 bsj o *)

Definition bidSum_i o := \sum_(j < n | j != i) ' bidding_j o. (*
∑n−1
j=0, j,i bsj o *)

Definition oStar := [arg max_(o > o0) (bidSum o)]. (* o∗ = argmaxo
∑n−1
j=0 bsj o *)

13This approach could be extended to other properties.
14We assume, for now, that such optimal outcome is unique, a restriction that should be alleviated in future work. Note that,
in itself, VCG is non-deterministic in its choice, there.
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Definition welfare_with_i := bidSum_i oStar.
Definition welfare_without_i := \max_o bidSum_i o.

Definition price := welfare_without_i − welfare_with_i.
(* maxo∈O

∑n−1
j=0, j,i bsj o −

∑n−1
j=0, j,i bsj o

∗
*)

Seeing General VCG as a mech.type instance is easy (see definitions below); we define an outcome
for mech.type has a pair made of the tuple of prices for all agents and the optimal outcome oStar.
The utility function defined within prefs is the natural one, i.e., value minus price.
Definition m : mech.type n :=
mech.new ( fun bs ⇒ (map_tuple (fun a⇒ price o0 a bs) (agent.agents n), oStar o0 bs)).

Variable v : A → bidding O.

Definition p : prefs.type m := prefs.new v ( fun i ( o : mech.O m) ⇒ v i o.2 − tnth (o.1) i) v.

The mech.v library provides a proof that General VCG is truthful, i.e., truthful p, and also that it
has the “no transfer” property (the mechanism never has to pay agents) and is individually rational
(all prices are less than the agents’ true values).

6.2 VCG for Search
VCG for Search is an special case15 of General VCG that applies to the auctioning of multiple items
of different values. A typical application is the allocation of k dedicated slots for advertising present
in search return pages, as provided, for instance, by Google; note, though, that Google has been
recently said to be moving away from Generalized Second Price, which is somewhat similar to
VCG, to adopt First Price16. Each slot value is characterized by a click-through rate (“ctr”, defined
in a way similar to bids, as an ordinal), which is the probability that a user will click on an ad when
displayed in this particular slot (experimentally, this depends on the ad position in the page and its
size). The definition of the VCG for Search algorithm is displayed below.
Variable (bs0 : bids) ( i : A).
Let bs := tsort bs0.
Let i' := idxa bs0 i.

Definition is_winner := i' < k'. (* k = k'.+1 *)

Lemma slot_won_is_slot : minn i' last_slot < k.
Proof. exact: geq_minr. Qed.
Definition slot_won : slot := Ordinal slot_won_is_slot.

Definition externality (bs : bids) s := (* bss ∗ (ctrs−1 − ctrs ) *)

let j := slot_as_agent s in tnth bs j ∗ (' ctr_(slot_pred s) − (' ctr_s)).

Definition price := (* Price per impression (divide by ctr_s, for price per click):∑k−1
s=i′+1 bss ∗ (ctrs−1 − ctrs ) *)

15The mech.v library provides a machine-verified proof of the “well-known” fact that the price formula for VCG for Search
is derivable from the one for General VCG.
16https://www.neowin.net/news/google-is-doing-away-with-the-second-price-auctioning-mechanism-on-adsense.

https://www.neowin.net/news/google-is-doing-away-with-the-second-price-auctioning-mechanism-on-adsense.
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if i' < k then \sum_(s < k | i'.+1 <= s) externality bs s else 0.

The bids bs0 of all bidders are sorted in a bid-decreasing manner, and the first k agents win the
slot slot_won corresponding to their own sorting index, i' (slots are assumed to also be down-
sorted). Note how this ordinal, of value here i' , is created by passing to the Ordinal constructor
the proof slot_won_is_won of a lemma that states that the index i' is indeed a slot, i.e., a member
of the ordinals of value less than k. The price paid by agent i for getting slot i' is the sum of
the externalities of all the agents bidding less than i did; they are computed using bid-weighted
differences of ctrs between adjacent slots.

As before, VCG for Search can be framed as an instance of mech.type, where the outcome domain
is an n-tuple of structures in R, each of which stating whether the agent won, and if so, at what
price and what:

Structure R := Result {awins : bool; price : nat; what : slot}.
Definition O : Type := n.−tuple R.

Definition m :=
mech.new ( fun bs ⇒ map_tuple (fun a⇒ Result (is_winner bs a) (price bs a) (slot_won bs a))

( agent.agents n)).

Definition A := bid.
Definition v : agent.type n → A := true_value.

Definition p : prefs.type m :=
prefs.new v

( fun i ( o : mech.O m) ⇒ let r := tnth o i in

if awins r then v i ∗ ' ctr_(what r) − price r else 0)
v.

6.3 Refinement Framework
The mech.v library provides an abstract relational framework to help transfer property proofs from
one mechanism to another, as long as they are properly related to each other. This has been used to
derive in a very elegant manner the truthfulness of VCG for Search from the one existing for General
VCG. To relate mechanisms m2 and m1, of respective types @mech.type A2 n and @mech.type A1 n, one
needs first to provide the following key elements.

• Ra, a relation between the action domains, of type17 agent→ A1→ A2→ Prop;
• Ro, a relation between the outcome domains, of type O1 → O2→ Prop, where Oi is a shorthand
for mech.O mi;

• a “refinement” lemma, MR that states that m1 and m2 send related inputs (i.e., actions) to related
outputs (i.e., outcomes);

• a “compatibility” lemma, RelFP, for utilities, i.e., a proposition that expresses that, if two
outcomes are related, then the corresponding utilities also are too (using, here, equality).

An important special case is detailed in mech.v, i.e., when one is able to derive the properties of m2
from the ones of m1. In this case, the following additional elements are also required:

• a mapping function fR, to specify how to compute an action a1 for m1 given one, a2, for m2;

17Prop is the name of logical properties in Coq.
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• given preferences p1 and p2 for, resp., m1 and m2, in particular the true value strategies v1 and
v2, two lemmas, the first one, fRP, ensuring that fR i a2 is related to a2 by Ra, and the second,
that v2 i is mapped to v1 i by fR.

Given all these elements, the proof of truthfulness implication, truthful p1→ truthful p2, is
provided in mech.v.

6.4 VCG Use Case
The mech.v provides the definitions and lemmas for all the elements required by the refinement
formalism described above. We give a feel for how this applies to VCG via a few examples of how
these are stated; identifiers annotated with the suffix “1” correspond to General VCG (mechanism
m1), while those without suffix relate to VCG for Search (mechanism m2).

We build the action domain A1 for General VCG upon VCG for Search elements: A1 = bidding O',
where O' is defined (definition omitted) as the domain of k-tuples of winning agents selected by VCG
for Search. Similarly, one needs to define O1 out of O' : O1 = ( n.−tuple nat ∗ O')% type. An element of
O1 is a pair gathering the tuple of the agents’ prices according to VCG for Search and the tuple of
winning agents, in O' . A good example to illustrate how these elements interact can be seen in how
the true value strategy v1 for General VCG can be derived from VCG for Search’s v:
Definition v1 : agent.type n → A1 := fun i⇒ [ffun o' : O' ⇒ v i ∗ ' ctr_(slot_of i o')].

Elements of A1 are finite functions, as described in Section 6.1. The multiplication by the ctr of the
slot of i in o' is needed, since VCG for Search prices have to be divided by ctrs, to get prices per
click.

The relation Ra between inputs is specified as follows:
Definition Ra i (a1 : A1) (a : A) := forall o' : O', a1 o' = a ∗ ' ctr_(slot_of i o').

For all VCG for Search outputs o' , the bid value ( a1 o') according to General VCG has to be equal
to the VCG for Search bid, i.e., a multiplied by the ctr of the slot of i in o as before.

A last example is the relation Ro between the mechanisms’ outputs, in O1 for General VCG and O

for VCG for Search (see Section 6.2). It is specified as follows:
Definition Ro (o1 : O1) (o : O) :=
forall i, let r := tnth o i in

let s := slot_of i o1.2 in

awins r = ( s != last_slot) ∧ (awins r→ what r = s ∧ price r = tnth o1.1 i).

Ro states how the outcomes relate for each agent i: r is a structure in R, and Ro checks that the
fields of r are compatible with the results computed by General VCG, in o1; note that the last_slot
is the slot allocated to each agent that doesn’t win in the VCG for Search algorithm.

Given these elements and the additional required lemma, VCG for Search can be proven truthful,
via General VCG’s truthfulness theorem18.

7 CONCLUSION
We introduce mech.v, a new framework for specifying and proving properties of mechanisms using
the Coq and SSReflect/mathcomp proof assistant. With almost than 6000 lines of Coq code, for
both specifications and proofs, mech.v is now more than just a proof-of-concept (pun intended)
development for formally verified mechanisms. Introducing generic mechanism definitions, actual
18This proof relies on a couple of sort-related side hypotheses, which could be proved away if deemed necessary. Also, we
assume that the VCG optimal outcome is unique, leaving for future work the issue of handling the case when this is actually
not the case. Recall though that VCG is agnostic on which choice is taken here, since the global welfare remains the same in
all cases.
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mechanism algorithms and proofs of their key properties based on powerful techniques (relational
or instantiation-based), it handles seven common use cases focused on utility-based auction mech-
anisms, among which three instances of the key VCG mechanism, providing machine-verified
proofs (or disproofs) of truthfulness for all of them (plus some additional lemmas). We believe
mech.v provides thus a strong infrastructure from which sound, formally machine-verified existing
and new mechanisms can be developed, helping increase the confidence the services they offer are
well-founded.

This new framework can be extended in a variety of ways. First, additional notions related
to deterministic mechanisms can be added to mech.v, e.g., stable matching or other notions of
equilibria, as found in textbooks. Second, an other path for development is to tackle ordering-based
(voting) or probabilistic mechanisms, which require an extension of the current arithmetics-based
specifications to handle orderings and real numbers. Third, we would like to properly document this
library to be more amenable to use as an “executable” textbook for economy-education purposes,
following the “literate programming” movement; for this, we intend to build upon the jsCoq
interactive web-based environment [15], which provides a flexible and powerful Coq-compatible
infrastructure for the kind of multimedia material we envision, including text, images, programs
and more. And finally, we are looking forward to getting input and feedback from the economics
community on what is the best way to proceed with this kind of formal approach, now that the
development of mech.v presented here has established the validity of such an approach.
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